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Abstract

In this paper we present a convergence result for some Krylov projection methods when

applied to the Tikhonov minimization problem in its general form. In particular we consider

the method based on the Arnoldi algorithm and the one based on the Lanczos bidiagonalization
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1 Introduction

When solving linear equations of the type

Au = f, (1)

where u and f belong to a Hilbert spaceH, and A : H → H is a compact linear operator, one is often
forced to impose some regularization. Indeed, such operators possess the general property that the
spectrum is either finite or countably infinite; in the latter case the sequence of eigenvalues {λn}n≥1

(arranged in order of decreasing magnitude) converges to 0 (see e.g. [11, §1.8]). By consequence,
the problem (1) is ill-posed since the operator does not possess a bounded inverse. The situation
becomes even more difficult whenever f does not satisfy the Picard condition (because of errors,
noise, see [7]), that is, when it does not belong to the range of A, R(A).

In this context, the well known Tikhonov regularization plays an important role. This method
prescribes to replace (1) with the minimization problem

min
u∈H

{
‖Au− f‖2 + λ2 ‖Lu‖2

}
, λ > 0, (2)

where L : H → H is a linear regularization operator, that, depending on the magnitude of λ, should
force the solution to have some characteristics (see [6] for a background).

As in many other areas of numerical analysis the minimization (2) can be approached by using
projections on suitable finite dimensional spaces, that is, we can replace minu∈H by minu∈Km
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in (2), where Km ⊂ H is an m-dimensional space. When Km is a Krylov subspace the arising
procedure is generally referred to as a Krylov-Tikhonov method (see for instance [3] for a recent
overview). In this context, many Krylov based algorithms such as the Lanczos bidiagonalization
and the Arnoldi algorithm are generally considered powerful tools. Nevertheless, to the best of
our knowledge, no convergence result is available in the literature. Assuming that the compact
operator A is not of finite rank and injective (N (A) = {0}, where N (A) denotes the null space),
the solution u† of (2) is unique. Denoting by {um}m≥0 the sequence of approximations arising
from the constrained minimization minu∈Km

, the convergence of this sequence to u† is still to be
proved.

In this paper we show that some Krylov-Tikhonov methods are in fact orthogonal projection
methods for the linear operator equation

(
A∗A+ λ2L∗L

)
u = A∗f.

In this way we are able to show that there exists a norm in H, E(·), that eventually may be a semi-
norm, such that under suitable hypotheses E(um − u†) → 0 and moreover that

{
E(um − u†)

}
m≥0

is bounded by the remainder of a series corresponding to an ℓ2 sequence. We restrict our analysis
to the Krylov-Tikhonov methods based on the Lanczos bidiagonalization and the Arnoldi algo-
rithm. We keep the analysis in the framework of a general infinite dimensional separable Hilbert
space, since the properties of compact operators of infinite rank are not well replicated in the finite
dimensional setting.

The paper is organized as follows. In Section 2 we recall the basic properties of the Arnoldi
algorithm and GMRES. In section 3 we present some theoretical results about the extendibility
of the Krylov subspaces. The convergence results for the Arnoldi-Tikhonov method are given in
Section 4. In Section 5, the results are then extended to the Lanczos-Tikhonov method in which
the Tikhonov minimization is solved by the Lanczos bidiagonalization.

2 The Arnoldi algorithm

Let H be a Hilbert space, with scalar product <,> and norm ‖·‖ defined as

‖x‖ = 〈x, x〉1/2 .

Throughout the paper we assume that H is separable, that is, it admits a countable orthonormal
basis {ϕn}n∈N

. We denote by A∗ the adjoint of A, and by IH the identity operator. We also denote
by {σj(A)}j≥1 the sequence of the singular values of A arranged in order of decreasing magnitude.

Let Km(A, f) = span{f,Af, . . . , Am−1f} be the m-dimensional Krylov subspace generated by
A and f . Setting N = supn(dimKn(A, f)), the Arnoldi algorithm computes an orthonormal basis
{w1, ..., wm} of Km(A, f) for each m ≤ N . In particular, we have

w1 =
f

‖f‖
, wm+1 =

(IH − Pm)Awm

‖(IH − Pm)Awm‖
,

where Pm is the orthogonal projection onto Km(A, f). Let Wm : Cm → Km(A, f) ⊆ H be the
isometry defined by

Wmy =
∑m

j=1
y(j)wj , y =

(
y(1), ..., y(m)

)
∈ Cm, (3)
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so that Pm = WmW ∗
m. Let moreover Hm ∈ C(m+1)×m be the upper Hessenberg matrix such that

AWm = Wm+1Hm. (4)

It is known that the sequence of GMRES approximations, {um}m≥0, u0 = 0, is defined by solving
at each step of the Arnoldi algorithm the least-squares problem

min
u∈Km(A,f)

‖Au − f‖ ,

whose solution is given by um = Wmym where

ym = arg min
y∈Cm

‖Hmy − ‖f‖ e1‖ , (5)

e1 = (1, 0, ..., 0)T ∈ Cm+1. Note that for m ≤ N

um = Wm (H∗
mHm)

−1
H∗

me1 ‖f‖ . (6)

We remark that the norm used in (5) is just the Euclidean norm in Cm+1. We avoid the use of
a different symbol since the meaning is clear from the context. The same holds for the adjoint
symbol used in (6) to indicate the Hermitian transpose of a matrix.

3 Some theoretical results on Krylov subspaces

Theorem 1 [11, Theorem 1.9.2] Let A : H → H be a compact normal operator. Let moreover
{λn}n∈S

be the sequence (finite S = {1, ..., d} or countably infinite S = N) of non-zero eigenvalues
counted according to their multiplicities and {ϕn}n∈S

the corresponding orthonormal sequence of
eigenvectors. Then

Ax =
∑

n∈S
λn 〈x, ϕn〉ϕn, x ∈ H. (7)

Moreover A is self-adjoint if and only if λn ∈ R, n ∈ S, and is positive if and only if λn > 0,
n ∈ S.

The closed linear span of the eigenvectors {ϕn}n∈S
is equal to H if and only if A is injective.

Now, letK(A, f) = ∪m∈NKm(A, f) be the closed linear span of the vectors f,Af,A2f, ... (eventually
of finite dimension if N < ∞) and let P be the orthogonal projection onto K(A, f). Let moreover
K(A, f)⊥ be the orthogonal complement of K(A, f). We have the following result.

Theorem 2 Let A : H → H be a compact normal operator. Assume moreover that A is injective.
If u ∈ H is the solution of Au = f then u ∈ K(A, f).

Proof. Let K = K(A, f) for simplicity. Assuming u /∈ K, then u − Pu⊥K. Since AK ⊆ K we
have that A∗(u− Pu) ∈ K⊥. Moreover, A(u− Pu) = b−APu ∈ K and therefore

〈A∗(u− Pu), A(u− Pu)〉 =
〈
(u− Pu), A2(u− Pu)

〉
= 0.
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Since A is injective {ϕn}n∈N
is a basis of H and hence, using (7), we obtain

〈
(u− Pu), A2(u− Pu)

〉
=

〈∑
j∈N

〈u− Pu, ϕj〉ϕj ,
∑

n∈N
|λn|

2 〈u− Pu, ϕn〉ϕn

〉

=
∑

n∈N
|λn|

2 |〈u− Pu, ϕn〉|
2
= 0,

that is, 〈u− Pu, ϕn〉 = 0 for n ∈ N, and therefore u = Pu.

The above result can be generalized as follows.

Theorem 3 Let A : H → H be a bounded linear operator. Assume moreover that A is injective.
If u ∈ H is the solution of Au = f then u ∈ K(A, f).

Proof. As before let K = K(A, f). Let moreover u = uK + u⊥
K, uK ∈ K, u⊥

K ∈ K⊥. Observe
that Au⊥

K = Au−AuK = f −AuK ∈ K and therefore

〈
Au⊥

K, v
〉
=

〈
u⊥
K, A

∗v
〉
= 0,

for each v ∈ K⊥. Since K⊥ is A∗ invariant (because K is A invariant) we have that

〈
u⊥
K, z

〉
= 0 for each z ∈ R(A∗

|K⊥ ).

Since we can write K⊥ = R(A∗
|K⊥ ) ⊕ N (A|K⊥ ) and A is injective we have that R(A∗

|K⊥ ) = K⊥

and therefore u⊥
K = 0.

Clearly, if the solution belongs to K(A, f) then GMRES converges to it. We remark that in
general AK(A, f) ⊆ K(A, f), and the above theorem ensures that AK(A, f) = K(A, f) if and only
if f ∈ R(A). Let W : CN → K(A, f) be the isometry defined as in (3) (note that it may be
N = ∞ if the Arnoldi algorithm does not terminate in a finite number of steps). It is clear that
AK(A, f) = K(A, f) if and only if there exists a vector c ∈ CN such that

AWc = f.

Using (4) with H : CN → CN such that AW = WH , and remembering that f = ‖f‖w1 =
‖f‖We1, we have

WHc = ‖f‖We1,

and therefore c is the solution of Hc = ‖f‖ e1. This means that ‖f‖ e1 ∈ CN satisfies the Picard
condition for the projected linear problem.

Corollary 4 Let g ∈ R(A) and let u be such that Au = g. If g ∈ K(A, f) then u ∈ K(A, f).

Proof. Using the above theorem, u ∈ K(A, g). Since g ∈ K(A, f) we clearly have K(A, g) ⊆
K(A, f), and hence u ∈ K(A, f).

The following theorem, extends to separable Hilbert spaces what is very well known in finite
dimension. That is, working in Cn, n < ∞, if the Arnoldi process does not terminate in s < n
steps, then the Arnoldi vectors form a basis of Cn. This is not obvious in infinite dimension,
because, in principle, K(A, f) might be a proper subspace of H even if dimK(A, f) = ∞. Before
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starting we need an additional notation. Given a finite sequence of vectors {g1, g2, ..., gn} we denote
by K(A, g1, g2, ..., gn) the closed linear span of the set

{
Akgi, k = 0, 1, ..., i = 1, ..., n

}
. Clearly if

g ∈ K(A, g1, g2, ..., gn) then K(A, g) ⊆ K(A, g1, g2, ..., gn) so that the result of Corollary 4 still holds
if we replace K(A, f) with K(A, g1, g2, ..., gn).

Definition 5 Let A : H → H be a bounded linear operator. A is cyclic if there is a vector v in H
such that K(A, v) = H. In this case, v is a cyclic vector of A.

Theorem 6 Let A : H → H be a bounded linear operator. Assume moreover that A is injective.
If all eigenvalues of A are simple then there exists a subset M ⊂ H such that M = H and
K(A, v) = H for each v ∈ M.

Proof. Let g1 ∈ R(A). By Theorem 3 we know that AK(A, g1) = K(A, g1). Denoting by
P (1) the orthogonal projection onto K(A, g1), for each u ∈ H, u − P (1)u⊥AK(A, g1), that is,
A∗(u − P (1)u)⊥K(A, g1). This implies P (1)A∗(u − P (1)u) = 0 and hence P (1)A∗ = P (1)A∗P (1),
which finally leads to AP (1) = P (1)AP (1). Assuming that K(A, g1)  H, take g2 ∈ R(A) ∩
K(A, g1)

⊥. Now observe that Ag2 /∈ K(A, g1). Indeed, by Corollary 4, if Ag2 ∈ K(A, g1) then
g2 ∈ K(A, g1), that contradicts our choice. Using the same argument we thus have Akg2 /∈ K(A, g1)
for each k ≥ 0. Denoting by P (2) the orthogonal projection onto K(A, g2), as before we have
AP (2) = P (2)AP (2). Moreover since g2 ∈ R(A) by Theorem 3 we still have AK(A, g2) = K(A, g2).
Assuming K(A, g1, g2)  H we can take g3 ∈ R(A) ∩ K(A, g1, g2)

⊥ and work as before. By
induction, since R(A) = H we are able to construct a finite or countably infinite number of Krylov
subspaces K(A, gn) with corresponding orthogonal projections P (n) such that the operator A can
be written in the following upper triangular form




A1 ∗
A2

. . .

0


 , (8)

because AP (n) = P (n)AP (n) for each n, and where An = P (n)AP (n). Now using [13, Proposition
1.3], we have that if the An’s are all cyclic with mutually disjoint spectra then A is cyclic. Because of
our hypotheses on the spectrum ofA, in order to prove that A is cyclic we just need to prove that the
An’s are all cyclic. Using the Arnoldi decomposition we have that each An is a quasiaffine transform
(through the isometry W (n) defined by the orthonormal basis of K(A, gn)) of a Hessenberg matrix
H(n) whose subdiagonal entries are all strictly positive. Therefore H(n) is cyclic with respect to
e1 ([5, Problem 167]), and hence An is cyclic with respect to gn = ‖gn‖W (n)e1, since quasiaffine
transforms preserve cyclicity. Denoting by M the set of all cyclic vectors, it has been proved in
[5, Problem 166] that M is either empty or dense in H.

We remark that in [5, Problem 167] it is also proved that an operator is cyclic if and only if
it can be represented by an Hessenberg matrix with all subdiagonal elements different from zero.
The density of the set of cyclic vectors therefore tell us that there is a dense subset of starting
vectors for the Arnoldi process for which the Arnoldi orthonormal system spans H and then forms
an orthonormal basis.

We conclude this section by showing that for normal operators the representation (8) is in fact
diagonal since AP (n) = P (n)A. We just need to prove that in this situation K(A, v) is A∗ invariant.
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Proposition 7 Let A : H → H be a compact normal operator. Then for any given v ∈ H, K(A, v)
is A∗ invariant.

Proof. By (7), we can write A = ΦΛΦ∗ where Λ is diagonal and Φ is an isometry. Therefore
for each polynomial q we have q(A) = Φq(Λ)Φ∗. Taking q such that q(λn) = λ∗

n we have q(A) =
ΦΛ∗Φ∗ = A∗. Therefore for each w ∈ K(A, v), A∗w = q(A)w ∈ K(A, v).

4 The Arnoldi-Tikhonov method

The Arnoldi-Tikhonov method, used for the first time in [2], consists in approximating the solution
of (2) by means of

min
um∈Km(A,f)

{
‖Aum − f‖2 + λ2 ‖Lum‖2

}
(9)

= min
ym∈Cm

{
‖AWmym − f‖2 + λ2 ‖LWmym‖2

}

= min
ym∈Cm

{
‖Wm+1Hmym −Wm+1e1 ‖f‖‖

2
+ λ2 ‖QmRmym‖2

}

= min
ym∈Cm

{
‖Hmym − e1 ‖f‖‖

2 + λ2 ‖Rmym‖2
}
, (10)

where Qm : Cm → LKm(A, f) ⊆ H is an isometry and Rm ∈ Cm×m is upper triangular, such that
QmRm = LWm. In this way we obtain

um = Wm

(
H∗

mHm + λ2R∗
mRm

)−1
H∗

me1 ‖f‖ .

For the standard Tikhonov minimization, where L is the identity operator the above formulation
still works with Qm = Wm and Rm = Im, the identity in Cm.

Theorem 8 For each m ≤ N let um = Wmym, where ym solves (10). Let moreover u† be the
solution of (2). If N (A) ∩ N (L) = {0} then there exists a norm E(·) in H such that

E(um − u†) ≤ E(Pmu† − u†). (11)

Proof. Let rm = Aum − f . Then by (10) and since f = Wm+1e1 ‖f‖ ,

rm = AWm

[(
H∗

mHm + λ2R∗
mRm

)−1
H∗

me1 ‖f‖
]
−Wm+1e1 ‖f‖

= Wm+1Hm

[(
H∗

mHm + λ2R∗
mRm

)−1
H∗

me1 ‖f‖
]
−Wm+1e1 ‖f‖

= Wm+1

[
Hm

(
H∗

mHm + λ2R∗
mRm

)−1
H∗

m − Im+1

]
e1 ‖f‖ .

Therefore

(AWm)∗ rm = (Wm+1Hm)∗ rm

=
[
H∗

mHm

(
H∗

mHm + λ2R∗
mRm

)−1
H∗

m −H∗
m

]
e1 ‖f‖ .
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Using the identity

H∗
mHm

(
H∗

mHm + λ2R∗
mRm

)−1
= Im − λ2R∗

mRm

(
H∗

mHm + λ2R∗
mRm

)−1
,

and the relation QmRm = LWm, we obtain

(AWm)
∗
rm = −λ2R∗

mRm

(
H∗

mHm + λ2R∗
mRm

)−1
H∗

me1 ‖f‖

= −λ2R∗
mRmym

= −λ2W ∗
mL∗LWmW ∗

mum.

Since WmW ∗
mum = um we finally have

0 = W ∗
m

(
A∗rm + λ2L∗Lum

)

= W ∗
m

[(
A∗A+ λ2L∗L

)
um −A∗f

]
.

In other words, um is the result of an orthogonal projection method for the linear problem

(
A∗A+ λ2L∗L

)
u = A∗f,

since
um ∈ Km,

[(
A∗A+ λ2L∗L

)
um −A∗f

]
⊥Km.

Because the operator A∗A + λ2L∗L is positive and injective by the hypotheses on A and L, the
functional

E(z) =
〈(
A∗A+ λ2L∗L

)
z, z

〉1/2
, z ∈ H, (12)

defines a norm in H. By [12, Proposition 5.2] we know that um is the result of an orthogonal
projection method if and only if

E(um − u†) ≤ E(ũ− u†), for each ũ ∈ Km.

Taking ũ = Pmu† we obtain the result.

We remark that the hypothesis N (A) ∩ N (L) = {0} is fulfilled if A or L are injective. In the
contrary case E(·) is just a seminorm.

Corollary 9 Let A : H → H be a compact operator. Assume moreover that A is injective. If f
in (9) is cyclic then the Arnoldi-Tikhonov method converges. Moreover if L is bounded then there
exists a nonnegative sequence {aj}j≥1 ∈ ℓ2 such that

E(um − u†)2 ≤
∑

j>m
a2j .

Proof. By Definition 5 the Krylov vectors {wj}j∈N
form a basis of H and hence

u† − Pmu† =
∑

j>m

〈
u†, wj

〉
wj .

Then, by Parseval’s identity,

∥∥u† − Pmu†
∥∥2 =

∑
j>m

∣∣〈u†, wj

〉∣∣2 ,
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and
∥∥u† − Pmu†

∥∥ → 0. Moreover, by (12) we have that

E(z)2 ≤
∥∥A∗A+ λ2L∗L

∥∥ ‖z‖2 ,

and therefore

E(um − u†)2 ≤
∥∥A∗A+ λ2L∗L

∥∥ ∥∥u† − Pmu†
∥∥2

≤
∥∥A∗A+ λ2L∗L

∥∥∑
j>m

∣∣〈u†, wj

〉∣∣2 .

We remark that if A is injective and the Arnoldi algorithm terminates in N < ∞ steps then
GMRES finds the exact solution of Au = f (cf. [9, Section 2]). This means that f ∈ R(A) (that
is, it satisfies the Picard condition) and hence the problem does not require regularization. More
generally if f ∈ R(A) then u ∈ K(A, f) by Theorem 3 and then GMRES converges. On the
other side, if f /∈ R(A) then the GMRES residual stagnates, and the corresponding approximation
explodes. Indeed the Picard condition cannot hold, asymptotically, for the projected least squares
problem (5)

min
y∈Cm

‖Hmy − ‖f‖ e1‖ ,

because otherwise AK(A, f) = K(A, f), that is, f ∈ R(A), as pointed out after the proof of
Theorem 3.

If A is of finite rank clearly the Arnoldi process terminates in a finite number of steps N . In this
situation, under suitable hypotheses on A (for instance if it is normal, cf. [9, Section 2]) GMRES
again finds the exact solution of Au = f if f ∈ R(A). If f /∈ R(A) then Au = f does not have
a solution in H and the Arnoldi-Tikhonov may fail to converge unless Pmu† = u† for m ≤ N . In
this case the only measure of accuracy is given by (11) where E(·) may be a seminorm if L is not
injective.

In order to monitor the decay of
∥∥um − u†

∥∥ one can use the so-called complementary condition
[8, p.21] which states the existence of a constant γ > 0 such that

‖u− v‖2 ≤ γ2
(
‖Au−Av‖2 + ‖Lu− Lv‖2

)
, (13)

for any u, v ∈ H. Indeed in [8, Theorem 4] it is proved that (13) is a necessary condition for the
existence of a unique solution for (2). Nevertheless, under the hypothesis that L is invertible we
can state the following bound.

Proposition 10 If the operator L is invertible then
∥∥um − u†

∥∥ ≤ λσmin(L)E(um − u†).

Proof. Denoting by (L∗L)
1/2

the positive square root of the positive operator L∗L, we have

〈(
A∗A+ λ2L∗L

)
z, z

〉
=

〈(
A∗A (L∗L)−1 + λ2IH

)
L∗Lz, z

〉

=
〈
(L∗L)

1/2
(L∗L)

−1/2
(
A∗A (L∗L)

−1
+ λ2IH

)
(L∗L)

1/2
(L∗L)

1/2
z, z

〉

=
〈
(L∗L)

−1/2
(
A∗A (L∗L)

−1
+ λ2IH

)
(L∗L)

1/2
x, x

〉
, (14)
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where x = (L∗L)1/2 z. Since (L∗L)−1/2
(
A∗A (L∗L)−1 + λ2IH

)
(L∗L)1/2 and

(
A∗A (L∗L)−1 + λ2IH

)

have the same eigenvalues {λj}j∈N
, and λj ≥ λ for each j, by (14) we have

〈(
A∗A+ λ2L∗L

)
z, z

〉
≥ λ2 〈x, x〉

= λ2 〈L∗Lz, z〉

≥ λ2σmin(L)
2 〈z, z〉 .

The above proposition states that if the operator L is invertible (as for the standard Tikhonov
regularization where L = IH) then we can monitor the convergence using ‖·‖. On the other side,
if the operator L is compact (this includes the common case of L bounded and of finite rank) then
A∗A+λ2L∗L is also compact (see [1, §2.4]) and therefore A∗A+λ2L∗L possesses arbitrarily small
eigenvalues so that the result of Proposition 10 does not hold anymore.

5 The Lanczos bidiagonalization

The Lanczos (or Golub-Kahan) bidiagonalization process [4] computes two orthonormal bases
{w1, ..., wm} and {z1, ..., zm} for the Krylov subspacesKm(A∗A,A∗f) andKm(AA∗, f) respectively,
for m ≤ N = min {supn (dimKn(A

∗A,A∗f)) , supn (dimKn(AA
∗, f))}. Since Km(A∗A,A∗f) =

A∗Km(AA∗, f) for m ≤ N , If A is injective then N = supn (dimKn(A
∗A,A∗f)). Defining the

isometries Wm, Zm, corresponding to the two bases as in (3), the following decomposition holds

AWm = Zm+1Bm, (15)

where Bm ∈ C(m+1)×m is lower bidiagonal. LSQR method [10] is defined by solving at each step

min
u∈Km(A∗A,A∗f)

‖Au− f‖ ,

whose solution is given by um = Wmym, where

ym = arg min
y∈Cm

‖Bmy − ‖f‖ e1‖ .

Observe that for the Lanczos bidiagonalization we have f = Zm+1e1 ‖f‖. Then, using (15) and
working as in (9)-(10) the Lanczos-Tikhonov method is based on the solution of

min
um∈Km(A∗A,A∗f)

{
‖Aum − f‖2 + λ2 ‖Lum‖2

}
(16)

= min
ym∈Cm

{
‖Bmym − e1 ‖f‖‖

2
+ λ2 ‖Rmym‖2

}
. (17)

Theorem 11 The results of Theorem 8 and Corollary 9 hold also for the Lanczos-Tikhonov
method.

Proof. As for Theorem 8, the proof is almost identical. We just need to replace Wm+1 and
Hm by Zm+1 and Bm respectively. Pm is now the orthogonal projection onto Km(A∗A,A∗f). The
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decomposition (15) is used in place of (4). The proof of the result of Corollary 9 remains unaltered
provided that A∗f is a cyclic vector for A∗A.

The case of finite rank compact operators is simpler when working with the Lanczos bidiago-
nalization. Indeed, without hypothesis on A, if f ∈ R(A) then LSQR finds the exact solution of
Au = f in a finite number of steps and hence the regularization is not necessary. Like the Arnoldi-
Tikhonov, if f /∈ R(A) then Au = f does not have a solution in H and the Lanczos-Tikhonov may
fail to converge unless Pmu† = u† form ≤ N . The main advantage of the Lanczos bidiagonalization
is that if L = IH the method converges even if A is of finite rank since u† = (A∗A+ λ2IH)−1A∗f
so that u† ∈ Km(A∗A,A∗f) for some m < ∞.
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