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Abstract In this paper we present a product quadrature rule for Volterra integral
equations with weakly singular kernels based on the generalized Adams methods.
The formulas represent numerical solvers for fractional differential equations, which
inherit the linear stability properties already known for the integer order case. The
numerical experiments confirm the valuable properties of this approach.
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1 Introduction

In this paper we are interested in the numerical solution of fractional differential
equations (FDEs) of the type

Dα
t0 y(t) = f (t, y(t)), t0 < t ≤ T, 0 < α < 1, (1)
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where Dα
t0 y(t) denotes the Caputo fractional derivatives defined by [9]

Dα
t0 y(t) = 1

�(1 − α)

t∫

t0

y′(u)

(t − u)α
du. (2)

As is well known, the use of Caputo’s definition allows one to treat the initial conditions
at t0 for FDEs in the same manner as for integer order differential equations, whereas
this is not possible using the Riemann–Liouville approach (see e.g. [19] and [20] for
a wide background). Setting y(t0) = y0 the solution of (1) exists and is unique under
the hypothesis that f is continuous and fulfils a Lipschitz condition with respect to
the second variable (see e.g. [10] for a proof).

As for the integer order case α = 1, a classical approach for solving (1) is based on
the discretization of the fractional derivative (2), which generalizes the well known
Grunwald–Letnikov discretization (see [20]), leading to the so-called fractional back-
ward differentiation formulas (FBDFs, [12,16]). Besides, since the solution of (1) can
be written as

y(t) = y(t0) + 1

�(α)

t∫

t0

(t − u)α−1 f (u, y(u)) du, (3)

which represents a Volterra integral equation of the second kind with weakly singular
kernel and constant forcing function, each quadrature scheme for the above integral
leads to a numerical solver for (2). In this setting, the most studied approaches are the
fractional linear multistep methods (FLMMs, [15]) and the so-called Adams product
quadrature rules ([8], [17]), in which the Adams formulas for ordinary differential
equations (ODEs) are extended to (3). For a wide background about the most estab-
lished techniques for solving Volterra equations we may refer to [7].

The aim of this paper is to extend the generalized Adams methods for ODEs (see
[6]) in order to define product quadrature rules for the solution of (3). We call the
resulting schemes fractional generalized Adams methods (FGAMs). When used over
an assigned uniform partition of the interval of integration I = [0, T ] (we have set
t0 = 0 for simplicity) given by

tn = nh, n = 0, 1, . . . , N , h = T/N , (4)

these methods discretize (3) as follows

yn = y0 + hα
M∑

j=0

wn, j f j + hα

n+k2∑
j=0

ωn− j f j , n = M + 1, . . . , N − k2, k2 ≥ 0,

(5)

where yn ≈ y(tn), fn = f (tn, yn), the weights wn, j and ωn are independent of h, and
M depends on the order of the method and on α. The discrete problem (5) is completed
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by assigning the values of the numerical solution over the first M + 1 and the last k2
meshpoints. As usual for these type of methods, we call

Sn = y0 + hα
M∑

j=0

wn, j f j , �n = hα

n+k2∑
j=0

ωn− j f j ,

the starting and the convolution terms, respectively. For k2 = 0 we recover the Adams
product formulas studied in [17]. In this situation the resulting schemes suffer from
the usual order barrier for A-stable methods. In particular, in [17] it is proved that
the order of an A-stable convolution quadrature cannot exceed 2. Clearly, this result
represents an extension of the famous second Dahlquist barrier for linear multistep
methods (LMMs) for ordinary differential equations. As for ODEs (see [3,1,2]), this
barrier can be overtaken by considering “super-future” points that in our case consists
in taking k2 > 0.

We remark that with respect to FLMMs, in which the coefficients of the convolution
term are given by the Taylor expansion of the α-power of the generating function of
the underlying formula for ODEs (see [13,16]), an Adams type approach is local in
principle, and hence a variable stepsize implementation can be considered.

The paper is organized as follows. In Sect. 2 we introduce the FGAMs, extending
the definition of the generalized Adams methods to the fractional order case. In Sect. 3
we discuss the starting quadrature in order to ensure the consistency of the method
with a given order. In Sect. 4 we study the convergence of the methods. In Sect. 5
we examine the linear stability properties, giving a characterization of the stability
region which can be used to draw the boundary loci. Finally, a numerical experiment
is reported in Sect. 6 and some conclusions are contained in Sect. 7.

2 Fractional generalized Adams methods

Following the notation used in [7], for each t ∈ [0, T ] let

J [φ](t) = 1

�(α)

t∫

0

(t − u)α−1φ(u) du, φ(u) = f (u, y(u)). (6)

In addition, for the assigned uniform partition (4), let

J (m)[φ](t) = 1

�(α)

tm∫

tm−1

(t − u)α−1φ(u) du, m = 1, . . . , N , (7)

so that

J [φ](tn) =
n∑

m=1

J (m)[φ](tn), n = 1, . . . , N . (8)

123



L. Aceto et al.

For a given k > 0, let (k1, k2) be a couple of nonnegative integers such that k1+k2 = k.
Denoting by �k the set of polynomials of degree ≤ k, for m = k1, . . . , N − k2,

with N ≥ k, let pm ∈ �k be the polynomial which interpolates the function φ at
tm−k1 , . . . , tm+k2 , that is,

pm(tm+k2− j ) = φ(tm+k2− j ) =: φm+k2− j , j = 0, 1, . . . , k.

In this way, as for the standard Adams methods, we consider the local approximation

J (m)[φ](tn) ≈ J (m)[pm](tn) =: �(m)
n [φ], n ≥ m, (9)

as the basis formula for the numerical approximation of J [φ](t) and hence of (3).
Using the Newton representation of the interpolating polynomial pm we can write

pm(t) =
k∑

j=0

∇ jφm+k2

j !h j
pm, j (t),

pm, j (t) =
j−1∏
l=0

(t − tm+k2−l), j = 0, 1, . . . , k.

In order to have an explicit expression for the coefficients of the approximation
�

(m)
n [φ], by (7) and (9) we need to evaluate

1

j !h j�(α)

tm∫

tm−1

(tn − u)α−1 pm, j (u) du, j = 0, 1, . . . , k, n ≥ m.

Setting u = tm + τh, the previous integral can be rewritten as

hα I ( j)
n−m := hα 1

�(α)

0∫

−1

(n − m − τ)α−1
(

τ − k2 + j − 1
j

)
dτ

where I ( j)
n−m is independent of h.

By construction, the approximation (9) leads to a numerical method which is con-
sistent of order p = k + 1, that is, if φ ∈ C p([0, T ]) then

J (m)[φ](tn) − �(m)
n [φ] = h p+αθn−mφ(p)(ξn,m), ξn,m ∈ [tm−1, tm], (10)

where, recalling that k = k1 + k2,

θn−m = 1

�(α)

0∫

−1

(n − m − τ)α−1
(

k1 + τ

p

)
dτ, n ≥ m.
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Applying the mean value theorem to the above expression one easily verifies that
asymptotically

θn−m ∼ (n − m + 1)α − (n − m)α ∼ α(n − m + 1)α−1. (11)

Taking the sum over all allowed subintervals, after some computations we obtain

n∑
m=k1

�(m)
n [φ] = hα

k−1∑
j=0

wn, jφ j + hα

n+k2∑
j=0

ωn− jφ j , (12)

where

�n[φ] := hα

n+k2∑
j=0

ωn− jφ j (13)

is the convolution term, in which, by setting I ( j)
l = 0 for l < 0,

ωr =
k∑

j=0

∇ j I ( j)
r+k2

, r ≥ −k2. (14)

It is important to remark that the coefficients wn, j in (12) appear as consequence of
the definition (14). Indeed the corresponding sum plays the role of a correction term
during the transitory phase.

In the sequel, for each s ≥ 1, we make use of the following notation

�s =
{

{ar }r∈N :
∞∑

r=1

|ar |s < ∞
}

. (15)

The following result shows the asymptotic behavior of the coefficients ωr and,
by standard arguments in convolution quadrature (see [7, §6], [16]), it states that
the method is stable. The proof can be obtained with a slight modification of
[17, Lemma 4.1].

Proposition 1 For r ≥ 1,

ωr = rα−1

�(α)
+ vr , {vr }r∈N ∈ �1. (16)

Remark 1 The coefficients wn, j are suitable combinations of the terms ∇ j I ( j)
n+k2

for
certain values of j and hence their asymptotic behavior is the same of the ωn (see
again [17, Lemma 4.1]).
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In order to study the convergence properties, let us consider the quantity

�n[φ] := J [φ](tn) − �n[φ]. (17)

Based on the definition given in [7, §6], the following result states that the convolution
quadrature �n[φ] is convergent of order p. As in [16], we assume that if a function
φ(t) is undefined for t = 0, we set φ(0) = 0.

Proposition 2 Let φ(t) = tλ, λ > −1. Then

�n[φ] = O(hλ+1) + O(h p),

for each n such that tn = nh ∈ [a, T ], a > 0 fixed.

Proof Using the definitions of J [φ](tn) and �n[φ] given in (6) and (13), respectively,
and taking into account (7)–(8) and (12), we can write

�n[tλ] = 1

�(α)

tk1−1∫

0

(tn − u)α−1uλ du

+hα
k−1∑
j=0

wn, j t
λ
j

+
n∑

m=k1

(J (m)[tλ](tn) − �(m)
n [tλ]).

Now, defining u = tn x , and using the mean value theorem we obtain

1

�(α)

tk1−1∫

0

(tn − u)α−1uλ du = tα+λ
n

�(α)

k1−1
n∫

0

(1 − x)α−1xλ dx ∼ hλ+1tα−1
n . (18)

Moreover, by Remark 1 we easily find that

hα
k−1∑
j=0

wn, j t
λ
j ∼ hλ+1tα−1

n . (19)

Finally, from (10)–(11), by denoting with λ(p) = λ(λ − 1) · · · (λ − p + 1) we get

n∑
m=k1

(J (m)[tλ](tn) − �(m)
n [tλ]) = λ(p) h p+α

n∑
m=k1

ξ
λ−p
n,m θn−m

∼ αλ(p) hα+λ
n∑

m=k1

mλ−p(n − m + 1)α−1
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= αλ(p) tα−1
n hλ+1

n∑
m=k1

mλ−p
(

1 − m + 1

n

)α−1

∼ αλ(p) tα−1
n hλ+1(nλ+1−p + 1) = αλ(p)(h ptα+λ−p

n + hλ+1tα−1
n ). (20)

Collecting (18)–(20), we obtain the result. 
�

3 Starting quadrature

As stated in the Sect. 1 we are interested in an approximation of J [φ](tn) of the type

J [φ](tn) ≈ Sn[φ] + �n[φ] =: Jn[φ], (21)

where �n[φ] is defined by (13), and Sn[φ] is the so-called starting quadrature defined
by

Sn[φ] = hα
M∑

j=0

wn, jφ j ,

for a certain M and suitable coefficients wn, j . We denote by En[φ] the overall trun-
cation (or quadrature) error associated to (21), given by

En[φ] := J [φ](tn) − Jn[φ] = �n[φ] − Sn[φ], (22)

see (17). It is known that if y(t) is the exact solution of (3) with f (t, y) smooth
enough, then φ(t) = f (t, y(t)) might be generated by functions of the form φμ,�(t) =
tμ+�α where μ and � are nonnegative integers, [7, §6]. This means that φ(t) might
contain nonsmooth components in proximity of the origin. It follows that the starting
quadrature must be chosen appropriately, in order to get a convolution quadrature for
which En[φ] = O(h p) uniformly for all nh ≥ a > 0. This objective is gained by
imposing

En[φμ,�] = 0, for all (μ, �) ∈ Mp(α) (23)

where

Mp(α) = {(μ, �) ∈ N0 × N0 : � ≤ �p(α), μ ≤ μp(α, �)} (24)

with μp(α, �) = p − 1 − �α and

�p(α) =
{

(p − 1)/α if α is irrational;
min(q − 1, (p − 1)/α) if α = m/q with m and q coprime.
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After some computation, one verifies that the conditions in (23) are fulfilled if the
starting weights solve the Vandermonde type system

M∑
j=0

wn, j jμ+�α = �(μ + �α + 1)nμ+(�+1)α

�(μ + (� + 1)α + 1)
−

n+k2∑
j=0

ωn− j jμ+�α. (25)

In particular, if we set

M = #Mp(α) − 1, (26)

where the symbol # denotes the cardinality, then the system (25) has a unique solution
for each n ≥ M + 1. The resulting starting weights are independent of h and it can be
proved that (see e.g. [7, §6])

wn, j = O(nα−1). (27)

The following theorem summarizes the basic properties of a FGAM which extend the
ones of a standard Adams product quadrature formula and are in perfect agreement
with those obtained for FLMMs in [15].

Theorem 1 If the starting weights of a FGAM constructed on p = k + 1 points
are generated by (25)–(26), then for any function φ(t) = �(t, tα), with �(x1, x2)

sufficiently differentiable, the truncation error is

En[φ] = O(h ptα+β̄−p
n ), (28)

where [see (24)],

β̄ = min{μ + �α s.t. (μ, �) ∈ (N0 × N0) \ Mp(α)} > p − 1. (29)

4 Convergence analysis

If we denote by en = y(tn) − yn the global error at t = tn and by L the Lipschitz
constant of f (t, y), then it is not difficult to verify that, see (5),

‖en‖ ≤ hαL
⎛
⎝min(n+k2,N−k2)∑

j=M+1

|ωn− j |‖e j‖
⎞
⎠ + gn + ‖En‖, n = M + 1, . . . , N − k2,

(30)

where En is the nth truncation error of the convolution quadrature as defined by (22),
and

gn = hαL
⎛
⎝ M∑

j=0

|wn, j − ωn− j |‖e j‖
⎞
⎠ + hαL

⎛
⎝ n+k2∑

j=N−k2+1

|ωn− j |‖e j‖
⎞
⎠ ,
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collects the error contributes of the initial and final conditions. In particular, if we
assume to know an approximation of the first M + 1 and the last k2 values of the
numerical solution with accuracy O(hβ̄ ) and O(h p−α), respectively, then, by virtue
of (16) and (27),

gn = O(hβ̄+1tα−1
n ) + O(h p) = O(h ptα+β̄−p

n ), (31)

where the last equality follows from (29).
For k2 = 0 the error analysis can be accomplished using Gronwall type inequalities

(see [18]), such as the one given in [7, Theorem 1.5.6]. The convergence properties
of the corresponding method then follow directly from the stability and consistency
properties. For k2 > 0 the situation is rather different and we consider the following
approach.

Let us collect into the vector e the norms of the global errors at the interior mesh-
points, i.e.,

e = (‖eM+1‖, . . . , ‖eN−k2‖
)T

and define g = (gM+1, . . . , gN−k2)
T and E = (‖EM+1‖, . . . , ‖EN−k2‖)T . The sys-

tem of inequalities in (30) can be rewritten in matrix form as

e ≤ hαL |�| e + g + E, (32)

(here and below, for matrix arguments the inequalities and the absolute value have to
be intended component by component), where

(�)i j =
{

ωi− j for i − j ≥ −k2,

0 otherwise.

Let moreover

A ≡ AN :=

⎛
⎜⎜⎜⎝

1
−1 1

. . .
. . .

−1 1

⎞
⎟⎟⎟⎠ ∈ R

N×N , (33)

with

N = N − k2 − M. (34)

In order to determine an upper bound for the global errors at the interior points, we
need the following preliminary results.

Lemma 1 If α ∈ (0, 1] then the matrix � can be written as

� = A−α + U

where U is a Toeplitz matrix with ‖U‖∞ uniformly bounded with respect to N .
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Proof It is known that if α ∈ (0, 1] then for each r ≥ 1

rα−1

�(α)
= (−1)r

(−α

r

)
+ v̂r , {v̂r }r∈N ∈ �1, (35)

(see e.g. [11, p. 47]). Therefore, by Proposition 1 one gets

ωi− j = (i − j)α−1

�(α)
+ vi− j = (−1)i− j

(−α

i − j

)
+ v̂i− j + vi− j

:= (−1)i− j
(−α

i − j

)
+ ui− j

= (A−α)i j + ui− j , i > j,

where {ur }r∈N ∈ �1. 
�
Since A−α ≥ O , from the previous lemma one immediately deduces that |�| ≤

A−α + |U |. Therefore, by (32), setting

Z := I − hαL(A−α + |U |), (36)

one obtains

Ze ≤ g + E. (37)

Lemma 2 If h is sufficiently small then the matrix Z defined in (36) is nonsingular,
Z−1 ≥ O and

∥∥Z−1
∥∥∞ is uniformly bounded with respect to N .

Proof If h is sufficiently small, the matrix Z can be factorized as

Z = Z1 Z2, Z1 = I − hαLA−α, Z2 = I − hαLZ−1
1 |U | . (38)

Now, in order to demonstrate the results of the lemma, we will prove that Z1 and Z2
are both M-matrices and the infinity matrix norm of their inverses are both uniformly
bounded with respect to N . Let us begin with the matrix Z1. First of all, it is not
difficult to verify that if hαL < 1 then Z1 is an M-matrix. Secondly, since A−α − I
is nilpotent of degree N , we can write

Z−1
1 = 1

1 − hαL
(

I − hαL
1 − hαL (A−α − I )

)−1

= 1

1 − hαL
N−1∑
j=0

(
hαL

1 − hαL
) j

(A−α − I ) j .

It follows that, for each μ > L and h such that

0 <
L

1 − hαL ≤ μ,
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we have

‖Z−1
1 ‖∞ ≤ μ

L
N−1∑
j=0

(μhα) j‖(A−α − I ) j‖∞

≤ μ

L
N−1∑
j=0

(μhα) j‖A− jα‖∞, (39)

where in the last inequality we have used the fact that, for each j ≥ 0,

O ≤ (A−α − I ) j ≤ A− jα.

Now

A− jα =
N−1∑
l=0

(
jα
l

)
(A−1 − I )l ,

and A−1 − I ≥ O is a strictly lower triangular Toeplitz matrix. Then, by [6,
Lemma 4.4.2] and the Chu–Vandermonde identity (see, e.g., [5, p. 59–60]),

‖A− jα‖∞ =
N−1∑
l=0

(
jα
l

)
‖(A−1 − I )l‖∞

=
N−1∑
l=0

(
jα
l

) (N − 1
l

)

=
(N − 1 + jα

N − 1

)
= �(N + jα)

�( jα + 1)�(N )
.

Substituting the last expression in (39) we obtain

‖Z−1
1 ‖∞ ≤ μ

L
N−1∑
j=0

μ j

�( jα + 1)

�(N + jα)

�(N )
h jα,

and by Stirling’s formula we have

�(N + jα)

�(N )
h jα ≤ C (1 + α) jα T jα,

where C is a constant depending on α. Therefore

‖Z−1
1 ‖∞ ≤ C

μ

L Eα(μ(1 + α)αT α), (40)

where Eα denotes the one-parameter Mittag–Leffler function (see e.g. [20, §1.2]) so
that ‖Z−1

1 ‖∞ is uniformly bounded.
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Let us now consider the matrix Z2 in (38) and its inverse. By Lemma 1 and (40),
for each θ < 1 we can define h0 such that for h ≤ h0

hαL‖Z−1
1 |U |‖∞ ≤ θ < 1,

so that Z2 is an M-matrix and

‖Z−1
2 ‖∞ ≤

∞∑
j=0

(hαL‖Z−1
1 |U |‖∞) j ≤ (1 − θ)−1,

namely, ‖Z−1
2 ‖∞ is uniformly bounded. 
�

Theorem 2 There exists h0 > 0 such that for h ≤ h0 the global error of the FGAM
with starting weights generated by (25)–(26) fulfils the inequality

‖e‖∞ ≤ K (‖g‖∞ + ‖E‖∞) = O(hmin(β̄+α,p))

where K is a suitable constant independent of h, and β̄ is given in (29).

Proof The statement is a consequence of (28), (31), (37) and Lemma 2. 
�

5 Linear stability

The linear stability properties of the generalized Adams methods when applied to
ODEs are well known in the literature (see e.g. [6]). Dealing with FDEs, in this
section we provide and justify a definition of the stability region of a FGAM showing
also the boundary loci for some values of k and α.

Let us consider the usual scalar test problem

Dα
0 y(t) = λy(t), λ ∈ C, y(0) = y0, (41)

whose exact solution is given by

y(t) = Eα(λtα)y0.

It is known that y(t) → 0 as t → +∞ whenever λ ∈ Sα where

Sα = {μ ∈ C : |π − arg(μ)| < (1 − α/2) π} . (42)

Applying the method (5) to (41) we obtain

yn = Sn + q
n+k2∑
j=0

ωn− j y j , (43)
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where q = hαλ and

Sn = y0 + q
M∑

j=0

wn, j y j .

For a classical implicit convolution quadrature, that is k2 = 0, the stability region of
a method is defined as

D ≡ {q ∈ C : yn = yn(q) → 0 as n → +∞},

and the method is said to be A-stable if Sα ⊆ D. A characterization of this region is
given in the following result, which is a reformulation of Theorem 2.1 in [17].

Theorem 3 Let k2 = 0. If wn, j ∼ nα−1 and ωn = nα−1

�(α)
+ un, with {un}n∈N ∈ �1,

then

D = {q ∈ C : q �= 1/ω(z), ∀ |z| ≤ 1} ,

where ω(z) = ∑∞
n=0 ωnzn is the generating function of the convolution term.

From the hypothesis on the convolution weights and (35) one deduces that

ω(z) = (1 − z)−α + ω̂(z), where |ω̂(z)| is bounded for |z| ≤ 1.

This implies that g(z) = (1 − z)αω(z) is bounded for each |z| ≤ 1 too. Therefore we
can express the stability region in the following equivalent form

D = {q ∈ C : χ(z, q) := (1 − z)α − qg(z) �= 0, ∀ |z| ≤ 1}. (44)

More generally, namely when k2 ≥ 0, the generating function of the convolution
weights of a FGAM is the power series ω(z) =∑∞

n=0 ωn−k2 zn . However, by virtue of
Proposition 1, the corresponding g(z) = (1 − z)αω(z) is also bounded for |z| ≤ 1.

Definition 1 A function χ(z) is said to be of type(m1, m2) if χ(z) is bounded for
|z| ≤ 1 and has exactly m1 and m2 zeros inside and on the boundary of the unit circle,
respectively.

Definition 2 The region Dk2 of the complex plane defined by

Dk2= {q ∈ C : χ(z, q) := zk2(1 − z)α − qg(z) is of type (k2, 0)} (45)

is called the stability region of a FGAM used with k2 final conditions.

Clearly, for k2 = 0, Dk2 reduces to D, the region of stability of a classical Adams
method, see (44).

In what follows we demonstrate that if q ∈ Dk2 then the numerical solution of the
FGAM simulates the behavior of the exact solution. Setting
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(1 − z)α =
∞∑

n=0

γnzn, γn = (−1)n
(

α

n

)
,

g(z) =
∞∑

n=0

gn−k2 zn,

(46)

there exist {ηn, j }n≥M+1, j = 0, . . . , M + k2, such that (43) can be rewritten as

n∑
j=0

γn− j y j − q
n+k2∑
j=0

gn− j y j = γ0n y0 + q
M+k2∑

j=0

ηn, j y j (47)

with

γ0n =
n∑

j=0

γ j , n = M + 1, . . . , N − k2. (48)

Remark 2 For later reference we observe that {gn} ∈ �1; moreover, by (46)–(48) and
(35), used with −α replaced by α, we get

γn ∼ n−α−1, γ0n ∼ n−α, (49)

and it is possible to prove that {ηn, j } ∈ �1 for each j = 0, 1, . . . , M + k2.

Formula (47) is equivalent to

n∑
j=M+1

γn− j y j − q
min(n+k2,N−k2)∑

j=M+1

gn− j y j − q
M+k2∑

j=M+1

ηn, j y j = bn + b̃n, (50)

where

bn = γ0n y0 −
M∑

j=0

[γn− j − q(gn− j + ηn, j )]y j , (51)

b̃n = q
n+k2∑

j=N−k2+1

gn− j y j .

We can rewrite formula (50) in matrix form as [see (33)–(34)]

(Aα
N − q (GN + RN ))yN = bN + b̃N , (52)
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where yN = (yM+1, . . . , yN−k2)
T ,

(Aα
N )i j =

{
γi− j for i ≥ j
0 otherwise

, (GN )i j =
{

gi− j for i ≥ j − k2
0 otherwise

,

(RN )i j =
{

ηi+M, j+M for j ≤ k2
0 otherwise

, (53)

bN = (bM+1, . . . , bN−k2)
T , b̃N = (b̃M+1, . . . , b̃N−k2)

T .

It is important to underline the fact that bN depends only on the initial values
{y0, . . . , yM } while b̃N depends only on the final values {yN−k2+1, . . . , yN }. In addi-
tion, b̃N has (at most) only the last k2 entries different from zero. We observe that
rank(RN ) = k2 independently of N . Therefore, −q RN can be considered as a per-
turbation of

TN (q) := Aα
N − q GN , (54)

when N is sufficiently large. As for the ODEs, the stability properties of the numerical
solution are determined by the properties of the operator [see (15)]

T∞(q) := Aα∞ − q G∞ : �s → �s .

Proposition 3 If q ∈ Dk2 then T∞(q) is invertible with bounded inverse (continuously
invertible).

Proof The result follows from the Wiener–Hopf factorization of T∞(q). Indeed, denot-
ing by ζ1, . . . , ζk2 the roots inside the unit circle of the function χ(z, q) defined in
(45), we have

T∞(q) = U L , (55)

where

U =
k2∏

j=1

U j , U j =

⎛
⎜⎜⎜⎜⎝

1 −ζ j

1 −ζ j
. . .

. . .

. . .

⎞
⎟⎟⎟⎟⎠ = I − ζ j H, (56)

H being the shift matrix. In this way

U−1
j =

∞∑
n=0

ζ n
j Hn (57)
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is bounded. For the matrix

L =

⎛
⎜⎜⎜⎝

l0
l1 l0
l2 l1 l0
...

. . .
. . .

. . .

⎞
⎟⎟⎟⎠ , (58)

setting l(z) = ∑∞
n=0 lnzn , the generating function associated to L , we know that

l(z) �= 0 for |z| ≤ 1 and {ln} ∈ �1, so that, for the Wiener inversion theorem, L is
invertible with bounded inverse. 
�

From this result one deduces that if q ∈ Dk2 and N is sufficiently large then the
matrix TN (q) in (54) is nonsingular. Hereafter, for simplicity, we restrict the analysis
to the case k2 = 1 (the more general case can be treated following the approach
proposed in [4]). Before proceeding we need the following two preliminary results.

Lemma 3 If k2 = 1, q ∈ Dk2 and N is sufficiently large then

T −1
N (q) eN ∼ (ζN−1

1 , . . . , ζ1, 1)T ,

where eN is the last vector of the canonical basis in R
N .

Proof For reader’s convenience, it is postponed to Sect. 5.1.

Lemma 4 Let k2 = 1, q ∈ Dk2 and c∞ ∈ �s . Then there exists u∞ ∈ �s such that, for
N sufficiently large, and denoting by cN and uN the vectors of the first N components
of c∞ and u∞, respectively,

TN (q)−1cN − uN ∼ (ζN−1
1 , . . . , ζ1, 1)T .

Proof Let u∞ ∈ �s be the unique solution of T∞(q)u∞ = c∞. The first N equations
of the previous system can be written as TN (q)uN = cN + δcN , where δcN has (at
most) only the last entry different from zero (recall that k2 = 1). The statement is then
an immediate consequence of Lemma 3. 
�

We can now discuss the qualitative behavior of the numerical solution provided by
a FGAM.

Theorem 4 If k2 = 1, q ∈ Dk2 and N is sufficiently large, then there exists x∞ ∈ �s,

with s > 1/α, such that, denoting by xN the vector of its first N components, the
solution yN of the linear system (52) verifies

yN − xN ∼

⎛
⎜⎜⎜⎝

ζN−1
1
...

ζ1
1

⎞
⎟⎟⎟⎠ .
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Proof Under the considered hypotheses, the system (52) can be reformulated as

(IN − q T −1
N (q)RN )yN = T −1

N (q)(bN + b̃N ) =: vN . (59)

We observe that if k2 = 1 the entries of RN and, consequently, of −q T −1
N (q)RN are

all equal to zero except for the ones in the first column [see (53)]. If we set

rN := −q T −1
N (q)RN e1,

then the solution of (59) is given by

yN = vN − eT
1 vN

1 + eT
1 rN

rN .

Therefore, in order to determine the behavior of yN , we need to study the behavior of
vN and rN . Let us start by considering vN defined in (59). From (51) and Remark 2
we deduce that bN is the vector of the first N components of b∞ ∈ �s for each
s > 1/α. On the other hand, if k2 = 1, b̃N has (at most) only the last entry different
from zero. By applying Lemma 4 and Lemma 3 it follows that

vN − uN ∼ (ζN−1
1 , . . . , ζ1, 1)T ,

where uN is the vector of the first N components of u∞ ∈ �s . Concerning the behavior
of rN , from Lemma 4 and Remark 2 one gets

rN − aN ∼ (ζN−1
1 , . . . , ζ1, 1)T ,

where aN is the vector of the first N components of a∞ ∈ �1 ⊆ �s . Finally,

eT
1 vN

1 + eT
1 rN

= eT
1 uN

1 + eT
1 aN

(
1 + O(ζN−1

1 )
)

.

Setting

xN := uN − eT
1 uN

1 + eT
1 aN

aN ,

one deduces that x∞ ∈ �s and then the statement follows. 
�
The boundary loci of the FGAM for different values of α, k = 1, . . . , 6 and

k2 =
⌊

k

2

⌋

are reported in Figs. 1 and 2, where the dotted lines mark the boundary of Sα defined
by (42). We remark that the chosen value of k2 coincides with the one considered for
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Fig. 1 Boundary loci of the FGAMs with k = 1, 3, 5

the generalized Adams methods for ODEs (see [6]). As one can see, the presented
methods appear to be always A-stable independently of k and α.

5.1 Proof of Lemma 3

If k2 = 1, after some computations, from (55) one deduces that

TN (q) = LN UN + wN eT
1 ,

where LN and UN are the principal submatrices of size N of L and U defined in (58)
and (56), respectively, e1 is the first vector of the canonical basis in R

N , and

wN = −ζ1(l1, l2, . . . , lN )T .

We observe that ‖wN ‖1 is uniformly bounded with respect to N since, as stated in
the sentence below (58), {ln} ∈ �1.

By using the Sherman–Morrison formula, we obtain

T −1
N (q) = (LN UN )−1 − (LN UN )−1 wN eT

1 (LN UN )−1

1 + eT
1 (LN UN )−1 wN

.
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Fig. 2 Boundary loci of the FGAMs with k = 2, 4, 6

Therefore, by observing that, see (58), L−1
N eN = (1/ l0)eN , one has

T −1
N (q)eN ∼ (LN UN )−1 eN − eT

1 (LN UN )−1 eN
1 + eT

1 (LN UN )−1 wN
(LN UN )−1 wN

= 1

l0

(
U−1

N eN − eT
1 U−1

N eN
1 + eT

1 (LN UN )−1 wN
(LN UN )−1 wN

)
.

The statement then follows from the facts that, see (56)–(57),

U−1
N eN = (ζN−1

1 , . . . , ζ1, 1)T ,

and, recalling that ‖wN ‖1 is uniformly bounded with respect to N , there exists θ > 0
independent of N such that

‖(LN UN )−1wN ‖1

|1 + eT
1 (LN UN )−1wN | (e

T
1 U−1

N eN ) < θ ζN−1
1 .


�
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6 Boundary values and numerical illustrations

The effective use of the FGAMs in (5) requires the definition of suitable strategies for
recovering the boundary values. To this aim, in order to achieve an approximation of
the starting values y(tn), n = 1, 2, . . . , M, with a certain accuracy we have considered
a collocation approach. It is known that in a neighborhood of the origin the true solution
may have the expansion

y(t) =
∑

(μ,�)∈N0×N0

cμ� tμ+�α.

Let us define the set, see (24),

B := {β ∈ R : β = μ + �α for (μ, �) ∈ Mp(α)}.

We denote by βm, m = 1, . . . , M + 1 the elements of B and we assume that βm <

βm+1, m = 1, . . . , M (note that β1 = 0). Moreover, let us define the function

ϕ(t) =
M+1∑
m=1

am tβm .

Imposing the conditions, see (1),

ϕ(0) = y0, Dα
0 ϕ(nh) = f (nh, ϕ(nh)), 1 ≤ n ≤ M,

and then defining

yn = ϕ(nh), 1 ≤ n ≤ M,

we have that, by construction,

|yn − y(tn)| = O(hβ̄ ), 1 ≤ n ≤ M,

where β̄ is defined in (29).

Regarding the approximation of y(tn), n = N − k2 + 1, . . . , N , these values are
computed implicitly through the application of a set of appropriate discretization
formulas. Such formulas are derived from the local approximations of

J (m)[φ](tn) ≈ J (m)[ p̂](tn) =: �(m)
n [φ], m = N − k2 + 1, . . . , N ,

p̂ ∈ �k being such that

p̂(tN− j ) = φ(tN− j ), j = 0, 1, . . . , k,

and by using a procedure similar to the one described in Sect. 2.
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As a numerical illustration of the schemes proposed, we have considered their
application for solving the initial value problem

Dα
0 y(t) =

(
1 − 2μ 1 − μ

2μ − 2 μ − 2

)
y(t), y(0) =

(
1

−2

)
, (60)

whose exact solution is

y(t) =
(

1
−2

)
Eα(−tα),

independently of μ > 0. When μ is large, the problem is stiff, since the eigenvalues of
the Jacobian matrix are −μ and −1. With the chosen initial value, however, the stiff
mode is not present in the continuous solution. As usual, the application of methods
with inappropriate stability properties, determines a severe restriction on the choice of
the stepsize. We have solved the problem with α = 0.75 and α = 0.50. In both cases
we have set μ = 2,500. We have used the FGAM and the classical Adams product
quadrature rule [17] of orders 4 with h = 1/4. In Fig. 3, the approximations of the
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Fig. 3 Absolute value of the first component of the numerical solution of (60) provided by the FGAM
(solid line) and the Adams product quadrature rule (dashed line) of order 4
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first component of the solution obtained by applying the FGAM (solid line) and the
Adams product quadrature rule (dashed line) just mentioned have been reported. The
graphics corresponding to the second component are similar for both methods and
hence not reported.

As one can see, the property of stability of the FGAM allows one to get good
approximations of solutions of initial value problems even when stiff modes are present
and the stepsize used is rather large.

7 Conclusions

The extension to the fractional order case of the generalized Adams methods described
in [6] has been investigated. As expected, the convergence properties of the FGAMs
are in perfect agreement with the ones of the standard Adams methods for FDEs. At the
same time, as shown in Sect. 6, the linear stability properties make the generalization
attractive for stiff problems since the barrier established in [17] is overtaken at the
price of the computation of approximations of the endpoint values of the solution.
This approach can also be used for the construction of reliable codes with automatic
stepsize selection by using a block implementation of the schemes, like the Generalized
Adams Methods for ODEs [14]. This topic will be the subject of future investigation.
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