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Abstract For the solution of linear discrete ill-posed problemshiis paper we con-

sider the Arnoldi-Tikhonov method coupled with the Genieesd Cross Validation

for the computation of the regularization parameter at é@ehtion. We study the

convergence behavior of the Arnoldi method and its propsftir the approximation
of the (generalized) singular values, under the hypottieatPicard condition is sat-
isfied. Numerical experiments on classical test problerdssarimage restoration are
presented.

Mathematics Subject Classification (200065F10- 65F22- 65R32

Keywords Linear discrete ill-posed probleniTikhonov regularization Arnoldi
algorithm- Generalized Cross Validation

1 Introduction
In this paper we consider discrete ill-posed problems,
Ax=b, AeRVN peRN, (1.1)
in which the right-hand sidieis assumed to be affected by noise, caused by measure-
ment or discretization errors. These systems typicalsedriom the discretization of

linear ill-posed problem, such as Fredholm integral equatiof the first kind with
compact kernel (see e.g. [15, Chapter 1] for a backgroun@gprAmon property of
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these kind of problems, is that the singular values of theddeapidly decay and clus-
ter near zero. In this situation, provided that the diszegtbn which leads to (1.1) is
consistent with the continuous problem, this property lieited by the matriA.

Because of the ill conditioning oA and the presence of noise lin some sort
of regularization is generally employed for solving thisidiof problems. In this
framework, a popular and well established regularizatemhhique is the Tikhonov
method, which consists in solving the minimization problem

min {||Ax—bl|*+A?||Lx||*} (1.2)
xeRN

whereA > 0 is the regularization parameter dnd R”*N is the regularization matrix
(see e.g. [14] and [15] for a background). We denote the isoludf (1.2) byx, .
For a discussion about the choicelofve may quote here the recent work [5] and
the references therein. As well known, the choice of therpatarA is crucial in
this setting, since it defines the amount of regularizatio® wants to impose. Many
techniques have been developed to determine a suitable f@luhe regularizing
parameter and we can refer to the recent papers [31, 2, 1fbr2Pe state of the art,
comparison and discussions. We remark that in (1.2) andigimout the paper, the
norm used is always the Euclidean norm.

Assuming thab = b+ e, whereb represents the unknown error-free right-hand
side, in this paper we assume that no information is availablthe erroe. In such a
situation, the most popular and established techniquabéadefinition ofA in (1.2),
as for instance the L-curve criterion and the Generalizesk€Walidation (GCV),
typically requires the computation of the Generalized 8iagValue Decomposition
(GSVD) of the matrix paifA, L). Of course this decomposition may represent a seri-
ous computational drawback for large-scale problems, asc¢he image deblurring.
In order to overcome this problem, Krylov projection methadch as the ones based
on the Lanczos bidiagonalization [1,12,20,21] and the Atimgorithm [3,24] are
generally used. Pure iterative methods such as the GMREB® &SQR, eventually
implemented in a hybrid fashion ([15,6.6]) can also be considered in this frame-
work.

In this paper we analyze the Arnoldi method for the solutibfi@) (the so called
Arnoldi-Tikhonov method, introduced in [3]), coupled withe GCV as parameter
choice rule. Similarly to what made in [4] for the Lanczosibgbnalization process,
we show that the resulting algorithm can be fruitfully used large-scale regular-
ization. Being based on the orthogonal projection of therina onto the Krylov
subspaces#m(A, b) = spar{b,Ab,...,A™ b}, we shall observe that for discrete ill-
posed problems, the Arnoldi algorithm is particularly aééfict for the approximation
of the GCV curve, after a very few number of iterations.

Indeed, under the hypothesis that Picard condition isfeadi$13], we provide
some theoretical results about the convergence of the dirfidkthonov methods and
its properties for the approximation of the singular valaéa. These properties al-
low us to consider approximation of the GCV curve which cammbt&ined working
in small dimension (similarly to what made in [3] where a "jgated” L-curve cri-
terion is used). The GCV curve approximation leads to thendiefin of a sequence
of regularization parameters (one for each step of the altgo), which are fairly



A GCV based Arnoldi-Tikhonov regularization method 3

good approximation of the regularization parameter agi§iom the exact SVD (or
GSVD).

The paper is organized as follows. In Section 2 we presenieé dutline about
the Arnoldi-Tikhonov method for the iterative solution df.2). In Section 3 and
4 we provide some theoretical results concerning the cgevexre of the Arnoldi
algorithm and the SVD (GSVD) approximation. In Section 5 welain the use of
the AT method with the GCV criterion. Some numerical experts are presented
in Section 6 and 7.

2 The Arnoldi-Tikhonov method

Denoting by.7m(A,b) = spar{b, Ab, ..., A™ b} the Krylov subspaces generated by
A and the vectob, the Arnoldi algorithm (see e.g. [32] for a background) cones
an orthonormal basiéwy, ..., Wm} of Zm(A,b). SettingWm = W, ..., Wm] € RN*M,
the algorithm can be written in matrix form as

AW = WinHm + hm+1,me+1€rTnv (2.1)

whereHny = (hi j) € R™™M is an upper Hessenberg matrix which represents the or-
thogonal projection oA onto.#m(A,b), andey = (0,...,0,1)T € R™. Equivalently,
the relation (2.1) can be written as

AW =W 1Hm, (2.2)
where
o Hm (m+1)xm
Hmn= eR . 2.3
" [hmﬂ,meﬂ 2:3)

In exact arithmetics the Arnoldi process terminates whenby..1m = 0, which
means thatZy, 1(A,b) = Zm(A,b).
If we consider the constrained minimization

min  {||Ax— b2+ A?||Lx||? 2.4
min - {JAx—bl%+ A% L} (2.4)
writing X = Wpnym, Ym € R™, and using (2.2), we obtain

min { [Fimym — (1] e1]|? + A2 LWoin . (2.5)
ymeR
which is known as the Arnoldi-Tikhonov (AT) method. Dealimgth Krylov type
solvers, one generally hopes that a good approximationeoéxiact solution can be
achieved form <« N, which, in other words, means that the spectral properties o
the matrixA are rapidly simulated by the onesdf,. This method has been intro-
duced in [3] in the case df = Iy (wherely is the identity matrix of ordeN, so that
[[LWmYml| = |lyml|) and then used in [7, 28] with £ I, with the basic aim of reducing
the dimension of the original problem and to avoid the matgxtor multiplication
with AT used by Lanczos type schemes (see [1,12] and the referérazes).

It is worth noting that (2.5) can also be interpreted as arnridybethod. Indeed,
the minimization (2.5) withL = Iy is equivalent to the inner regularization of the
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GMRES [21]. We remark however, that far=£ Iy, the philosophy is completely
different, since (2.5) represents the projection of a ragedtion, while the hybrid
approach aims to regularize the projected problem. As wk sbe, this difference
can be appreciated more clearly whenever a parameter atubickor A is adopted.

As well known, in many applications the use of a suitable l&gzation opera-
tor L # Iy, may substantially improve the quality of the approximatigon with
respect to the choice df = Iy. Anyway, we need to observe that with a general
L € RPN the minimization (2.5) is equivalent to

(o ()

so that, folP ~ N, the dimension of (2.6) inherits the dimension of the ordjjprob-
lem. Computationally, the situation can be efficiently thbg means of the "skinny”
QR factorization. Anyway, assuming that< N, in order to work with reduced di-
mension problems, we add — P zero rows toL (which does not alter (2.4)) and
consider the orthogonal projectionlofonto #m(A, b), that is,

2

i 2.6
yL“eth , (2.6)

Lm := Wi LW, € R™™M, (2.7)

This modification leads to the reduced minimization

. T 2
ynrjéhglm{!\Hmym—I\bllel\! + A2 Ly} (2.8)
_ ; 2 A 2T w12
= min {lJAx- bl A2 W L2},

which is not equivalent to (2.4) anymore. Anyway, the usépfappears natural in
this framework, and it is also justified by the fact that

W Lx|| < L],

since ||WiLx|| = ||WmWi Lx|| and |[WmW || = 1, beingWmWy, an orthogonal pro-
jection. We observe moreover thiat, would be the regularization operator of the
projection of a Franklin type regularization [6]

(A+AL)x=b.

In order to reduce completely the dimension of (2.6), indtefeconsidering the pro-
jection (2.7) one may even consider the QR factorizat = QmRn asin [17]. In
terms of convergence rate and accuracy, to our experieese tpproaches perform
about the same.

3 Convergence analysis for discrete ill-posed problems

In what follows we denote bix=U >V T € RN*N the SVD ofAwhereZ = diag(ady, ..., on),
and byAn, = UmZmVnI the truncated SVD. We remember that the matkjx:=
A— Anis such that|An|| = omy1.
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Animportant property of the methods based on orthogongptions such as the
Arnoldi algorithm, is the fast theoretical convergenhg.(1 m — 0) if the matrixA
comes from the discretization of operators whose spectswitustered around zero.
Denote byAj, j > 1 the eigenvalues @& and assume thadj| > |A;.1] for j > 1. We
have the following result (cf. [27, Theorem 5.8.10]), in wiiwve assumbl arbitrarily
large.

Theorem 3.1 Assume that ¢ o(A) and
Zajp < o foracertain0 < p< 1. (3.1)
iz

Let pn(2) = N1(z— Ai). Then

ne\mwp
lemA) < (1) (3.2)
where .
np <1+p ) oj. (3.3)
J; j
Since
[ hissi < lpm(A)D], (3.4)

for each monic polynomiap,, of exact degreen (see [36, p. 269]), Theorem 3.1
reveals that the rate of decay pf",hi1; is superlinear and depends on the
summability of the singular values &f We remark that the superlinear convergence
of certain Krylov subspace methods when applied to lineaagqgns involving com-
pact operators is known in literature (see e.g. [26] and é¢fierences therein). The
rate of convergence depends on the degree of compactnéssayferator, which can
be measured in terms of the decay of the singular values.

Here, dealing with severely ill-posed problems, the tyjsiaation isoj; = O(e %),
wherea > 0 handles the degree of ill-conditioning [19, Definition2].4n this situ-
ation, the following result expresses more clearly thedasty ot 1 ; with respect
to the value ofo.

Proposition 3.1 Letgj = O(e~%}). Then, for m- oo,
_ 2,01
(Hllhwl,i)l/m <ke 27 O(7) (3.5)
where Kk is a constant independent of m.

Proof Letk be a constant such thej < ke 2l for eachj. Then forp > 0

1+
npe <1+p) ;o{’ <kP 1(_ ef})p, (3.6)
iz
(cf. (3.3)). Now consider the approximation
1+ 1 -
@ 1P :n(p),

1-ea ap
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which is fairly accurate fop = 0. Using this approximation in (3.2), we find that the

minimum of
A(pe\™"
m )

is attained forp* = % Using this value, the bound (3.6), and defintng- % we
obtain
ne)e\"" _ m( (Lrp) e\™"
m - l1-e 9 m

m ma 1+5 t
=K exp(—t In <—1—ete
m ma 11 P
= k"exp S -1+t 213 +0(t9) fort — 0

= kmexp(—% +m<aT+2) +O(1)) form— o,

The result immediately follows from (3.4) and (3.2).

In Figure 3.1 (a)-(b) we experimentally test the bound (3vbjking with test
problems SHAW and WING, taken from Hansen’s Regularizatlioolbox [16]. For
these two problems it is known that= 2 anda = 4.5 respectively.

In the following results we assume to work with problems inichtthe discrete
Picard condition (see [13]) is satisfied , thatugb = O(am), whereur, denotes the
m-th column ofU, andb is assumed to be the exact right-hand side.

Proposition 3.2 Assume that the singular values of A are of the type- O(e~%)).

Assume moreover that the discrete Picard condition isfatisLeVm:= Vo,..,Vin-1] €
RN*M whereVi := Akb/ || Akb]|. If Vim has full column rank, then there exists @
R™M nonsingular, &, Fm € RN*M, such that

Vin = UnC+Em,  [|Eml| = O(M"?0mm), (3.7)

Um = VGl +Fm,  [|FmZm|| = O(M*20,). (3.8)
Proof Let Ui := [Umi1,...,un] € RN*(N-M  Defining Cy := U Vim € R™™ and
Em:= U (Ur#)TVm € RN*™ we haveVy, = UpCim + Em. Now we observe that for

0<k<m-1
Ul Vi| ~ gj. (3.9)

Fork = 0 the above relation is ensured by the Picard Condition, edeefork > 1 it
holds since

T o
el = | (U) V| = 020, 310
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We observe that the matr, can be written as
Cin = U WinSn,
where Sy, is upper triangular and nonsingular\ff, has full rank. Now, from the

relation [10,§2.6.3]
2

)

.
Ormin(UTWi)2 = 1 — H (Urﬁ) Wi

the quantityH (Un%)TWmH, which express the distance betwétm) andR(Wy,), is
strictly less than one if the Picard Condition is satisfieud, by (3.7), we can write

Um = VirCrit — EnCit (3.11)

and sinceEm = Uz (U%)TVm we have that
T -1
EnCrn® = Un (Ur#) Vin (UrEVm) : (3.12)

~\-1
By (3.9), using the Cramer rule to comp tlal%Vm) Zm € R™Mwe can see that
each element of this matrix is of the ty@1), so that

Omi1 - Omil
~m e R(N—m)xm

)

(U)o (0T) 2

ON - On
and hence
(ur#) Vo (U,Nm) s

using agairo; = O(e~%)). DefiningFrn = —EnCy,y! we obtain (3.8) by (3.11), (3.12)
and (3.13).

= O(m*?ap), (3.13)

Remark 3.1The hypothesigr; = O(e %) of Proposition 3.2 is just used to have
o] - otem

1/2 1
—20 ] —am
2 € < —¢ . 3.14
<J->m 1 ) T Waa ( )

The result of the proposition can be extended to work with enatkly ill-posed prob-
lems, in whicho; = O(j~%), provided thatx is large enough. As consequence in this
situation we would have a slower decay||&,|| and||FmnZm||-

The following result improves the one of Proposition 3.1 ighhholds without
hypothesis ofb).

Proposition 3.3 Under the hypothesis of Proposition 3.2

hmi1.m = O(M/20m).
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Proof By (2.1)
hm+1‘m = W-Ir;~.+lAWm
= W 1 ArWim -+ W 1 AmWin
- O(O-m+1) + W-r!;-.+1UmZmVnT.Wm,

since||Am|| = omy1. Therefore, using (3.8) we obtain
hm+l’m == O(O—m+1) + W;’[T-]+1(Vmcr;1 + Fm)ZmVr-T[]-Wm.
which concludes the proof, sine€,, ;Vim = 0 and||FnZm|| = O(m*/20p).

In Figure 3.1 (c)-(d) we compare the decay of the sequghggim} -, With
that of the singular values, working again with the test peois SHAW and WING.

@ , ®

o

0 5 10 15 20 25 30 35

Fig. 3.1 (a)-(b) decay rate o(ﬂ{‘llhwl}i)l/m (dash-dot line) and bound (3.5) (solid line), (c)-(d) decdy
hm¢1,m and gm. On the left the results for SHAW and on the right the resaltS$¥ING. In each experiment
N =32

We need to remark that the results of Figure 3.1 are obtaire#limg with the
Householder implementation of the Arnoldi algorithm andhée simulating what
happens in exact arithmetics.

4 The approximation of the SVD

The use of the Arnoldi algorithm as a method to approximagentiarginal values of
the spectrum of a matrix is widely known in literature. We mefer to [33, Chapter
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6] for an exhaustive background. Using similar argumentthis section we analyze
the convergence of the singular values of the matrldgsto the largest singular
values ofA. For the Lanczos bidiagonalization method [1,30], the ysialcan be

done by exploiting the connection between this method aadgymmetric Lanczos
process (see e.g.[8]). The use of the Lanczos bidiagomializ® construct iteratively

the GSVD of @, L) has been studied in [20].

Let us consider the SVD factorization &, that is, Hy, = UM sMyMmT,
ym c R(m+l)x(m+l), v (m) € RM™M gnd

m
ol
Z(m) — c R(m+1)><m
o

We can state the following results.

Proposition 4.1 Let U1 = Wi 1U™ e RN*(MD) and Vi, = Wy V(M e RNxm,
Then B .
A= T2 2™V = [|AG — WD)

Proof Using (2.2), we have

A—TmitZMVT = A— Wiy U M Sy (MT\T
= A=W, (HW
= A—AMW .
Observe that sindd 15 M =Wy, 1U ™M wherez(™ ¢ R™Mis just > (M
without the last row, and (M e R(M1)xmis Y (M without the last column, the above
result states that the tripIt{Wmlmm),f““),WmV(m)) defines an approximation of

the truncated SVD of\, which cannot be too bad singgA(I —WaWi) || < [|A].
Moreover, it states that if the Arnoldi algorithm does natimate beforeN itera-
tions, then it produces the complete SVD. The following hegives some additional
information.

Proposition 4.2 Let q(<m> € R™1 and \ﬁm) € R™ be respectively the right and left
singular vectors relative to the singular valném) of Hy, that is,ﬁmvi((m) = ém) ui((m)
and ﬁLui((m) = oém)v‘((m, with 1 < k < m. Then definingi, = Wm+1uf<m> and v =
Wmvi((m) we have that

AV — 0™ = 0, 4.1)
W (AT — 0. ™v) = 0. 4.2)
Proof (4.1) follows directly by (2.2). Moreover, since

ﬁ:nui((m) - oém)vi((m) =0

)

usingH, = WI ATWy, 1, and the definition ofi andvy, we easily obtain (4.2).
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Remark 4.1Using the square matrid,, to approximate the singular valuesAfthat
is, computing the SVIH, = UM My MT "\where nowd (M, (M v(M ¢ gmxm
if Hmvf<m> - O'ém> ui((m) then

HAVk - ok(m)UkH <hmeim With Tc=Wou™ v =Wel™.  (4.3)

The above relation is very similar to the one which ariseswigng the eigenvalues
of Hy (the Ritz values) to approximate the eigenvalueé ¢33, §6.2]. Note more-
over that whenevdiy 1 m ~ 0, and hence very quickly for linear ill-posed problems
(see Section 3), the use Hf;, or Hy, is almost equivalent to approximate the largest
singular values of.

The Galerkin condition (4.2) is consequence of the facttti@frnoldi algorithm
does not work with the transpose. ObviouslyAif= AT, the algorithm reduces to the
symmetric Lanczos process and, under the hypothesis obBitam 4.2, we easily
obtain ATty — aém)\‘/k = 0. In the general case & # AT, Proposition 4.2 ensures
that sincevc = W™ € #m(A,b), by (4.2) the vectoo, ™ is just the orthogonal

projection ofATTy onto.#m(A, b), that is,aém)vk =WiW ATT, which implies

| ATo = ™| < (0 = W AT W . (4.4)

This means that the approximation is gooAlfty is close ta#m(A,b). Itis interest-
ing to observe that (4.4) is just the "transpose version4a3) since

i 1.m = || (1 — VeV ) AV, |

which can be easily proved using again (2.1) (cf. [33, Chatile

Experimentally, one observes that the Arnoldi algoritherseto be very efficient
for approximating the largest singular values for disciiéfgosed problems. In order
to have a-posteriori strategy to monitor step-by-step thaity of approximation, we
can state the following.

Proposition 4.3 Assume that the matrix A has full rank. Then

HATU.(—akmka < HWnT1+1A\/\4ﬁ , (4.5)
wherety, V, oém) are defined as in Proposition 4.2, angiWs [Wim. 1, ..., Wn].
Proof Sincevy € #m(A,b), andti =W, 1ul™, by (4.2)

HATUk _ ak(’“>ka < H (W,#)T AW 4 - (4.6)
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Formula (4.5) is rather interesting because simge= w Aw; from the Arnoldi
algorithm,

Pimi1 - hin
WL AW =
Pmetmet - DmyanN

Since in many cases the elements of the projected midfgitend to annihilate de-
parting from the diagonal (this is the basic assumption efrtiethods based on the
incomplete orthogonalization, see e.g. [34]), one mayinhtseful estimates for the
bound (4.5) working with few columns (W%HAW#, that is, with few columns of
W, and hence obtaining a-posteriori estimates for the quafithe SVD approx-
imation. In order to have an experimental confirmation of $tatement, in Figure

4.1 we show the behavior #fA—UmHZ(m)VLH and||WT, ; AW, 1|, for some test

problems. Note thafW. ,Awm, 1| comes from the bound (4.5) with;; replaced
by Wiy 1.

We remark that Proposition 3.3 and 4.3 can be used to stoprdicegure when-
ever the noise level is known, since it is generally useless to continue with thi®S
approximation if we findaém) << ¢, for a certairk andm. Indeed, in this situation
the Picard condition is no longer satisfied since typiddjfyo ~ € for mlarge enough.

For what concerns the generalized SVD of the matrix pait), let AX=US
andLX = VC, whereS= diag(sy, ...,sn) andC = diag(cy, ...,cn ), X € RN*N is non-
singular andU,V € RN*N are orthogonal. Moreover ldi XM = U(™SM and
LpX (™ = V(MM whereS™ = diag(s™, ....sn") andC™ = diag(c\"™,...,ci"),
be the generalized SVD of the matrix p@ifm,Lm). In this situation, for the conver-
gence of the approximated generalized singular values ecirs, we can state the
following result.

Proposition 4.4 Let (™, i"™ and %™ be the k-th column of the matricesV)
R(MEL)xm /(M) ¢ gMxm gnd XM ¢ R™™M respectively. Then defining =Wm+1uf<m),
Y = Wmvf(m) andx, = mef(m), we have

k =0, (4.7)
W (Lx — c™yi) = 0. (4.8)

Proof Similarly to Proposition 4.2, (4.7) and (4.8) follows immattly from the ba-
sic relation (2.2).

As before the proposition ensures that if the matihas full rank, than the
Arnoldi algorithm allows to construct the GSVD 6A,L). Step by step, the qual-
ity of the approximation depends on the distance betvegsm Lwy,...,Lwy} and

Hin(A,b). Similarly to (4.4) and (4.6), sincg =Wv\™ € #m(A,b), we have

HL)_(k—CE(rm\_/kH < (11 = WM LG |
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35 0 5 10 15 20 25 30 35

0 5 10 15 20 25 30 35 70 5 10 15 20 25 30 35
Fig. 4.1 Decay behavior ofHAfUmlz(m)VLH (solid line) and lower bound|W,, ;AW 1| arising

from Proposition 4.3 (dash-dot line) for BAART (a), WING, @HAW (c) and LAPLACE (d). The dimen-
sion of each problem is N- 32,

and

[EA H (wn#)T LWey

In Figure 4.2 we show the convergence of the singular valfigs,g and the
generalized singular values of the matrix p(&_ifm, Lm), with

L= , (4.9)

working with the test problems SHAW and BAART. The resultewtthat the ap-
proximations are quite accurate. It is interesting to obesénat, in both cases, after
8-9 iterations the algorithm starts to generate spuriogsagimations. This is due
to the loss of orthogonality of the Krylov vectors, since lrese experiments (and
in what follows) we have used the Gram-Schmidt implemeotatiVorking with the
Householder version of the algorithm the problem is fixedyway in the framework
of the regularization, a more accurate approximation ofstinallest singular values
is useless because of the errobin
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Fig. 4.2 Plots of the singular values (circle) of the matiik, (left) and the generalized singular values
of the matrix pair(Hm,Lm) (right) versus the iteration number k, for the problem BAART SHAW with
N = 32. The solid lines represent the singular values of the marikeft) and the generalized singular
values of the matrix paifA, L) (right).

5 Generalized Cross-Validation

A popular method for choosing the regularization parametbich does not require
the knowledge of the noise properties nor its ndfaj, is the Generalized Cross-
Validation (GCV) [9,37]. The major idea of the GCV is that aogochoice ofA
should predict missing values, so that the model is not e@$o the elimination of
one data point. This means that the regularized solutionldipyedict a datum fairly
well, evenif that datum is not used in the model. This viewplEads to minimization
with respect to\ of the GCV function

[b—Ax ||?
G(A) = —2 AL
@) [trac€] — AA)]2’
whereA, = (ATA4A2LTL)AT is the matrix that gives the regularized solutions of
(1.2) from the normal equations

(ATA+ALTL)x, =ATh.

Using the GSVD of the matrix pai, L), with a generalA € RM*N | ¢ RP*N,
let A=USX ! andL = VCX1, whereS= diag(s;, ...,sp) andC = diag(cy, ..., Cp),
the generalized singular valugsof (A,L) are defined by the ratios

S .
y.:a, i=1..P
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Therefore, one can show that the expression of the GCV fom&igiven by

()
(M- v-P) 5P, )

For the square cagd = N, andP < N, rearranging the sum at the denominator we

obtain
Z ( 5U; b)

2
(ZI 1 VZJFAZ)
The GCV criterion is then based on the choiceAofvhich minimizesG(A). It is
well known that this minimization problem is generally dbnditioned, since the
functionG(A) is typically flat in a relatively wide region around the minim. As a
consequence, this criterion may even lead to a poor regataon [23, 25, 35].

As already said in the Introduction, for large-scale proidghe GCV approach
for (1.2) is too expensive since it requires the SVD (GSVD)this setting, our idea
is to fully exploit the approximation properties of the Atdioalgorithm investigated
in Section 3 and 4. In particular, our aim is to define a seqaerfiaegularization
parameterdAnm}, i.e., one for each iteration of the Arnoldi algorithm, ahtad by
the minimization of the following GCV function approximatis

(5.1)

(5.2)

|[Fnyma — |[b] €|

29
A2
(n-mesm )

wherey,, solves the reduced minimization (2.8), ayif@), i=1,..,m, are the ap-
proximations of the generalized singular values, obtaimitd the Arnoldi process.
Note that

Gm(A) = (5.3)

2
- 2_ & AZ T mT 2
[Hmyma — lIblley]| —;(Mlﬁm c +(Umnllc) ;

Whereui(m> is defined as in Proposition 4.4 aae- ||b|| e;, so that the construction of
Gm(A) can be obtained working in reduced dimension. The basicwddeh leads
to the approximatiorsm(A) ~ G(A), is to set equal to O the generalized singular
values that are not approximated by the Arnoldi algorithng that are expected to
be close to O after few iterations. This is justified by thelgsia and the experiments
of Section 3 and 4.

We remark that in a hybrid approach [21], one aims to regzdattie projected
problem

min {|[Hmy— [[b] e1]|} . (5.4)

yeRM

Since no geometrical information on the solution of (5.4) ba inherited from the
solution of the original problem, the choice lof, = I, as regularization operator is
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somehow forced (this is a standard strategy for hybrid nogh®5,§6.7]). In this
framework, if the GCV criterion is used to regularize (5t basic difference with
respect to (5.3) is at the denominator, whike- m is replaced bym. We observe
moreover that (5.3) is similar to the GCV approximation coomiy used for iterative
methods, in which the denominator is simply- m[15, §7.4].

In the following we show the algorithm that has been usedfertésts of the next
sections.

AT - GCV Algorithm

givenAc RNN b e RN, &

while | | = IFm-1 |/ ] > &
updateH, andL, from (2.3) and (2.7)
compute GSVDf m, L)
computeAy, = argmin, Gm(A)

Hm _(IIblex
AL ) Y™ 0
compute the corresponding residugl

end
computexm = Wnym

2
solve mif, cgm

The stopping rule used in the algorithm is just based on tsidwal. As an alter-
native, one may even employ the strategy adopted in [4],dbasé¢he observation of
the GCV approximations.

6 Numerical results

In order to test the performance of the proposed method, wsider again some clas-
sical test problems taken from the Regularization Tool§.[tt6particular in Figures
6.1-6.2, we consider the problems BAART, SHAW, FOXGOORAPLACE, with
right-hand side affected by 0.1% or 1% Gaussian noise. Thdagzation operator is
always the discretized first derivative (4.9), augmenteti wizero row at the bottom
to make it square (cf. (2.7)). For each experiment we shoyth@approximation of
G(A) obtained with the functionm(A ) for some values af, with a graphical com-
parison of the local minima; (b) the approximate solutia)tfe relative residual and
error history; (d) the sequence of selected paraméter$, with respect to the one
obtained with the minimization (A ) (denoted by\a in the pictures) and the opti-
mal one Qopt) Obtained by the minimization of the distance between tgelsrized
and the true solution [29]

n]\m||xreg—xtrueH = n}lnf(/\),

where

b (a2 b N N yp
=48 (e 3,00) -5 )
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—— noise level
—&— relative residual
—©— relative error
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—&— relative residual
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exact solution
regularized solution|

40 60 80 100 120

exact solution
regularized solution|

40 60 80 100 120

Fig. 6.1 Results for BAART (top) and SHAW (bottom). The dimensioaabf groblem is N= 120. Noise
levele = 1072, In subfigures (a) the tick red line indicates the functiofA @ In both cases the regulariza-

tion operator is (4.9).
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Fig. 6.2 Results for FOXGOOD (top) andUAPLACE (bottom). The dimension of each problem is N
120. Noise levek = 103, In subfigures (a) the tick red line indicates the functiofA In both cases the
regularization operator is (4.9).
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7 An example of image restoration

We conclude with anillustration of the performance of the\a&noldi approach on
a 2D image deblurring problem which consists in recovetiegdriginaln x nimage
from a blurred and noisy observed image.

Let X be an x n two dimensional image. The vect&rof dimensionN = n?
obtained by stacking the columns of the imageepresents a blur-free and noise-
free image. We generate an associated blurred and noes@¥fageb by multiplying
X by a block Toeplitz matrixA € RN*N with Toeplitz blocks, implemented in the
functionblur .m from the Regularization Tools [16]. This Matlab functionshavo
parameters;and andsigma; the former specifies the half-bandwidth of the Toeplitz
blocks and the latter the variance of the Gaussian poinagdtenction. The blur and
noise contaminated image< RN is obtained by adding a noise-vec®e RN, so
thatb = Ax+ e. We assume the blurring operatdand the corrupted imadeto be
available while no information is given on the eremwe would like to determine a
restoration which accurately approximates the blur-fregrzoise-free image

We consider the restoration of a corrupted version of thex2866 test image
mri.png. Contamination is by 1% white Gaussian noise and spaceigmiaGaus-
sian blur. The latter is generated as described above withgarameterdand=7,
sigma=2, so that the condition number &fis around 16°. Figure 7.1 displays the
performance of the AT-GCV. On the left the blur-free and edige image, on the
middle the corrupted image, on the right the restored imBgen top to bottom the
image in original size and two different zooms. The regaktion operator is defined
as (cf. [7])

L=Ih®Lli+Li®l,e RNN,

wherelL; € R™" s the discretized first derivative with a zero row at the dtias in
(4.9) (cf. also [20§5]). The experiment has been carried out using Matlab 7.1® on
single processor computer (Intel Core i7). The result has lobtained in 5 iterations
of the Arnoldi algorithm, in around.B seconds.

8 Conclusion

The fast convergence of the Arnoldi algorithm when appleddmpact operators
makes the AT method particularly attractive for the regaktion of discrete ill-posed
problems. The projected problems rapidly inherit the b&satures of the original
one, so that the rate of convergence is closely related tddbay rate of the singular
values ofA.

In this paper, in absence of information on the noise whiéécad the right-hand
side of the system, we have employed the GCV criterion. Goytio the hybrid
techniques, the sequence of regularization paraméi@rs,..., is defined in order to
regularize the original problem instead of the projectee, ¢eading to GCV approx-
imations which are similar to the ones used for pure iteeatiethods ([15§7.4]).
Notwithstanding the intrinsic difficulties concerning tBEV criterion, the arising al-
gorithm has shown to be quite robust. Of course there are égasehich the method
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Original Image Blurred and noisy Image Restored image

Fig. 7.1 Restoration ofrrs . png. Original image, blurred and noisy image with noise leget 102 and
blur parametersband=7, sigma=2, restored image. From top to bottom original size and twora.

fails, but the numerical experiments presented are raépgesentative of what hap-
pens in general.

While not considered in the paper, the Range Restricted Idrmoethod [24,
18] represent a potential improvement of the method hergepted, especially for
problems in which the noise level is rather high and if theitagzation matrix is little
effective as noise removal (as for instance the identityrimatOf course the analysis
of Section 3 and 4 should be modified accordingly. In paréicthe Picard condition
should be no longer necessary to prove Proposition 3.2afdyiimodified), since
the starting vector of the Arnoldi process would Al The arising approximation
of the dominating singular values and consequently, theceqapation of the GCV
function, should be analized.

References

1. A. Bjorck, A bidiagonalization algorithm for solving & and sparse ill-posed systems of linear
equations, BIT28, 659670 (1988).



20

Paolo Novati, Maria Rosaria Russo

10.
11.
12.

13.
14.

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

27.
. P. Novati, M.R. Russo, Adaptive Arnoldi-Tikhonov regpitation for image restoration, Numerical

29.
30.

31.

F. Bauer, M. Lukas, Comparing parameter choice methadesefpilarization of ill-posed problems,
Math. Comput. Simulatio81(9), 1795-1841 (2011).

D. Calvetti, S. Morigi, L. Reichel, F.Sgallari, Tikhonoggularization and the L-curve for large dis-
crete ill-posed problems, J. Comput. Appl. Mat3 423-446 (2000).

. J.Chung, J.G. Nagy, D.P. O’Leary, A weighted-GCV mettard_inczos-hybrid regularization, Elec-

tron. Trans. Numer. Anak8, 149-167 (2007/08).

. M. Donatelli, A. Neuman, and L. Reichel, Square reguédiin matrices for large linear discrete

ill-posed problems, Numer. Linear Algebra Apfb, 896-913 (2012).

. J. N. Franklin, Minimum Principles for lll-Posed ProblenSIAM J. Math. Anal.9(4), 638-650

(1978).

. S. Gazzola, P. Novati, Automatic parameter setting forofdi-Tikhonov methods, J. Comput. Appl.

Math. 256, 180-195 (2014).

. G.H. Golub, F. T. Luk, M. L. Overton, A Block Lanczos Methéor Computing the Singular Values

of Corresponding Singular Vectors of a Matrix, ACM Trans.tWMSoftware,7(2), 149-169 (1981).

. G.H. Golub, M. Heath, G. Wahba, Generalized cross-vitidas a method for choosing a good ridge

parameter, Technometri@4(2), 215-223 (1979).

G.H. Golub, C.F. Van Loan, Matrix Computations. Johngkilas University Press, Baltimore (MD),
3rd edition, 1996.

U. Hamarik, R. Palm, T. Raus, A family of rules for paraenechoice in Tikhonov regularization of
ill-posed problems with inexact noise level, J. Comput. Apath. 2368), 2146—2157 (2012).

M. Hanke, On Lanczos based methods for the regulanzatiaiscrete ill-posed problems, BAL,
1008-1018 (2001).

P.C. Hansen, The discrete Picard condition for disdltgtesed problems, BITBO, 658-672 (1990).

M. Hanke, P.C. Hansen, Regularization methods for {acgée problems, Surv. Math. In8.253-315
(1993).

P.C. Hansen, Rank-Deficient and Discrete lll-PosedlBmud Numerical Aspects of Linear Inversion.
SIAM, Philadelphia (1998).

P.C. Hansen, Regularization Tools Version 4.0 for Maffa3, Numer. Algorithms46, 189-194
(2007).

M. Hochstenbach, L. Reichel, An iterative method forhibikov regularization with a general linear
regularization operator, J. Integral Equations A@@a.463-480 (2010).

M. Hochstenbach, N. McNinch, L. Reichel, Discrete tispd least-squares problems with a solution
norm constraint, Linear Algebra Appl36, 3801-3818 (2012).

B. Hofmann, Regularization for Applied Inverse andAtsed Problems. Teubner, Stuttgart, Germany
(1986).

M.E. Kilmer, P.C. Hansen, M.I. Espafiol, A projectiomsbd approach to general-form Tikhonov
regularization, SIAM J. Sci. Compu29(1), 315-330 (2007).

M.E. Kilmer, D.P. O’Leary, Choosing regularization aareters in iterative methods for ill-posed
problems, SIAM J. Matrix Anal. Appl22, 1204-1221 (2001).

S. Kindermann, Convergence analysis of minimizatiasell noise levelfree parameter choice rules
for linear ill-posed problems, Electron. Trans. Numer. AB8, 233-257 (2011).

R. Kohn, C.F. Ansley, D. Tharm, The performance of cnailation and maximum likelihood esti-
mators of spline smoothing parameters, J. Am. Stat. A&®c1042-1050 (1991).

B. Lewis, L. Reichel, Arnoldi-Tikhonov regularizationethods, J. Comput. Appl. MatB26, 92-102
(2009).

M.A. Lukas, Robust generalized cross-validation fasading the regularization parameter, Inverse
Probl.22, 1883-1902 (2006).

I, Moret. A note on the superlinear convergence of GMREAM J. Numer. Anal.34(2), 513-516
(1997).

0. Nevanlinna, Convergence of Iterations for Lineard&igus. Birkhauser, Basel (1993).

Algorithms, in press (2013). DOI: 10.1007/s11075-013801

D.P. O’Leary, Near-optimal parameters for Tikhonov atiter regularization methods, SIAM J. Sci.
Comput.23(4), 1161-1171 (2011).

D.P. O'Leary, J.A. Simmons, A bidiagonalization-regidation procedure for large-scale discretiza-
tions of ill-posed problems, SIAM J. Sci. Statist. Com®t474—-489 (1981).

L. Reichel, G. Rodriguez, Old and new parameter choiles ffor discrete ill-posed problems, Numer.
Algorithms 63, 65-87 (2013) .



A GCV based Arnoldi-Tikhonov regularization method 21

32.

33.

34.

35.

36.
37.

Y. Saad, Iterative methods for Sparse Linear Systentse@ition. SIAM, Philadelphia (PA), 2003.

Y. Saad, Numerical methods for large eigenvalue prablelgorithms and Architectures for Ad-
vanced Scientific Computing. Manchester University Pré&snchester, Halsted Press, New York
(1992).

Y. Saad, K. Wu, DQGMRES: a direct quasi-minimal resicalgbrithm based on incomplete orthog-
onalization, Numer. Linear Algebra Ap8, 329-343 (1996).

A.M. Thompson, J.W. Kay, D.M. Titterington, A cautiogarote about crossvalidatory choice, J. Stat.
Comput. Simul33, 199-216 (1989).

L.N. Trefethen, D. Bau, Numerical Linear Algebra. SIARhiladelphia (1997).

G. Wahba, A comparison of GCV and GML for choosing the sfmag parameter in the generalized
spline smoothing problem, Ann. Stdt3, 1378-1402 (1985).



