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Abstract For the solution of linear discrete ill-posed problems, in this paper we con-
sider the Arnoldi-Tikhonov method coupled with the Generalized Cross Validation
for the computation of the regularization parameter at eachiteration. We study the
convergence behavior of the Arnoldi method and its properties for the approximation
of the (generalized) singular values, under the hypothesisthat Picard condition is sat-
isfied. Numerical experiments on classical test problems and on image restoration are
presented.
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1 Introduction

In this paper we consider discrete ill-posed problems,

Ax= b, A∈ R
N×N, b∈ R

N, (1.1)

in which the right-hand sideb is assumed to be affected by noise, caused by measure-
ment or discretization errors. These systems typically arise from the discretization of
linear ill-posed problem, such as Fredholm integral equations of the first kind with
compact kernel (see e.g. [15, Chapter 1] for a background). Acommon property of
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these kind of problems, is that the singular values of the kernel rapidly decay and clus-
ter near zero. In this situation, provided that the discretization which leads to (1.1) is
consistent with the continuous problem, this property is inherited by the matrixA.

Because of the ill conditioning ofA and the presence of noise inb, some sort
of regularization is generally employed for solving this kind of problems. In this
framework, a popular and well established regularization technique is the Tikhonov
method, which consists in solving the minimization problem

min
x∈RN

{
‖Ax−b‖2+λ 2‖Lx‖2} , (1.2)

whereλ > 0 is the regularization parameter andL∈R
P×N is the regularization matrix

(see e.g. [14] and [15] for a background). We denote the solution of (1.2) byxλ .
For a discussion about the choice ofL we may quote here the recent work [5] and
the references therein. As well known, the choice of the parameterλ is crucial in
this setting, since it defines the amount of regularization one wants to impose. Many
techniques have been developed to determine a suitable value for the regularizing
parameter and we can refer to the recent papers [31,2,11,22]for the state of the art,
comparison and discussions. We remark that in (1.2) and throughout the paper, the
norm used is always the Euclidean norm.

Assuming thatb = b+e, whereb represents the unknown error-free right-hand
side, in this paper we assume that no information is available on the errore. In such a
situation, the most popular and established techniques forthe definition ofλ in (1.2),
as for instance the L-curve criterion and the Generalized Cross Validation (GCV),
typically requires the computation of the Generalized Singular Value Decomposition
(GSVD) of the matrix pair(A,L). Of course this decomposition may represent a seri-
ous computational drawback for large-scale problems, suchas the image deblurring.
In order to overcome this problem, Krylov projection methods such as the ones based
on the Lanczos bidiagonalization [1,12,20,21] and the Arnoldi algorithm [3,24] are
generally used. Pure iterative methods such as the GMRES or the LSQR, eventually
implemented in a hybrid fashion ([15,§ 6.6]) can also be considered in this frame-
work.

In this paper we analyze the Arnoldi method for the solution of (1.2) (the so called
Arnoldi-Tikhonov method, introduced in [3]), coupled withthe GCV as parameter
choice rule. Similarly to what made in [4] for the Lanczos bidiagonalization process,
we show that the resulting algorithm can be fruitfully used for large-scale regular-
ization. Being based on the orthogonal projection of the matrix A onto the Krylov
subspacesKm(A,b) = span{b,Ab, . . . ,Am−1b}, we shall observe that for discrete ill-
posed problems, the Arnoldi algorithm is particularly efficient for the approximation
of the GCV curve, after a very few number of iterations.

Indeed, under the hypothesis that Picard condition is satisfied [13], we provide
some theoretical results about the convergence of the Arnoldi-Tikhonov methods and
its properties for the approximation of the singular valuesof A. These properties al-
low us to consider approximation of the GCV curve which can beobtained working
in small dimension (similarly to what made in [3] where a ”projected” L-curve cri-
terion is used). The GCV curve approximation leads to the definition of a sequence
of regularization parameters (one for each step of the algorithm), which are fairly
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good approximation of the regularization parameter arising from the exact SVD (or
GSVD).

The paper is organized as follows. In Section 2 we present a brief outline about
the Arnoldi-Tikhonov method for the iterative solution of (1.2). In Section 3 and
4 we provide some theoretical results concerning the convergence of the Arnoldi
algorithm and the SVD (GSVD) approximation. In Section 5 we explain the use of
the AT method with the GCV criterion. Some numerical experiments are presented
in Section 6 and 7.

2 The Arnoldi-Tikhonov method

Denoting byKm(A,b) = span{b,Ab, . . . ,Am−1b} the Krylov subspaces generated by
A and the vectorb, the Arnoldi algorithm (see e.g. [32] for a background) computes
an orthonormal basis{w1, ...,wm} of Km(A,b). SettingWm = [w1, ...,wm] ∈ R

N×m,
the algorithm can be written in matrix form as

AWm =WmHm+hm+1,mwm+1eT
m, (2.1)

whereHm = (hi, j) ∈ R
m×m is an upper Hessenberg matrix which represents the or-

thogonal projection ofA ontoKm(A,b), andem = (0, ...,0,1)T ∈ R
m. Equivalently,

the relation (2.1) can be written as

AWm =Wm+1Hm, (2.2)

where

Hm =

[
Hm

hm+1,meT
m

]
∈ R

(m+1)×m. (2.3)

In exact arithmetics the Arnoldi process terminates whenever hm+1,m = 0, which
means thatKm+1(A,b) = Km(A,b).

If we consider the constrained minimization

min
x∈Km(A,b)

{
‖Ax−b‖2+λ 2‖Lx‖2} , (2.4)

writing x=Wmym, ym ∈ R
m, and using (2.2), we obtain

min
ym∈Rm

{∥∥Hmym−‖b‖e1
∥∥2

+λ 2‖LWmym‖2
}
, (2.5)

which is known as the Arnoldi-Tikhonov (AT) method. Dealingwith Krylov type
solvers, one generally hopes that a good approximation of the exact solution can be
achieved form≪ N, which, in other words, means that the spectral properties of
the matrixA are rapidly simulated by the ones ofHm. This method has been intro-
duced in [3] in the case ofL = IN (whereIN is the identity matrix of orderN, so that
‖LWmym‖= ‖ym‖) and then used in [7,28] withL 6= IN, with the basic aim of reducing
the dimension of the original problem and to avoid the matrix-vector multiplication
with AT used by Lanczos type schemes (see [1,12] and the references therein).

It is worth noting that (2.5) can also be interpreted as an hybrid method. Indeed,
the minimization (2.5) withL = IN is equivalent to the inner regularization of the
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GMRES [21]. We remark however, that forL 6= IN, the philosophy is completely
different, since (2.5) represents the projection of a regularization, while the hybrid
approach aims to regularize the projected problem. As we shall see, this difference
can be appreciated more clearly whenever a parameter choicerule forλ is adopted.

As well known, in many applications the use of a suitable regularization opera-
tor L 6= IN, may substantially improve the quality of the approximate solution with
respect to the choice ofL = IN. Anyway, we need to observe that with a general
L ∈ R

P×N, the minimization (2.5) is equivalent to

min
ym∈Rm

∥∥∥∥
(

Hm

λLWm

)
ym−

(
‖b‖e1

0

)∥∥∥∥
2

, (2.6)

so that, forP≈ N, the dimension of (2.6) inherits the dimension of the original prob-
lem. Computationally, the situation can be efficiently faced by means of the ”skinny”
QR factorization. Anyway, assuming thatP ≤ N, in order to work with reduced di-
mension problems, we addN−P zero rows toL (which does not alter (2.4)) and
consider the orthogonal projection ofL ontoKm(A,b), that is,

Lm :=WT
mLWm ∈ R

m×m. (2.7)

This modification leads to the reduced minimization

min
ym∈Rm

{∥∥Hmym−‖b‖e1
∥∥2

+λ 2‖Lmym‖2
}

(2.8)

= min
x∈Km(A,b)

{
‖Ax−b‖2+λ 2‖WT

mLx‖2} ,

which is not equivalent to (2.4) anymore. Anyway, the use ofLm appears natural in
this framework, and it is also justified by the fact that

∥∥WT
mLx

∥∥≤ ‖Lx‖,

since
∥∥WT

mLx
∥∥ =

∥∥WmWT
mLx

∥∥ and
∥∥WmWT

m

∥∥ = 1, beingWmWT
m an orthogonal pro-

jection. We observe moreover thatLm would be the regularization operator of the
projection of a Franklin type regularization [6]

(A+λL)x= b.

In order to reduce completely the dimension of (2.6), instead of considering the pro-
jection (2.7) one may even consider the QR factorizationLWm = QmRm as in [17]. In
terms of convergence rate and accuracy, to our experience these approaches perform
about the same.

3 Convergence analysis for discrete ill-posed problems

In what follows we denote byA=UΣVT ∈R
N×N the SVD ofA whereΣ = diag(σ1, ...,σN),

and byAm := UmΣmVT
m the truncated SVD. We remember that the matrix∆m :=

A−Am is such that‖∆m‖= σm+1.
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An important property of the methods based on orthogonal projections such as the
Arnoldi algorithm, is the fast theoretical convergence (hm+1,m → 0) if the matrixA
comes from the discretization of operators whose spectrum is clustered around zero.
Denote byλ j , j ≥ 1 the eigenvalues ofA and assume that

∣∣λ j
∣∣≥
∣∣λ j+1

∣∣ for j ≥ 1. We
have the following result (cf. [27, Theorem 5.8.10]), in which we assumeN arbitrarily
large.

Theorem 3.1 Assume that1 /∈ σ(A) and

∑
j≥1

σ p
j < ∞ for a certain0< p≤ 1. (3.1)

Let pm(z) = ∏m
i=1(z−λi). Then

‖pm(A)‖ ≤
(ηe

m

)m/p
, (3.2)

where
η(p)≤ (1+ p)∑

j≥1
σ p

j . (3.3)

Since

∏m
i=1hi+1,i ≤ ‖pm(A)b‖ , (3.4)

for each monic polynomialpm of exact degreem (see [36, p. 269]), Theorem 3.1
reveals that the rate of decay of∏m

i=1hi+1,i is superlinear and depends on thep-
summability of the singular values ofA. We remark that the superlinear convergence
of certain Krylov subspace methods when applied to linear equations involving com-
pact operators is known in literature (see e.g. [26] and the references therein). The
rate of convergence depends on the degree of compactness of the operator, which can
be measured in terms of the decay of the singular values.

Here, dealing with severely ill-posed problems, the typical situation isσ j =O(e−α j),
whereα > 0 handles the degree of ill-conditioning [19, Definition 2.42]. In this situ-
ation, the following result expresses more clearly the fastdecay ofhi+1,i with respect
to the value ofα.

Proposition 3.1 Let σ j = O(e−α j). Then, for m→ ∞,

(
∏m

i=1hi+1,i
)1/m ≤ ke

−mα
e2 + α+2

2 +O( 1
m), (3.5)

where k is a constant independent of m.

Proof Let k be a constant such thatσ j ≤ ke−α j for eachj. Then forp> 0

η(p)≤ (1+ p)∑
j≥1

σ p
j ≤ kp (1+ p)

1−e−α p , (3.6)

(cf. (3.3)). Now consider the approximation

kp (1+ p)
1−e−α p ≈ 1

α p
=: η̃(p),
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which is fairly accurate forp≈ 0. Using this approximation in (3.2), we find that the
minimum of (

η̃(p)e
m

)m/p

,

is attained forp∗ = e2

mα . Using this value, the bound (3.6), and definingt := e2

m , we
obtain

(
η(p∗)e

m

)m/p∗

≤ km
(

(1+ p∗)
1−e−α p∗

e
m

)m/p∗

= kmexp

(
mα
t

ln

(
1+ t

α
1−e−t

t
e

))

= kmexp

(
mα
t

(
−1+ t

(
1
α
+

1
2

)
+O(t2)

))
for t → 0

= kmexp

(
−m2α

e2 +m

(
α +2

2

)
+O(1)

)
for m→ ∞.

The result immediately follows from (3.4) and (3.2).

In Figure 3.1 (a)-(b) we experimentally test the bound (3.5)working with test
problems SHAW and WING, taken from Hansen’s RegularizationToolbox [16]. For
these two problems it is known thatα = 2 andα = 4.5 respectively.

In the following results we assume to work with problems in which the discrete
Picard condition (see [13]) is satisfied , that is,uT

mb= O(σm), whereum denotes the
m-th column ofU , andb is assumed to be the exact right-hand side.

Proposition 3.2 Assume that the singular values of A are of the typeσ j = O(e−α j).
Assume moreover that the discrete Picard condition is satisfied. Let̃Vm := [ṽ0, ..., ṽm−1]∈
R

N×m whereṽk := Akb/
∥∥Akb

∥∥. If Ṽm has full column rank, then there exists Cm ∈
R

m×m nonsingular, Em,Fm ∈ R
N×m, such that

Ṽm = UmCm+Em, ‖Em‖= O(m1/2σm), (3.7)

Um = ṼmC−1
m +Fm, ‖FmΣm‖= O(m3/2σm). (3.8)

Proof Let U⊥
m := [um+1, ...,uN] ∈ R

N×(N−m). Defining Cm := UT
mṼm ∈ R

m×m and

Em := U⊥
m

(
U⊥

m

)T
Ṽm ∈ R

N×m we haveṼm = UmCm+Em. Now we observe that for
0≤ k≤ m−1 ∣∣uT

j ṽk

∣∣∼ σ j . (3.9)

Fork = 0 the above relation is ensured by the Picard Condition, whereas fork≥ 1 it
holds since

ṽk =

∥∥Ak−1b
∥∥

‖Akb‖ Aṽk−1.

Therefore, usingσ j = O(e−α j), we immediately obtain

‖Em‖=
∥∥∥∥
(
U⊥

m

)T
Ṽm

∥∥∥∥= O(m1/2σm), (3.10)
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We observe that the matrixCm can be written as

Cm =UT
mWmSm,

whereSm is upper triangular and nonsingular if̃Vm has full rank. Now, from the
relation [10,§2.6.3]

σmin(U
T
mWm)

2 = 1−
∥∥∥∥
(
U⊥

m

)T
Wm

∥∥∥∥
2

,

the quantity
∥∥∥
(
U⊥

m

)T
Wm

∥∥∥, which express the distance betweenR(Um) andR(Wm), is

strictly less than one if the Picard Condition is satisfied. Thus, by (3.7), we can write

Um = ṼmC−1
m −EmC−1

m , (3.11)

and sinceEm =U⊥
m

(
U⊥

m

)T
Ṽm we have that

EmC−1
m =U⊥

m

(
U⊥

m

)T
Ṽm

(
UT

mṼm

)−1
. (3.12)

By (3.9), using the Cramer rule to compute
(
UT

mṼm

)−1
Σm ∈ R

m×m we can see that

each element of this matrix is of the typeO(1), so that

∣∣∣∣
(
U⊥

m

)T
Ṽm

(
UT

mṼm

)−1
Σm

∣∣∣∣∼ m




σm+1 · · · σm+1
...

...
σN · · · σN


 ∈R

(N−m)×m,

and hence ∥∥∥∥
(
U⊥

m

)T
Ṽm

(
UT

mṼm

)−1
Σm

∥∥∥∥= O(m3/2σm), (3.13)

using againσ j = O(e−α j). DefiningFm =−EmC−1
m we obtain (3.8) by (3.11), (3.12)

and (3.13).

Remark 3.1The hypothesisσ j = O(e−α j) of Proposition 3.2 is just used to have∥∥∥ε(0)
∥∥∥= O(σm) by

(

∑
j≥m+1

e−2α j

)1/2

≤ 1√
2α

e−αm. (3.14)

The result of the proposition can be extended to work with moderately ill-posed prob-
lems, in whichσ j = O( j−α), provided thatα is large enough. As consequence in this
situation we would have a slower decay of‖Em‖ and‖FmΣm‖.

The following result improves the one of Proposition 3.1 (which holds without
hypothesis onb).

Proposition 3.3 Under the hypothesis of Proposition 3.2

hm+1,m = O(m3/2σm).
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Proof By (2.1)

hm+1,m = wT
m+1Awm

= wT
m+1∆mwm+wT

m+1Amwm

= O(σm+1)+wT
m+1UmΣmVT

mwm,

since‖∆m‖= σm+1. Therefore, using (3.8) we obtain

hm+1,m = O(σm+1)+wT
m+1(ṼmC−1

m +Fm)ΣmVT
mwm.

which concludes the proof, sincewT
m+1Ṽm = 0 and‖FmΣm‖= O(m3/2σm).

In Figure 3.1 (c)-(d) we compare the decay of the sequence{hm+1,m}m≥1 with
that of the singular values, working again with the test problems SHAW and WING.
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Fig. 3.1 (a)-(b) decay rate of(∏m
i=1 hi+1,i)

1/m (dash-dot line) and bound (3.5) (solid line), (c)-(d) decayof
hm+1,m andσm. On the left the results for SHAW and on the right the results for WING. In each experiment
N = 32.

We need to remark that the results of Figure 3.1 are obtained working with the
Householder implementation of the Arnoldi algorithm and hence simulating what
happens in exact arithmetics.

4 The approximation of the SVD

The use of the Arnoldi algorithm as a method to approximate the marginal values of
the spectrum of a matrix is widely known in literature. We mayrefer to [33, Chapter
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6] for an exhaustive background. Using similar arguments, in this section we analyze
the convergence of the singular values of the matricesHm to the largest singular
values ofA. For the Lanczos bidiagonalization method [1,30], the analysis can be
done by exploiting the connection between this method and the symmetric Lanczos
process (see e.g. [8]). The use of the Lanczos bidiagonalization to construct iteratively
the GSVD of (A,L) has been studied in [20].

Let us consider the SVD factorization ofHm, that is, Hm = U (m)Σ (m)V(m)T ,
U (m) ∈ R

(m+1)×(m+1), V(m) ∈ R
m×m and

Σ (m) =




σ (m)
1

. . .

σ (m)
m

0 · · · 0




∈ R
(m+1)×m.

We can state the following results.

Proposition 4.1 Let Um+1 = Wm+1U (m) ∈ R
N×(m+1) and Vm = WmV(m) ∈ R

N×m.
Then ∥∥∥A−Um+1Σ (m)V

T
m

∥∥∥=
∥∥A(I −WmWT

m )
∥∥ .

Proof Using (2.2), we have

A−Um+1Σ (m)V
T
m = A−Wm+1U

(m)Σ (m)V(m)TWT
m

= A−Wm+1HmWT
m

= A−AWmWT
m .

Observe that sinceUm+1Σ (m) =Wm+1Ũ (m)Σ̃ (m), whereΣ̃ (m) ∈ R
m×m is justΣ (m)

without the last row, and̃U (m) ∈R
(m+1)×m isU (m) without the last column, the above

result states that the triplet
(
Wm+1Ũ (m), Σ̃ (m),WmV(m)

)
defines an approximation of

the truncated SVD ofA, which cannot be too bad since
∥∥A(I −WmWT

m)
∥∥ ≤ ‖A‖.

Moreover, it states that if the Arnoldi algorithm does not terminate beforeN itera-
tions, then it produces the complete SVD. The following result gives some additional
information.

Proposition 4.2 Let u(m)
k ∈ R

m+1 and v(m)
k ∈ R

m be respectively the right and left

singular vectors relative to the singular valueσ (m)
k of Hm, that is,Hmv(m)

k = σ (m)
k u(m)

k

and H
T
mu(m)

k = σ (m)
k v(m)

k , with 1 ≤ k ≤ m. Then defininguk = Wm+1u(m)
k and vk =

Wmv(m)
k we have that

Avk−σ (m)
k uk = 0, (4.1)

WT
m(ATuk−σ (m)

k vk) = 0. (4.2)

Proof (4.1) follows directly by (2.2). Moreover, since

H
T
mu(m)

k −σ (m)
k v(m)

k = 0,

usingH
T
m =WT

mATWm+1, and the definition ofuk andvk, we easily obtain (4.2).
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Remark 4.1Using the square matrixHm to approximate the singular values ofA, that
is, computing the SVDHm = U (m)Σ (m)V(m)T , where nowU (m),Σ (m),V(m) ∈ R

m×m,

if Hmv(m)
k = σ (m)

k u(m)
k then

∥∥∥Avk−σ (m)
k uk

∥∥∥≤ hm+1,m with uk =Wmu(m)
k ,vk =Wmv(m)

k . (4.3)

The above relation is very similar to the one which arises when using the eigenvalues
of Hm (the Ritz values) to approximate the eigenvalues ofA [33, §6.2]. Note more-
over that wheneverhm+1,m ≈ 0, and hence very quickly for linear ill-posed problems
(see Section 3), the use ofHm or Hm is almost equivalent to approximate the largest
singular values ofA.

The Galerkin condition (4.2) is consequence of the fact thatthe Arnoldi algorithm
does not work with the transpose. Obviously, ifA= AT , the algorithm reduces to the
symmetric Lanczos process and, under the hypothesis of Proposition 4.2, we easily

obtainATuk −σ (m)
k vk = 0. In the general case ofA 6= AT , Proposition 4.2 ensures

that sincevk =Wmv(m)
k ∈ Km(A,b), by (4.2) the vectorσ (m)

k vk is just the orthogonal

projection ofATuk ontoKm(A,b), that is,σ (m)
k vk =WmWT

mATuk, which implies

∥∥∥ATuk−σ (m)
k vk

∥∥∥≤
∥∥(I −WmWT

m )ATWmWT
m

∥∥ . (4.4)

This means that the approximation is good ifATuk is close toKm(A,b). It is interest-
ing to observe that (4.4) is just the ”transpose version” of (4.3) since

hm+1,m =
∥∥(I −WmWT

m)AWmWT
m

∥∥ ,

which can be easily proved using again (2.1) (cf. [33, Chapter 4]).
Experimentally, one observes that the Arnoldi algorithm seems to be very efficient

for approximating the largest singular values for discreteill-posed problems. In order
to have a-posteriori strategy to monitor step-by-step the quality of approximation, we
can state the following.

Proposition 4.3 Assume that the matrix A has full rank. Then

∥∥∥ATuk−σ (m)
k vk

∥∥∥≤
∥∥∥WT

m+1AW⊥
m

∥∥∥ , (4.5)

whereuk, vk, σ (m)
k are defined as in Proposition 4.2, and W⊥m = [wm+1, ...,wN].

Proof Sincevk ∈ Km(A,b), anduk =Wm+1u(m)
k , by (4.2)

∥∥∥ATuk−σ (m)
k vk

∥∥∥≤
∥∥∥∥
(
W⊥

m

)T
ATWm+1

∥∥∥∥ . (4.6)
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Formula (4.5) is rather interesting because sincehi j = wT
i Awj from the Arnoldi

algorithm,

WT
m+1AW⊥

m =




h1,m+1 · · · h1,N
...

...
hm+1,m+1 · · · hm+1,N


 .

Since in many cases the elements of the projected matrixHm tend to annihilate de-
parting from the diagonal (this is the basic assumption of the methods based on the
incomplete orthogonalization, see e.g. [34]), one may obtain useful estimates for the
bound (4.5) working with few columns ofWT

m+1AW⊥
m , that is, with few columns of

W⊥
m , and hence obtaining a-posteriori estimates for the quality of the SVD approx-

imation. In order to have an experimental confirmation of this statement, in Figure

4.1 we show the behavior of
∥∥∥A−Um+1Σ (m)V

T
m

∥∥∥ and
∥∥WT

m+1Awm+1
∥∥, for some test

problems. Note that
∥∥WT

m+1Awm+1
∥∥ comes from the bound (4.5) withW⊥

m replaced
by wm+1.

We remark that Proposition 3.3 and 4.3 can be used to stop the procedure when-
ever the noise levelε is known, since it is generally useless to continue with the SVD

approximation if we findσ (m)
k << ε, for a certaink andm. Indeed, in this situation

the Picard condition is no longer satisfied since typicallyUT
mb≈ ε for m large enough.

For what concerns the generalized SVD of the matrix pair(A,L), let AX = US
andLX =VC, whereS= diag(s1, ...,sN) andC= diag(c1, ...,cN), X ∈R

N×N is non-
singular andU,V ∈ R

N×N are orthogonal. Moreover letHmX(m) = U (m)S(m) and

LmX(m) =V(m)C(m), whereS(m) = diag(s(m)
1 , ...,s(m)

m ) andC(m) = diag(c(m)
1 , ...,c(m)

m ),
be the generalized SVD of the matrix pair(Hm,Lm). In this situation, for the conver-
gence of the approximated generalized singular values and vectors, we can state the
following result.

Proposition 4.4 Let u(m)
k , v(m)

k and x(m)
k be the k-th column of the matrices U(m) ∈

R
(m+1)×m,V(m) ∈R

m×m and X(m) ∈R
m×m respectively. Then defininguk =Wm+1u(m)

k ,

vk =Wmv(m)
k andxk =Wmx(m)

k , we have

Axk− s(m)
k uk = 0, (4.7)

WT
m (Lxk− c(m)

k vk) = 0. (4.8)

Proof Similarly to Proposition 4.2, (4.7) and (4.8) follows immediately from the ba-
sic relation (2.2).

As before the proposition ensures that if the matrixA has full rank, than the
Arnoldi algorithm allows to construct the GSVD of(A,L). Step by step, the qual-
ity of the approximation depends on the distance betweenspan{Lw1, ...,Lwm} and

Km(A,b). Similarly to (4.4) and (4.6), sincevk =Wmv(m)
k ∈ Km(A,b), we have

∥∥∥Lxk− c(m)
k vk

∥∥∥≤
∥∥(I −WmWT

m )LWmWT
m

∥∥ .
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Fig. 4.1 Decay behavior of
∥∥∥A−Um+1Σ (m)V

T
m

∥∥∥ (solid line) and lower bound
∥∥WT

m+1Awm+1
∥∥ arising

from Proposition 4.3 (dash-dot line) for BAART (a), WING (b), SHAW (c) and ILAPLACE (d). The dimen-
sion of each problem is N= 32.

and
∥∥∥Lxk−σ (m)

k vk

∥∥∥≤
∥∥∥∥
(
W⊥

m

)T
LWm

∥∥∥∥ .

In Figure 4.2 we show the convergence of the singular values of Hm, and the
generalized singular values of the matrix pair

(
Hm,Lm

)
, with

L =




1 −1
...

...
1 −1

0 · · · · · · 0


 , (4.9)

working with the test problems SHAW and BAART. The results show that the ap-
proximations are quite accurate. It is interesting to observe that, in both cases, after
8-9 iterations the algorithm starts to generate spurious approximations. This is due
to the loss of orthogonality of the Krylov vectors, since in these experiments (and
in what follows) we have used the Gram-Schmidt implementation. Working with the
Householder version of the algorithm the problem is fixed. Anyway in the framework
of the regularization, a more accurate approximation of thesmallest singular values
is useless because of the error inb.
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Fig. 4.2 Plots of the singular values (circle) of the matrixHm (left) and the generalized singular values
of the matrix pair(Hm,Lm) (right) versus the iteration number k, for the problem BAARTand SHAW with
N = 32. The solid lines represent the singular values of the matrixA (left) and the generalized singular
values of the matrix pair(A,L) (right).

5 Generalized Cross-Validation

A popular method for choosing the regularization parameter, which does not require
the knowledge of the noise properties nor its norm‖e‖, is the Generalized Cross-
Validation (GCV) [9,37]. The major idea of the GCV is that a good choice ofλ
should predict missing values, so that the model is not sensitive to the elimination of
one data point. This means that the regularized solution should predict a datum fairly
well, even if that datum is not used in the model. This viewpoint leads to minimization
with respect toλ of the GCV function

G(λ ) =
‖b−Axλ‖2

[trace(I −AAλ )]2
,

whereAλ = (ATA+λ 2LTL)−1AT is the matrix that gives the regularized solutions of
(1.2) from the normal equations

(ATA+λ 2LTL)xλ = ATb.

Using the GSVD of the matrix pair(A,L), with a generalA∈R
M×N,L ∈R

P×N,
let A=USX−1 andL =VCX−1, whereS= diag(s1, ...,sP) andC= diag(c1, ...,cP),
the generalized singular valuesγi of (A,L) are defined by the ratios

γi =
si

ci
, i = 1, ...,P.
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Therefore, one can show that the expression of the GCV function is given by

G(λ ) =
∑N

i=1

(
λ 2

γ2
i +λ 2 uT

i b
)2

(
M− (N−P)−∑P

i=1
γ2
i

γ2
i +λ 2

)2 . (5.1)

For the square caseM = N, andP≤ N, rearranging the sum at the denominator we
obtain

G(λ ) =
∑N

i=1

(
λ 2

γ2
i +λ 2 uT

i b
)2

(
∑P

i=1
λ 2

γ2
i +λ 2

)2 . (5.2)

The GCV criterion is then based on the choice ofλ which minimizesG(λ ). It is
well known that this minimization problem is generally ill-conditioned, since the
functionG(λ ) is typically flat in a relatively wide region around the minimum. As a
consequence, this criterion may even lead to a poor regularization [23,25,35].

As already said in the Introduction, for large-scale problems the GCV approach
for (1.2) is too expensive since it requires the SVD (GSVD). In this setting, our idea
is to fully exploit the approximation properties of the Arnoldi algorithm investigated
in Section 3 and 4. In particular, our aim is to define a sequence of regularization
parameters{λm}, i.e., one for each iteration of the Arnoldi algorithm, obtained by
the minimization of the following GCV function approximations

Gm(λ ) =
∥∥Hmym,λ −‖b‖e1

∥∥2

(
N−m+∑m

i=1
λ 2

γ(m)2
i +λ 2

)2 , (5.3)

whereym,λ solves the reduced minimization (2.8), andγ(m)
i , i = 1, ...,m, are the ap-

proximations of the generalized singular values, obtainedwith the Arnoldi process.
Note that

∥∥Hmym,λ −‖b‖e1
∥∥2

=
m

∑
i=1

(
λ 2

γ(m)2
i +λ 2

u(m)T

i c

)2

+
(

u(m)T

m+1c
)2

,

whereu(m)
i is defined as in Proposition 4.4 andc= ‖b‖e1, so that the construction of

Gm(λ ) can be obtained working in reduced dimension. The basic ideawhich leads
to the approximationGm(λ ) ≈ G(λ ), is to set equal to 0 the generalized singular
values that are not approximated by the Arnoldi algorithm, and that are expected to
be close to 0 after few iterations. This is justified by the analysis and the experiments
of Section 3 and 4.

We remark that in a hybrid approach [21], one aims to regularize the projected
problem

min
y∈Rm

{∥∥Hmy−‖b‖e1
∥∥} . (5.4)

Since no geometrical information on the solution of (5.4) can be inherited from the
solution of the original problem, the choice ofLm = Im as regularization operator is



A GCV based Arnoldi-Tikhonov regularization method 15

somehow forced (this is a standard strategy for hybrid methods [15,§6.7]). In this
framework, if the GCV criterion is used to regularize (5.4),the basic difference with
respect to (5.3) is at the denominator, whereN−m is replaced bym. We observe
moreover that (5.3) is similar to the GCV approximation commonly used for iterative
methods, in which the denominator is simplyN−m [15, §7.4].

In the following we show the algorithm that has been used for the tests of the next
sections.

AT - GCV Algorithm

givenA∈ R
N×N, b∈ R

N, δ
while

∣∣‖rm‖−‖rm−1‖
∣∣/‖rm‖ ≥ δ

updateHm andLm from (2.3) and (2.7)
compute GSVD(Hm,Lm)
computeλm = argminλ Gm(λ )

solve minym∈Rm

∥∥∥∥
(

Hm

λmLm

)
ym−

(
‖b‖e1

0

)∥∥∥∥
2

compute the corresponding residualrm

end
computexm =Wmym

The stopping rule used in the algorithm is just based on the residual. As an alter-
native, one may even employ the strategy adopted in [4], based on the observation of
the GCV approximations.

6 Numerical results

In order to test the performance of the proposed method, we consider again some clas-
sical test problems taken from the Regularization Tools [16]. In particular in Figures
6.1-6.2, we consider the problems BAART, SHAW, FOXGOOD, ILAPLACE, with
right-hand side affected by 0.1% or 1% Gaussian noise. The regularization operator is
always the discretized first derivative (4.9), augmented with a zero row at the bottom
to make it square (cf. (2.7)). For each experiment we show: (a) the approximation of
G(λ ) obtained with the functionsGm(λ ) for some values ofm, with a graphical com-
parison of the local minima; (b) the approximate solution; (c) the relative residual and
error history; (d) the sequence of selected parameters{λm}, with respect to the one
obtained with the minimization ofG(λ ) (denoted byλA in the pictures) and the opti-
mal one (λopt) obtained by the minimization of the distance between the regularized
and the true solution [29]

min
λ

∥∥xreg− xtrue
∥∥2 ≡ min

λ
f (λ ),

where

f (λ ) =

{
p

∑
i=1

(
λ 2

(γ2
i +λ 2)

uT
i b
σi

xi −
N

∑
i=p+1

(uT
i b)xi

)
−

N

∑
i=1

uT
i b
σi

vi

}2

.
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Fig. 6.1 Results for BAART (top) and SHAW (bottom). The dimension of each problem is N= 120. Noise
levelε = 10−2. In subfigures (a) the tick red line indicates the function G(λ). In both cases the regulariza-
tion operator is (4.9).
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Fig. 6.2 Results for FOXGOOD (top) and ILAPLACE (bottom). The dimension of each problem is N=
120. Noise levelε = 10−3. In subfigures (a) the tick red line indicates the function G(λ). In both cases the
regularization operator is (4.9).
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7 An example of image restoration

We conclude with an illustration of the performance of the GCV-Arnoldi approach on
a 2D image deblurring problem which consists in recovering the originaln×n image
from a blurred and noisy observed image.

Let X be an× n two dimensional image. The vectorx of dimensionN = n2

obtained by stacking the columns of the imageX represents a blur-free and noise-
free image. We generate an associated blurred and noise-free imageb by multiplying
x by a block Toeplitz matrixA ∈ R

N×N with Toeplitz blocks, implemented in the
functionblur.m from the Regularization Tools [16]. This Matlab function has two
parameters,band andsigma; the former specifies the half-bandwidth of the Toeplitz
blocks and the latter the variance of the Gaussian point spread function. The blur and
noise contaminated imageb ∈ R

N is obtained by adding a noise-vectore∈ R
N, so

thatb= Ax+e. We assume the blurring operatorA and the corrupted imageb to be
available while no information is given on the errore, we would like to determine a
restoration which accurately approximates the blur-free and noise-free imagex.

We consider the restoration of a corrupted version of the 256× 256 test image
mri.png. Contamination is by 1% white Gaussian noise and space-invariant Gaus-
sian blur. The latter is generated as described above with blur parametersband=7,
sigma=2, so that the condition number ofA is around 1013. Figure 7.1 displays the
performance of the AT-GCV. On the left the blur-free and noise-free image, on the
middle the corrupted image, on the right the restored image.From top to bottom the
image in original size and two different zooms. The regularization operator is defined
as (cf. [7])

L = In⊗L1+L1⊗ In ∈ R
N×N,

whereL1 ∈R
n×n is the discretized first derivative with a zero row at the bottom as in

(4.9) (cf. also [20,§5]). The experiment has been carried out using Matlab 7.10 ona
single processor computer (Intel Core i7). The result has been obtained in 5 iterations
of the Arnoldi algorithm, in around 0.5 seconds.

8 Conclusion

The fast convergence of the Arnoldi algorithm when applied to compact operators
makes the AT method particularly attractive for the regularization of discrete ill-posed
problems. The projected problems rapidly inherit the basicfeatures of the original
one, so that the rate of convergence is closely related to thedecay rate of the singular
values ofA.

In this paper, in absence of information on the noise which affects the right-hand
side of the system, we have employed the GCV criterion. Contrary to the hybrid
techniques, the sequence of regularization parameters{λm}m≥1 is defined in order to
regularize the original problem instead of the projected one, leading to GCV approx-
imations which are similar to the ones used for pure iterative methods ([15,§7.4]).
Notwithstanding the intrinsic difficulties concerning theGCV criterion, the arising al-
gorithm has shown to be quite robust. Of course there are cases in which the method
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Original Image Blurred and noisy Image Restored image

Fig. 7.1 Restoration ofmri.png. Original image, blurred and noisy image with noise levelε = 10−2 and
blur parametersband=7, sigma=2, restored image. From top to bottom original size and two zoom.

fails, but the numerical experiments presented are rather representative of what hap-
pens in general.

While not considered in the paper, the Range Restricted Arnoldi method [24,
18] represent a potential improvement of the method here presented, especially for
problems in which the noise level is rather high and if the regularization matrix is little
effective as noise removal (as for instance the identity matrix). Of course the analysis
of Section 3 and 4 should be modified accordingly. In particular the Picard condition
should be no longer necessary to prove Proposition 3.2 (suitably modified), since
the starting vector of the Arnoldi process would beAb. The arising approximation
of the dominating singular values and consequently, the approximation of the GCV
function, should be analized.
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