
A low cost Arnoldi method for large linear initial

value problems

Paolo Novati
Dipartimento di Matematica Pura ed Applicata

Universita’ degli Studi dell’Aquila
Via Vetoio, Coppito
67010 L’Aquila, Italy

E-mail: novati@univaq.it

Abstract

In this paper we introduce a low cost method for integrating large
dimensional linear initial value problems based on the Arnoldi algorithm
for matrix functions. We also describe a very efficient step-size control
technique and compare a resulting algorithm of order 4 with the standard
Matlab solvers on linear stiff problems arising from the discretization of
parabolic equations.

1 Introduction

In this paper we consider the linear initial value problem (IVP)

y′ = −Ay + r(t)v, t > 0, (1)
y(0) = y0,

where A ∈ RN×N is a large dimensional time-independent matrix, v ∈ RN and
r : [0,+∞) → R is a given function. In particular we want to study the practical
implementation of a Krylov type method for (1) based on the Arnoldi algorithm,
following a resolution scheme based on the decomposition of the forcing term.
The resulting explicit one-step method is based on the computation of matrix
functions of the type

ϕp(A) = (−1)p+1A−(p+1)

[
exp(−A)− (1−A +

A2

2
... + (−1)p Ap

p!

]
, p ≥ 0.

In recent years, other Krylov type methods have been studied for the so-
lution of large systems of initial value problems (IVPs) especially in the stiff
case, where Krylov methods are used by implicit methods in order to accelerate
the linear algebra involved in such schemes see e.g. [1], [13] (also with precon-
ditioning [12]). In the linear case, alternative approaches based on the direct

1

approximation of the matrix exponential (the so-called exponential integrators)
by means of Krylov projection methods (using Arnoldi or Lanczos algorithm)
have been investigated in [4], [6]. Other exponential integrators, in which the
computation of the matrix exponential is performed by means of the polyno-
mial approximation of the exponential function in the complex plane, have been
considered in [2], [3], [7], [8], [9]. These exponential integrators are generally
quite accurate but can also present some problems, such as the global cost (due
as example to the construction of many Krylov subspaces at each step) and the
realization of an efficient step-size control scheme.

The method here proposed is essentially an exponential integrator that is
able to exploit the charachteristics of (1) and allows to integrate it at the cost
of only one Krylov subspace at each step. As we shall see, using the properties
of the Arnoldi method for matrix functions, it is also possible to realize a very
efficient step-size control technique. Regarding the resolution of stiff IVPs,
following the argumentations given in [4], we shall demonstrate that the method
behaves like an A-stable method. The aim is to show that for such kind of
problems the Arnoldi based method here proposed is an effective alternative to
the classical methods.

The paper is structured as follows. In Section 2 we briefly describe the main
features of the Arnoldi method for the computation of matrix functions. In
Section 3 we introduce our method and in Section 4 we describe an effective
step-size control technique. The linear stability of the method is studied in
Section 5. Finally, in Section 6 we test a method of order 4 on some large stiff
problems comparing the results with those of the Matlab stiff solvers ODE23S
and ODE15S.

2 The Arnoldi method for matrix functions

Given a function f and a certain scalar µ, the Arnoldi method for the compu-
tation of f(µA)v produces approximations of the type

f(µA)v ≈ βVmf(µHm)e1, m ≥ 1, (2)

where β = ‖v‖2 (here and below ‖·‖2 denotes the Euclidean norm), e1 =
(1, 0, ..., 0)T ∈ Rm, Vm ∈ RN×m is an orthonormal matrix whose columns con-
stitute a basis of the m-th Krylov subspace Km(A, v) = span{v, Av, ..., Am−1v},
and Hm is an upper Hessenberg matrix that satisfies

Hm = V T
m AVm.

In the following we shall frequently use the notation

βVmf(µHm)e1 = km(f, µA)v,

where
km(f, µA) := Vmf(µHm)V T

m . (3)

2

The error arising from the approximation (2) is strictly dependent on the
spectral properties of A and on the regularity of f (see.e.g. [5]). However, with
respect to µ, it can be bounded as follows

‖f(µA)v − βVmf(µHm)e1‖ ≤ Cµm, (4)

where C = C(A, f, m) (see e.g. [5], [10], for some evaluations). In the particular
case of f analytic in the whole complex plane (as example the exponential
function), the numerical method (2) converges superlinearly to f(µA)v because
C(A, f,m)1/m → 0 as m →∞.

As well known, since the method generally produces good approximations al-
ready for m << N , the computational cost is essentially due to the construction
of the Krylov subspaces, that is, to the Arnoldi algorithm. This consideration
about the computational cost is quite important because the method we are
going to introduce exploits an important features of the approximation (2): the
computation of f(µA) for different values of µ does not influence significantly
the total amount of work performed, because the Krylov subspaces remain the
same.

3 The numerical metod

For the linear IVP (1), the solution at t+ δ, δ > 0, can be expressed in the form

y(t + δ) = exp(−δA)y(t) +
∫ δ

0

exp(−(δ − τ)A)r(t + τ)v. (5)

Hence, any quadrature formula for the integral can be used as the basis of a
numerical method. Indeed, in [4], two approaches for the numerical evaluation of
(5) based on the computation of matrix exponentials and the use of quadrature
rules have been proposed. The cost of such methods is strictly dependent on the
accuracy of the integration rule, in the sense that high order rules require the
computation of many Krylov subspaces at each step. Actually, in the above cited
paper an interesting technique based on projection formulas is also presented.
Such technique allows rather good accuracy results at the cost of only one or
two Krylov subspaces at each step, but, unfortunately, the resulting methods
has order 1.

The method we are going to present is also based on the numerical approx-
imation of the integral in (5) but does not require quadrature formulas. Since
for p ≥ 0 we have

∫ δ

0

exp(−(δ − τ)A)τp

p!
vdτ = δp+1ϕp(δA)v,

where

ϕp(z) = (−1)p+1z−(p+1)

[
exp(−z)− (1− z +

z2

2
... + (−1)p zp

p!

]
,

3

if the forcing term is such that r ∈ Cq, the solution at t + δ can be written as

y(t + δ) = exp(−δA)y(t) +
q∑

p=0

r(p)(t)δp+1ϕp(δA)v + O(δq+2).

Note that for each p ≥ 0, the function ϕp is analytic in the whole complex plane.
Hence, fixed s ≤ q and m ≥ 1, the idea consists in approximating the solution
of (1) with the iteration

yn+1 = km(exp,−δA)yn +
s∑

p=0

r(p)(t)δp+1km(ϕp, δA)v (6)

where km is defined by (3). Thus, under the hypotesis that we know the deriv-
atives r(p), 1 ≤ p ≤ s, we are able to approximate y(t + δ) by constructing
only two Krylov subspaces, Km(A, yn) and Km(A, v). Since v is fixed during
the integration, Km(A, v) needs to be computed only once during the whole
process.

Regarding the accuracy of the method, we can state the following result.

Theorem 1 Let r ∈ Cq. Fixed 0 ≤ s ≤ q and m ≥ 1, the method (6) has order
min(m, s + 2) − 1. Moreover, choosing m := s + 1 we have a method of order
s = m − 1 whose local error, with respect to an arbitrary vector norm ‖·‖, is
dominated by the quantity ‖[exp(−δA)− km(exp,−δA)] yn‖.

Proof. By (4), the local error at the point t + δ, that we denote by En+1, is
given by

En+1 : =

∥∥∥∥∥

[
exp(−δA)yn +

s∑
p=0

r(p)(t)δp+1ϕp(δA)v + O(δs+2)

]
−

[
km(exp,−δA)yn +

s∑
p=0

r(p)(t)δp+1km(ϕp, δA)v

]∥∥∥∥∥
≤ ‖[exp(−δA)− km(exp,−δA)] yn‖+∥∥∥∥∥

s∑
p=0

r(p)(t)δp+1 [ϕp(δA)− km(ϕp, δA)] v

∥∥∥∥∥ + O(δs+2)

≤ Ceδ
m +

s∑
p=0

∣∣∣r(p)(t)
∣∣∣ δp+1Cpδ

m + O(δs+2)

= Ceδ
m +

s∑
p=0

∣∣∣r(p)(t)
∣∣∣ Cpδ

m+p+1 + O(δs+2), (7)

where Ce and Cp are the constants of (4). Since p ≥ 0 the method has order
min(m, s + 2)− 1. Thus, choosing m := s + 1 the local error is of type Ceδ

m +
O(δm+1) and is due to ‖[exp(−δA)− km(exp,−δA)] yn‖.

4

If the derivatives of r up to the order s are not available, we are forced to use
a suitable numerical approximation. Obviously, it will be important to use an
approximation that allows to maintain the order of the method. Let us consider
a certain numerical scheme for approximating r(p)(t) by means of r(p)(t). The
numerical method (6) takes now the form

yn+1 = km(exp,−δA)yn +
s∑

p=0

r(p)(t)δp+1km(ϕp, δA)v, (8)

and we can state the following theorem.

Theorem 2 Let r ∈ Cq. Fixed 0 ≤ s ≤ q and m ≥ 1, if

r(p)(t) = r(p)(t) + O(δdp), dp ≥ 0, p = 1, ..., s, (9)

then the method (8) has order min(m, dp + p + 1, s + 2)− 1, for p = 1, ..., s.

Proof. Following the proof of the previous theorem, the local error En+1 of (8)
satisfies

En+1 ≤ En+1 +

∥∥∥∥∥
s∑

p=1

[
r(p)(t)− r(p)(t)

]
δp+1km(ϕp, δA)v

∥∥∥∥∥
≤ En+1 + c1δ

d1+2 + c2δ
d2+3 + ... + csδ

ds+s+1

where cp, p = 1, ..., s, are suitable constants. Hence, by (7), we easily get the
thesis.

4 The step-size control

In this section we explain an efficient way to estimate the local error of the
method (8) (and also (6)). Assume that the numerical method for approximat-
ing the derivatives of r is such that the local error of (8) is given by

En+1 = ‖[exp(−δA)− km(exp,−δA)] yn‖+ O(δm+1) (10)

(by Theorem 1, for the method (6) it is sufficient to assume that m ≤ s + 1).
The following result provides a practical estimate for the above quantity.

Proposition 3 [10]Given an arbitrary vector norm ‖·‖,

‖[exp(−δA)− km(exp,−δA)] yn‖ ≈ |hm+1,m|
∣∣eT

mϕ0(δHm)e1

∣∣ ‖vm+1‖ =: en+1(δ).
(11)

Hence, under the assumption (10), the local error can be estimated as follows

En+1 ≈ en+1(δ). (12)

5

Now, fixed a certain tolerance ε > 0, assume that δn is the step-size accepted for
the computation of yn ≈ y(t). Given a certain initial guess δ, since the method
has order m − 1, we know that En+1 ≈ cδm. If δ is such that En+1 ≤ ε we
define δn+1 := δ and compute yn+1. If En+1 > ε we must reduce the step-size.
Using the estimate (12) we can easily estimate c, i.e.,

c ≈ en+1(δ)
δm

.

In this way, fixed a certain constant γ, 0 < γ < 1, we can get the new candidate
δ∗ by solving

en+1(δ)
δm

δ∗m ≤ γε,

that is,

δ∗ = δ m

√
γε

en+1(δ)
. (13)

The procedure is repeated until the required accuracy is reached and we define
δn+1 := δ∗. The guess for the next step-size is then defined as

δ := δn+1
m

√
γε

en+1(δn+1)
.

As in many other step-size control schemes, the quantity γ has been introduced
in order to protect the procedure from rough approximations.

Remark 4 Up to now, the argumentations about the local error have been given
with respect to an arbitrary vector norm. Anyway, in the numerical experiments
of Section 6 we always use the estimate (11) with respect to the maximum norm
‖·‖∞.

It is fundamental to observe that even if we are forced to compute many
times the quantity en+1(δ) before getting an acceptable step, the cost of this
computation is negligible because we have only to compute many times the
matrix function ϕ0(δHm) with the same Krylov subspace. In other words, the
step-size control does not produce additional work, because we have a good
estimation of the local error without computing explicitly any approximation of
y(t + h) (as would be necessary employing the Richardson extrapolation or an
embedded method).

5 Linear stability

By (3), the method (8) (or (6)) can be written in the form

yn+1 = Vm exp(−δHm)V T
m yn + gn+1,

where gn+1 is essentially an approximation of the integral in (5). Since the com-
putation of gn+1 does not involves yn in order to investigate the linear stability
it is sufficient to analyze the properties of the operator Vm exp(−δHm)V T

m .

6

Given a certain matrix B, let µ(B) be the associated logarithmic norm,
defined by (with respect the 2-norm)

µ(B) := lim
h→0+

‖I + hB‖2 − 1
h

.

We have the following result.

Proposition 5 [4]If A is positive real, i.e., xT Ax > 0 for each 0 6= x ∈ RN ,
then

µ(−Hm) ≤ µ(−A) ≤ 0.

Using the above result, since Vm has orthonormal columns we have
∥∥Vm exp(−δHm)V T

m

∥∥
2

≤ ‖exp(−δHm)‖2
≤ exp(µ(−δHm))
≤ exp(µ(−δA))
≤ 1

that proves the stability of the method.

6 Numerical experiments with a method of or-
der 4

In this section we want to show the performance of a method (8) of order 4. In
order to build such a method, for the approximation of the derivatives of r we
employ the standard central differences formula

r′(t) ≈ r(t + h)− r(t− h)
2h

.

Fixed s > 0, applying iteratively the above formula with step h = δd for a
certain d ≥ 0, we get approximations r(p)(t), 1 ≤ p ≤ s, such that

r(p)(t) = r(p)(t) + O(δ2d).

Hence, by Theorem 2 the local error takes now the form

En+1 ≤ En+1 + Cδ2+2d + O(δ4+2d),

and the order of the method is min(m, 2 + 2d, s + 2) − 1. In order that the
local error is dominated by ‖[exp(−δA)− km(exp,−δA)] yn‖∞ we must chose
m ≤ min(1 + 2d, s + 1). In this way, fixed s = 4 and d = 2, with m := 5 we get
a method of order 4.

Using this kind of approximation for the derivatives, we can reduce furtherly
the cost of the method (8) substituting km(ϕp, δA) with km−p(ϕp, δA). Cleary,

7

such modification does not change the order of the method that, with the above
choices, is now given by

yn+1 = k5(exp,−δA)yn +
4∑

p=0

r(p)(t)δp+1k5−p(ϕp, δA)v. (14)

We call ARN4 the method (14).
In the numerical experiments here presented, we compare ARN4 with the

stiff solvers implemented in the Matlab codes ODE23S and ODE15S (see [11]
for details) on stiff linear IVPs whose matrix arises from the discretization of
k-dimensional (k = 2, 3) second order partial differential operators of the type

−∆ + τ1
∂

∂x
+ τ2

∂

∂y
, τ1, τ2 ∈ R, (15)

where ∆ denotes the k-dimensional Laplacian. Dirichlet boundary conditions on
the square (0, 1)k are considered. We discretize using central differences with
uniform meshsize h = 1/ (n + 1) along each direction, getting a matrix A of
order N = nk.

The comparison is made with respect to the cost of the methods, measured
in terms of number of inner products of order N (this choice allows to maintain
a closed relation with the dimension of the problem), taking into account of the
sparsity pattern of A.

In this sense, since m iterations of the Arnoldi algorithm cost about m
matrix-vector multiplication and m(m+1)/2 inner products, looking at (14) it is
easy to see that s steps of ARN4 cost about 5(s+1) matrix-vector multiplication
and 15(s+1) inner products. Moreover, the computation of k5(exp,−δA)yn and
k5−p(ϕp, δA)v, p = 0, ..., 4, requires additional 20 inner products at each step
(see (2)). Hence, we have that the total amount of work is approximatively
5(s + 1) matrix-vector multiplication and 35s + 15 inner products. If A arises
from the discretization of (15) as explained above, for k = 2 an application of A
costs about 5 inner products, whereas for k = 3, it costs about 7 inner products.
Hence, summing the previous quantity, s steps of ARN4 cost about 60s + 40
inner products for k = 2 and 70s + 50 inner products for k = 3.

Regarding the codes ODE23S and ODE15S, their cost is essentially due
to a certain number of matrix-vector multiplication (because of the function
evaluations), a certain number of LU factorizations of matrices of the type I−δA,
and a related number of triangular systems. We want to express the costs of such
computations in terms of inner products of order N . For k = 2, the bandwidth
of A is n =

√
N , the LU factorization costs about N2 scalar multiplications, and

therefore as much as N inner products. The corresponding triangular systems
cost about Nn scalar multiplication and so

√
N inner products. For k = 3, the

bandwidth of A is n2 = 3
√

N2, the LU factorization costs about Nn4 = N7/3

scalar multiplications, and therefore as much as N4/3 inner products. The
corresponding triangular systems cost about Nn2 scalar multiplications and so
3
√

N2 inner products.

8

The following tables contain the results relative to five numerical experi-
ments. For such tables we used the following abbreviations: AS is the number
of accepted steps, FA is the number of failed attempts, MV is the number of
matrix-vector multiplications, SP is the number of effective inner products, LU
is the number of LU factorizations, TS is the number of triangular systems and,
finally, TOT is the total amount of work in term of inner products.

In all experiments the vector v of the forcing term is v = (1, ..., 1)T , whereas
the initial condition is given by y0 = (1, ..., 1)T . The constant γ for the step-size
control of ARN4 is fixed equal to 0.5.

Problem 1
In this problem we consider the case k = 2, n = 30, and τ1 = 20, τ2 = 0. The

resulting matrix has order N = 900. Moreover, we define r(t) = 50 sin(50t). We
integrate the corresponding IVP from 0 to 1. The tolerance ε for the step-size
control is ε = 10−2. Regarding the parameters AbsTol and RelTol of the Matlab
solvers ODE23S and ODE15S (see [11]) we always define AbsTol = RelTol = ε.

ODE23S ODE15S ARN4
AS 122 128 612
FA 13 13 4
MV 392 282 3065
SP - - 21435
LU 135 38 -
TS 810 564 -
TOT 147760 52530 36760

Table 1

Problem 2
As in the previous problem we define k = 2, n = 30, but now we choose

τ1 = τ2 = 0 so that the resulting matrix A is symmetric negative definite. For
the forcing term we define r(t) = − exp(−t) cos(t). The corresponding IVP is
integrated from 0 to 10 with the tolerance ε = 10−2.

ODE23S ODE15S ARN4
AS 32 56 230
FA 0 0 5
MV 96 110 1155
SP - - 8065
LU 32 14 -
TS 192 220 -
TOT 35040 19750 13840

Table 2

Problem 3
In this problem we have k = 3, n = 10, and τ1 = τ2 = 0. The resulting

matrix A is symmetric negative definite of order N = 1000. We define r(t) =
exp(−t) sin(t). We integrate the corresponding IVP from 0 to 10 with ε = 10−3.

9

ODE23S ODE15S ARN4
AS 45 67 135
FA 1 0 0
MV 137 134 680
SP - - 4740
LU 46 16 -
TS 276 268 -
TOT 488559 187738 9500

Table 3

Problem 4
In this problem the matrix A is the same of the previous one. The only

change regards the forcing term, that is defined by r(t) = exp(−0.1t) cos(50t).
The interval of integration is now [0, 5] with ε = 10−3.

ODE23S ODE15S ARN4
AS 284 408 313
FA 47 80 69
MV 946 976 1570
SP - - 10970
LU 331 160 -
TS 1986 1952 -
TOT 3515222 1802032 21960

Table 4

Problem 5
In this problem we consider a 3-dimensional but non-symmetric case, in

which n = 10, τ1 = 10 and τ2 = 5. We define r(t) = exp(−5t) and integrate the
corresponding IVP from 0 to 10 with ε = 10−3.

ODE23S ODE15S ARN4
AS 47 69 95
FA 0 0 7
MV 141 138 480
SP - - 3340
LU 47 16 -
TS 282 276 -
TOT 499187 188566 6700

Table 5

The numerical experiments here presented do not need many comments.
Even when ARN4 is clearly disadvantageous with respect to the other two codes
in terms of number of steps performed (as in Problems 1 and 2), the very low
cost of this method makes it competitive with the others. On the other side, the
Problems 3-5 (and many other numerical experiments) relative to 3-dimensional
problems show the effectiveness of the method either in the case of highly varying
forcing term (see Problem 4) or in the case of smooth forcing term (see Problems

10

3 and 5). The main reason is that the method is able to exploit the very special
features of the Arnoldi algorithm and of the corresponding method for matrix
functions so that the total cost is maintained very low. Obviously, this makes
the method attractive for large problems.

Looking at the tables above we can also observe that the number of failed
attempts of ARN4 is quite low. This confirms the effeciency of the step-size con-
trol procedure adopted. Actually, since the cost of a failed attempt is negligible
(the estimation of the local error requires only the computation of ϕ0(δHm),
see (11)), in order to reduce the number effective steps we can also choose
0.5 < γ < 1.

References

[1] G.D.Byrne, George D.Pragmatic experiments with Krylov methods in the
stiff ODE setting. (English)Computational ordinary differential equations,
Proc. Conf., London/UK 1989, Inst. Math. Appl. Conf. Ser., New Ser. 39
(1992), 323-356.

[2] L.Bergamaschi, M.Vianello, Efficient computation of the exponential oper-
ator for large, sparse, symmetric matrices, Numer. Linear Algebra Appl. 7
(2000), 27-45.

[3] L. Bergamaschi, M. Caliari, M. Vianello, Efficient approximation of the
exponential operator for discrete 2D advection-diffusion problems. Numer.
Linear Algebra Appl. 10 (2003), 271-289.

[4] E.Gallopoulos, Y.Saad, Efficient solution of parabolic equations by Krylov
approximation methods, SIAM Sci. Stat. Comput. 13 (1992), 1236-1264.

[5] M.Hochbruck, C.Lubich, On Krylov subspace approximation to the matrix
exponential operator, SIAM J. Numer. Anal. 34 (1995), 1911-1925.

[6] M.Hochbruck, C.Lubich, H.Selhofer: Exponential integrators for large sys-
tems of differential equations, SIAM J. Sci. Comput. 19 (1998), 1552-1574.

[7] I.Moret, P.Novati, An interpolatory approximation of the matrix exponen-
tial based on Faber polynomials, Journal C.A.M. 131 (2001), 361-380.

[8] P.Novati, Solving linear initial valuue problems by Faber polynomials, Nu-
mer. Linear Algebra Appl., 10 (2003), 247-270.

[9] P. Novati, A method based on Fejèr points for the computation of functions
of nonsymmetric matrices. Appl. Numer. Math. 44 (2003), 201-224.

[10] Y.Saad, Analysis of some Krylov subspace approximations to the matrix
exponential operator, SIAM J. Numer. Anal. 29 (1992), 209-228.

[11] L.F.Shampine, M.W.Reichelt, The Matlab ODE suite, SIAM J. Sci. Com-
put., 18 (1997), 1-22.

11

[12] H.Podhaisky, R.Weiner, B.A.Schmitt, Numerical experiments with Krylov
integrators, Appl. Numer. Math. 28 (1998), 413-425.

[13] H.Podhaisky, R.Weiner, B.A.Schmitt, ROWMAP – a ROW-code with
Krylov techniques for large stiff ODEs, Appl. Numer. Math. 25 (1997),
303-319.

12

