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Abstract. In this paper we analyze the convergence of some commonly used Krylov subspace
methods for computing the action of matrix Mittag-Leffler functions. As it is well known, such func-
tions find application in the solution of fractional differential equations. We illustrate the theoretical
results by some numerical experiments.

1. Introduction. Krylov subspace methods represent nowadays a standard ap-
proach for approximating the action of a function of a large matrix on a vector, namely
y = f(A)v. For a general discussion on the computation of matrix functions we refer
to the book [16]. The convergence properties of Krylov methods have been widely
studied in literature. Among the more recent papers, we cite [21], [13], [6], [2], [19],
[10]. A particular attention has been devoted to the exponential and related functions
involved in the solution of differential problems. Such functions belong to the large
class of entire functions which take their name from Gösta Mittag-Leffler. A general-
ized Mittag-Leffler (ML) function is formally defined in correspondence of two given
parameters α, β ∈ C, Re α > 0, by the series expansion

Eα,β(z) =
∑∞

k=0

zk

Γ(αk + β)
, z ∈ C, (1.1)

where Γ denotes the gamma function. The exponential-like functions, involved in
certain modern integrators for evolution problems, correspond to the case of α = 1
and β = k = 1, 2, ..., that is, E1,1(z) = exp(z) and

E1,k(z) =
1

zk−1

(
exp(z)−

∑k−2

j=0

zj

j!

)
, for k ≥ 2.

We have to point out that, till few years ago, even the computation of a ML function
in the scalar case was a difficult task. Only recently efficient algorithms have been
developed [28], [30] and nowadays we are able to treat the matrix case at a reasonable
cost, at least for small matrices. This clearly suggests the use of Krylov projection
methods for the treatment of larger ones. To the best of our knowledge, till now
in literature there are not results concerning the convergence of such methods for
generalized ML functions. Our study wants to give a contribute in order to fill this
gap. Precisely we consider here two methods. The first one is the standard method
(SKM) which seeks for approximations in the Krylov subspaces generated by A and
v. The second one is the one-pole rational method, here denoted as RAM, sometimes
named SI-method, since it works on the Krylov subspaces of a suitable shifted and
inverted matrix. For the matrix exponential, it was introduced in [24] and [11].
Further results and applications can be found in [22], [26], [29], [15], [23], [20].

Our investigations are mainly motivated by the fact that the Mittag-Leffler func-
tions are related to the solution of fractional differential equations (FDEs) arising
in fractional generalizations of several mathematical models (see e.g. [27] for many
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examples). Considering real values of the parameters α and β, our analysis will try
to emphasize the features of the examined methods in view of their application to
such problems, with a particular attention to the case 0 < α < 1, which is that most
frequently occurring in this context.

The paper is organized as follows. In section 2 we recall the basic properties of
the ML functions, pointing out their connections with fractional differential problems.
In section 3 and 4 we study the convergence of the SKM and RAM respectively. In
section 5 we present some numerical experiments.

2. Mittag-Leffler functions and Fractional Differential Equations
(FDEs). Here we outline some basic properties of the ML functions. During the
paper α, β ∈ R. At first we notice that a ML function possesses also some integral
representations. For our purposes we consider the following one. For any ε > 0 and
0 < µ < π, let us denote by

C(ε, µ) = C1(ε, µ) ∪ C2(ε, µ)

the contour in the complex plane where

C1(ε, µ) = {λ : λ = ε exp(iϕ), for− µ ≤ ϕ ≤ µ}
and

C2(ε, µ) = {λ : λ = r exp(±iµ), for r ≥ ε} .

The contour C(ε, µ) divides the complex plane into two domains, denoted by
G−(ε, µ) and G+(ε, µ), lying respectively on the left and on the right of C(ε, µ).
Accordingly the following integral representation for Eα,β(z) holds (cf. [27] p. 30).

Lemma 2.1. Let 0 < α < 2 and β be an arbitrary complex number. Then for
every ε > 0 and µ such that

απ

2
< µ ≤ min[π, απ],

we have

Eα,β(z) =
1

2απi

∫

C(ε,µ)

exp(λ
1
α )λ

1−β
α

λ− z
dλ, for z ∈ G−(ε, µ), (2.1)

Given a square matrix A we can define its ML function by (1.1). If the spectrum
of −A lies into the set G−(ε, µ), for some ε and µ as in the previous lemma, then by
(2.1) and by the Dunford-Taylor integral representation of a matrix function, we have

Eα,β(−A) =
1

2απi

∫

C(ε,µ)

exp(λ
1
α )λ

1−β
α (λI + A)−1dλ. (2.2)

By means of ML functions we can represent the solution of several differential
problems. In particular they are a basic tool dealing with fractional differential prob-
lems. In order to emphasize the importance of the ML functions in this context, we
briefly outline some facts on fractional calculus.

The Caputo’s fractional derivative of order α > 0 of a function f with respect to
the point t0 is defined by [3]

t0D
α
t f(t) =

1
Γ(q − α)

∫ t

t0

f (q)(u)(t− u)q−α−1du,
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where q is the integer such that q − 1 < α < q. Similarly to what happens for
the Grünwald-Letnikov and the Riemann-Liouville definitions of fractional derivative,
under natural conditions on the function f , for α → q the Caputo’s derivative becomes
the conventional q-th derivative (see [27] p. 79) so that it provides an interpolation
between integer order derivatives. As well known, the main advantage of Caputo’s
approach is that initial conditions for FDEs takes the same form of the integer order
case.

A peculiar property which distinguishes the fractional derivative from the integer
one is that it is not a local operator, that is the value of t0D

α
t f(t) depends on all

the values of f in the interval [t0, t]. This memory property allows to model various
physical phenomena very well, but, on the other hand, it increases the complexity in
the numerical treatment of the related differential problems, compared to the integer-
order case. We refer to [7], [8], [14], [27] for discussions and references on numerical
methods for FDEs.

As a simple model problem, we consider here a linear FDE of the type

0D
α
t y(t) + Ay(t) = g(t), t > 0,

y(0) = y0,

where y0 is a given vector, g(t) is a suitable vector function and 0 < α < 1. The
solution of this problem ([27] p. 140) is given by

y(t) = Eα,1(−tαA)y0 +
∫ t

0

(t− s)α−1Eα,α(−A(t− s)α)g(s)ds.

The above formula can be viewed as the generalization of the variation-of-constants
formula to the non-integer order case.

By means of the following general formula ([27] p.25) concerning the integration
of ML functions

1
Γ(ν)

∫ z

0

(z − s)ν−1Eα,β(λsα)sβ−1ds = zβ+ν−1Eα,β+ν(λzα),

for β > 0, ν > 0, one obtains, for k ≥ 0,
∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)skds = Γ(k + 1)tα+kEα,α+k+1(−tαA).

Accordingly if g(s) =
∑q

k=0 skvk, for some vectors vk, k = 0, 1, ...q, we get

y(t) = Eα,1(−tαA)y0 +
q∑

k=0

Γ(k + 1)tα+kEα,α+k+1(−tαA)vk, t > 0.

In the general case, provided that we are able to compute efficiently the action of a ma-
trix ML function on a vector, the above formula can be interpreted as an exponential
integrator for FDEs.

3. The Standard Krylov Method (SKM). Throughout the paper, given a
N × N complex matrix A, we denote its spectrum by σ(A) and its numerical range
by W (A), i.e.,

W (A) =
{ 〈x,Ax〉
〈x, x〉 , x(6= 0) ∈ CN

}
,
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where 〈·, ·〉 represents the Euclidean inner product. The norm ‖·‖ will be the Euclidean
vector norm, as well as its induced matrix norm. We denote by Πk the set of the
algebraic polynomials of degree ≤ k. Moreover we assume that for some a ≥ 0 and
0 ≤ ϑ < π

2

W (A) ⊂ Σϑ,a = {λ ∈ C : |arg(λ− a)| ≤ ϑ} . (3.1)

¿From now on let v ∈ CN be a given vector with ‖v‖ = 1. Given a suitable
function f , the SKM seeks for approximations to y = f(A)v in the Krylov subspaces

Km(A, v) = span
{
v, Av, . . . , Am−1v

}

associated to A and v. By means of the Arnoldi method we generate a sequence of
orthonormal vectors {vj}j≥1, v1 = v, such that Km(A, v) = span {v1, v2, . . . , vm} for
every m.

Setting Vm = [v1, v2, ..., vm] and Hm = V H
m AVm we have

AVm = VmHm + hm+1,mvm+1e
T
m. (3.2)

In the sequel ej denotes the j-th column of the m ×m unit matrix and the hi,j are
the entries of Hm. For every j, the entries hj+1,,j , are real and non-negative. For
m ≥ 2, we have implicitly assumed that hj+1,,j > 0, for j = 1, ...,m− 1. Accordingly,
the m-th standard Krylov approximation to y is given by Vmf(Hm)e1.

Here we study the convergence of the method for approximating Eα,β(−A)v. In
this section, for m ≥ 1 we set

Rm = Eα,β(−A)v − VmEα,β(−Hm)e1.

3.1. General error estimates. Assumption 3.1. Let (3.1) hold. Let β > 0
and 0 < α < 2 be such that απ

2 < π − ϑ, ε > 0 and

απ

2
< µ ≤ min[π, απ], µ < π − ϑ. (3.3)

If Assumption 3.1 holds, since W (Hm) ⊆ W (A) from the integral formula (2.2)
we get

Rm =
1

2απi

∫

C(ε,µ)

exp(λ
1
α )λ

1−β
α δm(λ)dλ, (3.4)

where δm(λ) = (λI + A)−1v− Vm(λI + Hm)−1e1. For each λ ∈ C(ε, µ), the following
inequalities can be proved, using (3.2), by some standard arguments (cf. [17], Lemma
1 and [6], Lemmas 1 and 2):

‖δm(λ)‖ ≤ ∥∥(λI + A)−1 − Vm(λI + Hm)−1V H
m

∥∥ ‖pm(A)v‖ (3.5)

for every pm ∈ Πm such that pm(−λ) = 1 and

‖δm(λ)‖ =
∏m

1 hj+1,j

|det(λI + Hm)|
∥∥(λI + A)−1vm+1

∥∥ . (3.6)

By these facts, below we give some error bounds, with the aim of investigating
the role of the parameters α and β. In the sequel, for λ ∈ C(ε, µ), we set

D(λ) = dist(λ,W (−A)). (3.7)
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We observe that, under the previous assumptions, we can find a function ν(ϕ) such
that, for any λ = |λ| exp(±iϕ) ∈ C(ε, µ), it holds

D(λ) ≥ ν(ϕ) |λ| , with ν(ϕ) ≥ ν > 0. (3.8)

With this notation, we give the following result.
Theorem 3.2. Let Assumption 3.1 hold. For m ≥ 1 and for every M > 0, we

have

‖Rm‖ ≤
exp(M)

∏m
j=1 hj+1,j

πνm+1Mmα+β−1

(
µ

α
+

exp(−M(
∣∣cos µ

α

∣∣ + 1))
(mα− 1 + β)

)
. (3.9)

Proof. Since
∥∥(λI + A)−1

∥∥ ≤ D(λ)−1and W (Hm) ⊆ W (A), by (3.4) and (3.6) we
obtain

‖Rm‖ ≤
∏m

j=1 hj+1,j

2πα

∫

C(ε,µ)

∣∣∣exp(λ
1
α )λ

1−β
α

∣∣∣
D(λ)m+1

|dλ| .

Let us set

I1 =
∫

C1(ε,µ)

∣∣∣exp(λ
1
α )λ

1−β
α

∣∣∣
D(λ)m+1

|dλ|

and

I2 =
∫

C2(ε,µ)

∣∣∣exp(λ
1
α )λ

1−β
α

∣∣∣
D(λ)m+1

|dλ| .

By (3.8) we get

I1 ≤ 2ε
1−β

α −m

µ∫

0

exp(ε
1
α cos ϕ

α )
ν(ϕ)m+1

dϕ,

and, by simple computations,

I2 ≤ 2
νm+1

+∞∫

ε

r
1−β

α exp(−r
1
α

∣∣cos µ
α

∣∣)
rm+1

dr

=
2

νm+1

+∞∫

ε
1
α

exp(−s
∣∣cos µ

α

∣∣)
smα+β

ds (3.10)

≤ 2α exp(−ε
1
α

∣∣cos µ
α

∣∣)
(mα + β − 1)νm+1ε

mα+β−1
α

. (3.11)

Setting ε = Mα, the result easily follows.
By the same arguments, below we derive a further bound, that seems to be more

suited for small α.
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Corollary 3.3. Let Assumption 3.1 hold. Let m ≥ 1 be such that

mα + β > 0,

then, for every M > 0, we have

‖Rm‖ ≤
exp(M)

∏m
j=1 hj+1,j

4νm+1Mmα
κ(M). (3.12)

where

κ(M) =
4M1−β

π
(
µ

α
+

exp(−M(
∣∣cos µ

α

∣∣ + 1))
M

∣∣cos µ
α

∣∣ ). (3.13)

Proof. With respect to the previous proof we only change the last bound (3.11).
Taking again ε = Mα, we obtain

+∞∫

ε

r
1−β

α exp(−r
1
α

∣∣cos µ
α

∣∣)
rm+1

dr ≤ α exp(−M
∣∣cos µ

α

∣∣)
Mmα+β

∣∣cos µ
α

∣∣ .

Remark 3.4. We notice that, by a more precise evaluation of the term |det(λI + Hm)|
in (3.6) sharper a posteriori estimates could be obtained following the lines of the re-
cent paper [6], where exponential-like functions have been considered.

As expected, since for α > 0 the ML functions are entire, from (3.9) (as well as
from 3.12) it is possible to recognize the superlinear convergence of the SKM, at least
for sufficiently large m. To do this let us take in (3.9) M = mα + β − 1 We realize
that the bound depends essentially on the term

(
exp(1)

M

)M

ν−(m+1)
∏m

j=1
hj+1,j . (3.14)

Clearly, such term decays only for very large m if α and ν are small and the products∏m
j=1 hj+1,j are large. We recall that such products can be estimated by means of

the well-known inequality
∏m

j=1
hj+1,j ≤ ‖qm(A)v‖ ,

that holds for every monic polynomial qm of exact degree m. Accordingly, taking
qm as the monic Faber polynomial associated to a closed convex subset Ω such that
W (A) ⊆ Ω, by a result of Beckermann ([1]) and the definition of Faber polynomials,
we get the bound

∏m

j=1
hj+1,j ≤ 2γm, (3.15)

where γ denotes the logarithmic capacity of Ω. Recall that if Ω = [a, b] ⊆ [0, +∞)
then γ = (b − a)/4. In conclusion we can say that the term (3.14), for m sufficiently
large, can behave like

(
exp(1)
mα

)mα (γ

ν

)m

. (3.16)
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This predicts that the convergence of the standard Krylov method for ML func-
tions can deteriorate as α decreases as well as W (A) enlarges. This fact is confirmed
by the numerical tests.

Beside the above general bounds, in particular situations sharper a priori error
estimates can be derived. Below we consider the Hermitian case. Since we are dealing
with any generalized ML function, following the lines of [17], we use formula (3.5)
choosing suitably the polynomials pm. An interesting alternative approach could be
that based on the Faber tranform, recently discussed in [2]. Such approach should
be preferable in the treatment of specific ML functions when suitable bounds of such
functions are available.

For our purposes, we recall that if Ω is the above subset of the complex plane,
then there is a constant ω(Ω), depending only on Ω, such that for every polynomial
p, there holds

‖p(A)‖ ≤ ω(Ω)max
z∈Ω

|p(z)| .

We notice that if Ω is a real interval then ω(Ω) = 1. Bounds for sectorial sets can be
found in [5]. In the general case we have ω(Ω) ≤ 11.08, as stated in [4]. We refer to
that paper for discussions on this point. Therefore, the application of formula (3.5)
is related to the classical problem of estimating

ζm(Ω;−z) := min
pm∈Πk,pm(−z)=1

max
ξ∈Ω

|pm(ξ)| (3.17)

for −z /∈ Ω. A general result, which makes use of the near-optimality properties of
the Faber polynomials associated to Ω, can be found in [17].

3.2. The Hermitian case. We study the Hermitian case assuming that Ω =
[a, b] ⊆ [0,+∞). Together with (3.5), we employ a result given in [12], Theorem 1 (cf.
also [21] Theorem 4.3) that gives the bound

ζm(Ω;−z) ≤ 2
Φ(u(z))m

, (3.18)

where

Φ(u) = u +
√

u2 − 1 (3.19)

is the inverse Zhukovsky function and

u(z) =
|b + z|+ |a + z|

b− a
. (3.20)

Thus, from (3.4) and (3.5) we obtain the bound

‖Rm‖ ≤ 2
απ

∫

C(ε,µ)

∣∣∣exp(λ
1
α )λ

1−β
α

∣∣∣
D(λ)Φ(u(λ))m

|dλ| . (3.21)

Below we consider in detail the case, frequently occurring in the applications, where
0 < α < 1, β ≥ α. For the sequel, for λ = r exp(iϕ) ∈ C(ε, µ), we set

ρ(r, ϕ) =
√

a2 + r2 + 2ar cos ϕ. (3.22)
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Theorem 3.5. Assume that A is Hermitian with σ(A) ⊆ [a, b] ⊂ [0,+∞).
Assume that 0 < α < 1 and β ≥ α. Let us take µ ≤ π

2 , with απ
2 < µ ≤ απ. Then for

every index m ≥ 1 and for every M > 0 we have

‖Rm‖ ≤ κ(M) exp(M)Φ∗−m, (3.23)

where

Φ∗ = Φ(u(Mα exp(iµ)))

and κ(M) is given by (3.13).
Proof. Referring to (3.21), Now let us set

I1 =
∫

C1(ε,µ)

∣∣∣∣∣
exp(λ

1
α )λ

1−β
α

D(λ)Φ(u(λ))m

∣∣∣∣∣ |dλ|

and

I2 =
∫

C2(ε,µ)

∣∣∣∣∣
exp(λ

1
α )λ

1−β
α

D(λ)Φ(u(λ))m

∣∣∣∣∣ |dλ| .

Since µ ≤ π
2 , for λ = r exp(iϕ) ∈ C(ε, µ) we have

D(λ) ≥ ρ(r, ϕ) ≥ r

and by simple computations one easily observes that the function Φ(u(λ)) is increasing
w.r.t. r as well as decreasing w.r.t. |ϕ|. Let us set ε = Mα. Therefore we easily get

I1 ≤ 2M1−βµ exp(M)
Φ∗m

. (3.24)

Moreover

I2 ≤ 2

+∞∫

Mα

r
1−β

α exp(−r
1
α

∣∣cos µ
α

∣∣)
Φ(u(r exp(iµ)))mr

dr. (3.25)

Thus

I2 ≤ 2α

Φ∗m

+∞∫

M

s−β exp(−s
∣∣∣cos

µ

α

∣∣∣)ds (3.26)

and

I2 ≤
2αM−β exp(−M

∣∣cos µ
α

∣∣)
Φ∗m

∣∣cos µ
α

∣∣ .

Hence, from (3.21) and by (3.24), we obtain (3.23).
In order to satisfy the assumptions of Theorem 3.5 , if 0 < α < 1

2 , we can take
µ = απ. If 1

2 ≤ α < 1 then µ = π
2 is allowed. Below, for µ = π

2 , we state further
formulae for κ(M) in (3.23) when α is close to 1
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Corollary 3.6. Let the assumptions of Theorem 3.5 hold and moreover assume
3
4 ≤ α < 1 and µ = π

2 . Then (3.23) holds with

κ(M) = 2M1−β(
1
α

+
2Φ∗

1
2 exp(−M(

∣∣cos π
2α

∣∣ + 1))(b− a)
1
2

πM
α
2 (3α− 2)

). (3.27)

If in addition β > 1, then (3.23) holds also with

κ(M) = 2M1−β(
1
α

+
2 exp(−M(

∣∣cos π
2α

∣∣ + 1)
π(β − 1)

). (3.28)

Proof. With respect to the proof of Theorem 3.5 we modify only the bound for
I2. Observing that, for r ≥ ε,

Φ(u(ir)) ≥ 4r

b− a
,

from (3.25), setting again ε = Mα, we obtain

I2 ≤ αMα−β
√

b− a

Φ∗(m−
1
2 )

+∞∫

M

exp(−s
∣∣cos π

2α

∣∣)
s

3α
2

ds

≤ 2αM−α
2−β+1

√
b− a

Φ∗(m−
1
2 )

exp(−M
∣∣cos π

2α

∣∣)
(3α− 2)

. (3.29)

Hence (3.27) follows.
If β > 1 from (3.26) now we obtain

I2 ≤ 2αM1−β

β − 1
Φ∗−m exp(−M

∣∣∣cos
π

2α

∣∣∣).

and hence (3.28).

We observe that the well-known relationship

Eα,β(z) = Eα,α+β(z)z +
1

Γ(β)
,

allows to use formula (3.28) even when α +β > 1.
In the practical use of (3.23), with (3.13), (3.27) or (3.28), one can take M that

minimizes the corresponding right-hand sides. In the theorem below we show that,
suitable choices of the parameter M , yield superlinear convergence results which can
be viewed as extensions of those given for the exponential function in [9], [17] and [2].

For the sake of simplicity, below we assume a = 0. The notation κ(M) refers to
any of the three formulae stated above.

Theorem 3.7. Let the assumptions and notations of Theorem 3.5 and Corollary
3.6 hold. Assume 1

2 ≤ α < 1 and let µ = π
2 , a = 0. If, for c = 0.98,

M =
(

cmα√
b

) 2
2−α

≤
(

b

4

) 1
α

(3.30)
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then

‖Rm‖ ≤ gmκ(M), (3.31)

where

gm := exp(−M(
√

2α−1 − 1)).

Moreover, if
(

mα√
b

) 2α
2−α

≥ b

4
(3.32)

then taking

M =

(√
b

2

) 1
α (

mα√
b

) 1
2−α

, (3.33)

(3.31) holds with

gm := exp(M)(

√
b

2
)m

(
mα√

b

)− mα
2−α

.

Proof. Now, referring to (3.19), (3.20), we have Φ∗ = Φ(u(iMα)) and we realize
that

u(iMα) ≥ 1 +
Mα

b
. (3.34)

If we take M as in (3.30) then Mα

b ≤ 1
4 and it can be verified (cf. [17] Th. 2) that

this implies

Φ(u(iMα) ≥ exp(c

√
2
Mα

b
). (3.35)

Thus we find

exp(M)
Φ(u(iMα)m

≤ exp(M − cm

√
2
Mα

b
) = gm.

and the first part of the statement is proved.
The second part follows from Φ(u(iMα)) ≥ 4Mα

b that is

Φ(u(iMα)) ≥ 2√
b

(
mα√

b

) α
2−α

.

Remark 3.8. It is interesting to give a look to the case α → 0, for β = 1. We
recall that E0,1(−z) = (1 + z)−1, |z| < 1. From (3.23) and (3.13) setting µ = απ and
M = 1, letting α → 0 we find

‖Rm‖ ≤ 4(π exp(1) + exp(−1))
πΦ(u(1))m

.

So we have retrieved the classical bound for the CG method, where the convergence
depends on the conditioning.
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4. The Rational Arnoldi Method (RAM). Let Assumption 3.1 hold. Let
h > 0 be a given real parameter and let us set

Z = (I + hA)−1.

Now we approximate y = f(A)v in the Krylov subspaces Km(Z, v). We assume again
that such subspaces are constructed by the Arnoldi method. Accordingly, now we
get a sequence {uj}j≥1 of orthonormal basis-vectors, with u1 = v, such that, setting
Um = [u1, u2, ..., um], we have

ZUm = UmSm + sm+1,mum+1e
T
m, (4.1)

where Sm = UH
m ZUm, with entries si,j , is a m×m upper Hessenberg matrix. Moreover

we have W (Sm) ⊆ W (Z). The m-th approximation to y = f(A)v is now defined by
ym = Vmf(Bm)e1, where Bm satisfies

(I + hBm)Sm = I.

Here we call this the Rational Arnoldi Method (RAM). We notice that in general
Bm 6= UH

m AUm.
Let us set

γ =
1
2
(1 + ha)−1,

and

Sϑ,γ = Σϑ,0 ∩Dγ ,

where Dγ is the disk of center and radius γ.
Lemma 4.1. Assume (3.1). Then

W (Z) ⊂ Sϑ,γ , (4.2)

and for every m

W (Bm) ⊂ Σϑ,a. (4.3)

Proof. From

< x, Zx >

< x, x >
=

< (I + hA)y, y >

< x, x >
, y = Zx(6= 0),

we get

< x,Zx >

< x, x >
=

(1 + hη)

1 + 2hRe η + h2 ‖Ay‖2
‖y‖2

(4.4)

with η ∈ W (A). Therefore, since |η|2 ≤ ‖Ay‖2
‖y‖2 we obtain

∣∣∣∣
< x,Zx >

< x, x >

∣∣∣∣
2

≤ (1 + h Re η)−1 Re
< x, Zx >

< x, x >
.

which, together with (4.4), gives (4.2).
11



In order to prove (4.3), recalling that Sm = UH
m ZUm, for any x(6= 0) ∈ Cm we

have

h
< x, Bmx >

< x, x >
=

< Smy, y >

< Smy, Smy >
− 1

=
< ZUmy, Umy >

< ZUmy, PmZUmy >
− 1

=
< ZUmy, ZUmy > +h < ZUmy, AZUmy >

< ZUmy, PmZUmy >
− 1.

where Pm = UmUH
m is an orthogonal projection. Therefore

h
< x, Bmx >

< x, x >
=

(1 + hη) ‖ZUmy‖2
‖PmZUmy‖2 − 1, (4.5)

for some η ∈ W (A). Since

‖ZUmy‖2
‖PmZUmy‖2 ≥ 1,

by (4.5) we get (4.3).

4.1. General error analysis. Now let us set

Rm = Eα,β(−A)v − UmEα,β(−Bm)e1.

Let (3.1) hold. Clearly, by Lemma 4.1 we have σ(−A) ∪ σ(−Bm) ⊂ G−(ε, µ) for
every m and therefore

Rm =
1

2παi

∫

C(ε,µ)

exp(λ
1
α )λ

1−β
α bm(λ)dλ, (4.6)

where

bm(λ) = (λI + A)−1v − Um(λI + Bm)−1e1.

From now on, for each λ ∈ C(ε, µ) let us set

w(λ) = (hλ− 1). (4.7)

Since (λI + A)−1 = hZ(I + ω(λ)Z)−1 and (λI + Bm)−1 = hSm(I + ω(λ)Sm)−1, for
every h > 0 and for every m ≥ 1, by (4.1), one realizes that for c ∈ Cm, with eT

mc = 0,

((λI + A)−1 − Um(λI + Bm)−1UH
m )(I + ω(λ)Z)Umc = 0

and therefore

bm(λ) = ((λI + A)−1 − Um(λI + Bm)−1UH
m )pm−1(Z)v, (4.8)

for every pm−1 ∈ Πm−1 such that pm−1(−w(λ)−1) = 1.
In order to state a convergence result for the case 0 < α < 1, we set

d(λ) = dist(−w(λ)−1,W (Z)),
12



and we make use of the following lemma.
Lemma 4.2. Assume (3.1). Then, for every h > 0 and for every 0 < µ < π

2 ,
setting

ρ = min[ϑ, µ]

and taking

ε =
1

h cos ρ
,

there exists a positive constant d0 such that, for λ ∈ C(ε, µ), we have

d(λ) ≥ d0

∣∣w(λ)−1
∣∣ . (4.9)

Proof. The result follows by (4.2). In fact, at first one verifies that (4.9) holds
true whenever Re(−w(λ)−1) ≤ 0. For λ ∈ C(ε, µ), this condition is verified if ρ = µ
and moreover when ρ = ϑ, λ = r exp(±iϕ), r ≥ ε and r

ε cosϕ ≥ cosϑ. Furthermore,
in all the remaining cases when ρ = ϑ, one easily realizes that there is C > 1 such
that

∣∣∣ Im(−w(λ)−1)
Re(−w(λ)−1)

∣∣∣ ≥ C tan ϑ.
Theorem 4.3. Assume 0 < α < 1 and β ≥ α. Then, there exists a function

g(h), continuous in any bounded interval 0 < h1 ≤ h ≤ h2, such that, for m ≥ 2,

‖Rm‖ ≤ g(h)
m− 1

,

for every matrix A satisfying (3.1).
Proof. Since 0 < α < 1 we can take απ

2 < µ < π
2 , µ ≤ απ. Let us take

ε =
1

h cos ρ
,

with ρ = min[ϑ, µ] so that (4.9) holds. Let χ > 0 be the logarithmic capacity of
W (Z). Let {Fk}k≥0, be the sequence of the ordinary Faber polynomials associated
to W (Z). Then, by results in [1] and [24], Lemma 4.3, for −w(λ)−1 /∈ W (Z) and for
k ≥ 1 one gets the bound

‖Fk(Z)‖
|Fk(−w(λ)−1)| ≤

8χ

kd(λ)
.

By this inequality, from (4.6), (4.8) and using (3.8) we have

‖Rm‖ ≤ 8χ

(m− 1)παν

∫

C(ε,µ)

∣∣∣∣∣
exp(λ

1
α )λ

1−β
α

λd(λ)

∣∣∣∣∣ |dλ| . (4.10)

It can be seen that the integral in (4.10) is bounded by a continuous function of h.
Indeed, let

I1 =
∫

C1(ε,µ)

∣∣∣∣∣
exp(λ

1
α )λ

1−β
α

λd(λ)

∣∣∣∣∣ |dλ|
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and

I2 =
∫

C1(ε,µ)

∣∣∣∣∣
exp(λ

1
α )λ

1−β
α

λd(λ)

∣∣∣∣∣ |dλ| .

By (4.9), we obtain

I1 ≤ 2ε
1−β

α

d0

µ∫

0

exp
(
ε

1
α cos

ϕ

α

)
c(ϕ)dϕ, (4.11)

where

c(ϕ) =

√
1 + cos2 ρ− 2 cos ρ cosϕ

cos ρ
.

Therefore from (4.11) we get

I1 ≤
2µ(h cos ρ)

β−1
α exp

(
(h cos ρ)−

1
α

)
c(µ)

d0
. (4.12)

Furthermore for λ = r exp(±iµ), r ≥ ε,

|w(λ)| = hr
√

1 + (hr)−2 − 2(hr)−1 cosµ ≤
√

2hr. (4.13)

Thus, by (4.9) and (4.13) we get

I2 ≤ 2
√

2h

d0

+∞∫

ε

exp
(
−r

1
α

∣∣∣cos
µ

α

∣∣∣
)

r
1−β

α dr

≤ 2α
√

2h

d0

+∞∫

ε
1
α

exp
(
−s

∣∣∣cos
µ

α

∣∣∣
)

sα−βds

and finally

I2 ≤
2α
√

2h
β
α (cos ρ)

β−α
α exp

(
−(h cos ρ)−

1
α

∣∣cos µ
α

∣∣
)

d0

∣∣cos µ
α

∣∣ . (4.14)

By (4.10), the last bound together with (4.12) gives the thesis.
Even if only qualitative, the above result is important since it points out that,

contrary to the SKM, the convergence of the RAM cannot deteriorate as W (A) en-
larges and moreover that it is uniform with respect to h in any positive bounded
interval.

Remark 4.4. As in Remark 3.8 let us consider the case β = 1, for α → 0. We
expect that making h → 1 the error vanishes. In fact, looking at (4.14) and (4.12)
one can realize that this actually occurs. Take for instance, for small α, µ = απ and
h = αα and observe that c(µ) → 0.

As for the SKM, more precise a priori error bounds can be obtained taking into
account of specific situations, as we show below dealing with the Hermitian case.

14



4.2. The Hermitian case. If A is Hermitian with σ(A) ⊆ [a,+∞), referring
to (3.8) and (3.22), for λ = r exp(iϕ) we have

D(λ) ≥ ρ(r, ϕ) ≥ ρ(ε, µ), for 0 ≤ |ϕ| ≤ π

2
, (4.15)

and

D(λ) ≥ r |sin ϕ| , for
π

2
< |ϕ| < π. (4.16)

Theorem 4.5. Assume that A is Hermitian with σ(A) ⊆ [a,+∞), a ≥ 0. As-
sume 0 < α ≤ 2

3 and β ≥ α. Then for every m ≥ 1 we have

‖Rm‖ ≤ K1Qmh
β−1

α

(1 +
√

2)m−1
+

K2h
β
α

(m− 1)2
exp(−h−

1
α√
2

), (4.17)

where

Qm = max
0≤|ϕ|≤ 3απ

4

exp
(
h−

1
α cos

ϕ

α

)
(1− cosϕ)

m−1
2 ,

and K1, K2 are (small) constants.
Proof. At first we state a general bound that holds for 0 < α < 1 and απ

2 < µ ≤
απ. Hence we will derive (4.17).

Let us take take ε = h−1. In (4.8) we apply (3.18) with (3.20), with z = w(λ)−1,
taking into account that, by Lemma 4.1, W (Z) ⊂ Ω = (0, 1]. So doing, referring to
(3.17), we get

ζm(Ω;−w(λ)−1) ≤ 2
Φ(u)m

,

where

u =
|w(λ) + 1|+ 1

|w(λ)| .

For λ ∈ C1(ε, µ), we obtain

u =
(

2
1− cosϕ

) 1
2

.

Thus

Φ(u)−1 = (
√

1− cos ϕ√
2 +

√
1 + cos ϕ

). (4.18)

Furthermore for λ = r exp(±iµ), r ≥ h−1, we easily get

u =
hr + 1
|w(λ)| ,

and then

Φ(u)−1 = f(r) =

√
h2r2 + 1− 2hr cosµ

hr + 1 +
√

2hr(1 + cos µ)
. (4.19)
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Therefore, combining (4.18) and (4.19), from (4.6) and (4.8) we obtain the error bound

‖Rm‖ ≤ 4
απ

(h
β−1−α

α Im + Jm), (4.20)

where

Im =

µ∫

0

exp
(
h−

1
α cos ϕ

α

)
(

√
1−cos ϕ√

2+
√

1+cos ϕ
)m−1

D(h−1 exp(iϕ))
dϕ, (4.21)

and

Jm =

+∞∫

1
h

r
1−β

α exp
(
−r

1
α

∣∣cos µ
α

∣∣
)

f(r)m−1

D(r exp(iµ))
dr.

Now let 0 < α ≤ 2
3 and let us take µ = 3απ

4 . Since hr ≥ 1, r ≥ ε, and since now
µ ≤ π

2 we have D(r exp(iϕ) ≥ r and we find that

f(r) ≤ (1 +
η√
hr

)−1, with η =
1√
2
.

Accordingly,

Jm ≤
+∞∫

1
h

r
1−β−α

α exp

(
− r

1
α√
2

)( √
hr

η +
√

hr

)m−1

dr

≤
+∞∫

1
h

r
1−β−α

α exp

(
− r

1
α√
2
− (m− 1)η

(η +
√

hr)

)
dr

≤ α

+∞∫

h−
1
α

s−β exp
(
− s√

2
− (m− 1)η

(1 + η)(hsα)
1
2

)
ds.

Now, one verifies that, for every c > 0, for s > 0 it holds that

s−α exp(−cs−
α
2 ) ≤

(
2
c

)2

exp(−2).

Therefore we get

4
πα

Jm ≤ 16h(1 + η)2 exp(−2)
πη2(m− 1)2

+∞∫

h−
1
α

exp
(
− s√

2

)

sβ−α
ds.

By this inequality and by (4.21) with (4.15), from (4.20) the result follows, with
K1 = 3,K2 = 16

√
2(1+η)2 exp(−2)

πη2 .

We notice that, by the arguments used above, bounds like (4.17) can be derived
from (4.20) also for 2

3 < α ≤ 1, β ≥ α.
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We do not make here a detailed discussion on the choice of the parameter h in the
general case.We are convinced that, as it occurs for the matrix exponential, a value
working well in the Hermitian case should work well in most of the cases, at least
when the angle ϑ is not close to π

2 . In the Hermitian case a reasonable choice could
be that minimizing the right-hand side of (4.17) (or of (4.20)). Below we suggest a
value, independent of β, which ensures an exponential-type error bound.

Corollary 4.6. Let the assumptions and notations of Theorem 4.5 hold. For
any fixed m ≥ 2, taking, for any τ ≥ 2(1− cos 3απ

4 ),

h =
(

τ

m− 1

)α

, (4.22)

we have

‖Rm‖ ≤ K1τ
β−1(m− 1)−(β−1)

(1 +
√

2)m−1
+

K2τ
β

(m− 1)(β+2)
exp(− (m− 1)

τ
√

2
).

Proof. Put the assigned value of h into (4.17) and observe that Qm ≤ 1 .
In the case β = 1, one could also take h by an heuristic criterion that often turned

out to be satisfactory in practice. We know that for β = 1 and α = 0, h = 1 is the
obvious choice. On the other hand, for the exponential case, i.e., β = α = 1, optimal
values of h are known, see [24], [11] and [29]. Thus it seems reasonable to adopt an
interpolation between these values.

Referring to the applications described in Section 2, for the computation of
Eα,β(−tαA), our arguments lead to take h depending on t. However, for obvious
computational reasons, we are interested to maintain the same h for a (large enough)
window of values of t. This aspect will be subject of future investigations.

We want to point out that, in many cases, as for instance dealing with discretiza-
tions of elliptic operators, the RAM exhibits a very fast convergence and the a priori
error bounds turn out to be pessimistic. As it is well known this fact often occurs in
the application of Krylov subspace methods and it is due to their ”good” adaptation
to the spectrum (see [18]). Thus, in order to detect the actual behavior of the RAM,
a posteriori error estimates could be more suitable. For instance, working on the lines
of [24] and [6], for m ≥ 2 one can consider in (4.8) the polynomial

pm−1(z) =
det(Sm−1 − zI)

det(Sm−1 + w(λ)−1I)
.

Since, as it is well known,

‖pm−1(Z)v‖ =

∏m−1
j=1 sj+1,j

|det(Sm−1 + w(λ)−1I)| ,

taking into account of (3.8) we obtain the a posteriori bound

‖Rm‖ ≤
∏m−1

j=1 sj+1,j

παν

∫

C(ε,µ)

∣∣∣exp(λ
1
α )λ

1−β
α

∣∣∣
|λ| |det(Sm−1 + w(λ)−1I)| |dλ| .

We recall (c.f. [25]) that in several important situations the products
∏k

j=1 sj+1,j

have a rapid decay, so producing a very fast convergence. Here we do not dwell more
upon the implementation of such error bounds, to which we plan to devote a detailed
study in a future work.
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Fig. 5.1. Approximation of (5.2) at t = 0.1

5. Numerical experiments. In order to make some numerical comparisons
between the rational and the polynomial method, we consider initial value problems
of the type

0D
α
t y(t) + Ay(t) = g(t), t > 0, (5.1)

y(0) = y0.

Here we report some results concerning the two simple cases of g(t) = 0 and g(t) =
g 6= 0 that lead respectively to the solutions

y(t) = Eα,1(−tαA)y0, (5.2)

and

y(t) = y0 + tαEα,α+1(−tαA)(g −Ay0). (5.3)

Regarding the choice of the matrix −A we discretize the 2-dimensional Laplacian
operator in (0, 1)× (0, 1) with homogeneous Dirichlet boundary conditions using cen-
tral differences on a uniform meshgrid of meshsize δ = 1/(n + 1) in both directions.
In this case equation (5.1) is a so-called Nigmatullin’s type equation. In each example
we have set n = 30 so that the dimension of the problem is N = 900. Moreover we
set y0 = (1, ...1)T /

√
N .

In all the experiments, referring to the rational method, we have taken h = 0.05.
In Figs. 5.1 and 5.2 we have plotted the error curves (with respect to a reference so-
lution) of the rational and standard polynomial Arnoldi methods for the computation
of y(t) at t = 0.1 and t = 1, in the case of g(t) = 0 (i.e., with exact solution given by
(5.2)) with α = 0.3 and α = 0.8.

Figs. 5.3 and 5.4 regard the approximation of y(t) defined by (5.3) with g = y0/2,
again at t = 0.1 and t = 1. In both cases we have set α = 0.5.

Finally in Fig. 5.5 we compare the error of the rational Arnoldi method with
the error bound given by formula (4.20) for the computation of (5.2) in the case of
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α = 0.5 and t = 1. For this case, accordingly with Corollary 4.6 we choose h = 0.4,
that approximates the result of formula (4.22) when we set m = 10 as the expected
number of iterations for the convergence.

Remark 5.1. The numerical experiments have been performed using Matlab.
In particular for the computation of the projected functions of matrices we have
used the classical approach based on the Schur decomposition together with the Mat-
lab function MLF.m developed by Igor Podlubny and Martin Kacenak available at
www.mathworks.com [28].
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