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Abstract

Here we present a class of W-methods for stiff ODEs based on some
special approximations of the Jacobian matrices that allow to reduce the
number of order conditions. The approximations considered are modifica-
tions of some rank-1 updates, known from quasi-Newton methods. Two
new embedded W-methods of order 3 and 4 are constructed and tested on
some classical stiff equations arising from the semidiscretization of par-
abolic problems.

1 Introduction

In this paper we consider the autonomous initial value problem
{

y′ = f(y),
y(t0) = y0,

(1)

where f : RN → RN , y0 ∈ RN . In particular we are interested in the stiff case
where an implicit solver is required.

An s-stage W-method for (1) is a special type of linearly implicit Runge-
Kutta method defined by

(I − hγW )ki = hf
(
ym +

∑i−1
j=1 αijkj

)
+ hW

∑i−1
j=1 γijkj , i = 1, ..., s,

ym+1 = ym +
∑s

i=1 biki,
(2)

where γ, αij , γij , bi, i, j = 1, ..., s, are the coefficients of the method and W ∈
RN×N is a certain approximation of the Jacobian J = J(ym). As well known,
the special cases of W = J and W = 0 lead to ROW-methods and explicit
Runge-Kutta methods respectively. We refer to [5] and [21] for a comprehensive
treatment of linearly implicit Runge-Kutta methods and the special classes of
Rosenbrock, ROW- and W-methods.
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Since the paper of Steihaug and Wolfbrandt [19], in order to face large
dimensional problems many authors have proposed ideas for overcoming the
most important drawback of ROW-methods (and of all implicit methods), that
is, the explicit use of the Jacobian matrix at each step and the consequent
solution of the s linear systems for the computation of ki, i = 1, ..., s. In
particular, among the others, we remember [8] and [24], where the authors
examine the possibility of reusing the Jacobian of a previous step, and [16],
[25], where a Krylov approach for the solution of the linear systems enables to
avoid the explicit computation of the Jacobian, getting a so-called matrix-free
W-method.

In this paper we present some new approaches for solving stiff ODEs by
W-methods based on the use of the well known Broyden’s updates [2] and the
Schubert’s update [17]. Actually the idea is not new since it was firstly pro-
posed in [1] where the authors used the so-called good Broyden’s update [3] for
approximating the Jacobian at each step, starting with a certain approximation
of J(y0). In this sense, we are particularly interested in stiff problems where
a fixed approximation of the Jacobian (e.g. W = J(y0)) does not represent a
reliable approach. The first purpose of this paper is to extend this idea of [1]
in order to make the update suitable for variable stepsize integration, that is
necessary in order to create reliable codes based on the stepsize selection. The
second one is to consider two other secant updates, the so-called bad Broyden’s
and Schubert’s update.

All these updates are rank-1 updates that fulfil the secant equation

Wm(ym − ym−1) = f(ym)− f(ym−1), (3)

and allow to have approximations of the type

Wm = J(ym) + O(h), (4)

where h is the discretization step. By (4), some of the order conditions of
W-methods with arbitrary Jacobian approximations can be shifted to higher
orders (see [21]). The use of the good and bad Broyden’s updates allows to
exploit the Sherman-Morrison formula for a fast computation of (I − hγWm)−1

or to update the QR factorization, getting efficient tools for the linear algebra
involved in (2) (see [4] for a wide background). On the other side, with the
Schubert’s update we are able to preserve the sparsity structure of the exact
Jacobian and therefore to exploit the sparse factorization techniques for the
computation of ki, i = 1, ..., s.

In this paper we also construct two reliable W-methods based on the property
(4). The first one, WB23, is an embedded 3(2)-order method with 4 internal
stages and 3 function evaluations at each step. The basic method is L-stable
and has B-order q = 2. The embedded method is strongly A-stable. The second
one, WB34, is a 6 stages formula of order 4(3) where both methods are stiffly
accurate. As for WB23, the basic method has B-order q = 2.

The paper is structured as follows. In Section 2 we describe the Broyden’s
and Schubert’s approaches for the construction of reliable approximations of
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the Jacobian, showing also the so-called deterioration of the approximations.
In Sections 3 and 4 we construct two embedded W-method of order 3 and 4
respectively. In Section 5 we provide some details about the numerical imple-
mentation. In Section 6 we present some numerical experiments, where our
methods are compared with some other well-known ROW methods. In a final
section we give some concluding remarks.

2 The rank-1 secant updates

For the construction of the Jacobian approximations Wm, m ≥ 0, in this paper
we consider three types of rank-1 secant updates. Before describing them we
remember the following result [4].

Lemma 1 (Sherman-Morrison) Let u, v ∈ Rn and assume that A ∈ Rn×n is
nonsingular. Then A + uvT is nonsingular if and only if 1 + vT A−1u 6= 0.
Furthermore (

A + uvT
)−1

= A−1 − A−1uvT A−1

1 + vT A−1u
. (5)

Now, starting with W0 = J (y0) and setting sm = ym − ym−1 and qm =
f(ym)− f(ym−1), m ≥ 1, we consider the following methods for generating the
secant sequence {Wm}m≥0, Wm ≈ J (ym) .

1. The good Broyden’s update, where, assuming sm 6= 0,

Wm = Wm−1 +
(qm −Wm−1sm)sT

m

sT
msm

, m ≥ 1, (6)

that implies

(I − hγWm) = (I − hγWm−1)− hγ
(qm −Wm−1sm)sT

m

sT
msm

m ≥ 1.

The above formula remains a rank-1 update so that we can apply formula (5) to
achieve (I − hγWm)−1. This is substantially the same approach proposed in [1],
but since we are interested in creating reliable codes we must take into account
of the stepsize selection that leads to variable stepsize methods. Therefore
the update relation (6) has to be slightly modified in order to address this
requirement.

In this sense, for each m ≥ 1, let hm be the stepsize selected for the compu-
tation of ym. We shall use the following formula

Wm =
hm

hm+1


Wm−1 +

(
qm

hm+1
hm

−Wm−1sm

)
sT

m

sT
msm


 , m ≥ 1. (7)
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It is easy to show that the secant equation Wmsm = qm remains true. The
above formula allows to have the relation

(I − hm+1γWm) = (I − hmγWm−1)− hmγ

(
qm

hm

hm+1
−Wm−1sm

)
sT

m

sT
msm

,

that is, a rank-1 update for the sequence {I − hm+1γWm}m≥1, not possible
with (6), and necessary for applying formula (5) that leads to

(I − hm+1γWm)−1 = (I − hmγWm−1)
−1 +

(I − hmγWm−1)
−1

γ (hm+1qm − hmWm−1sm) sT
m (I − hmγWm−1)

−1

sT
m

(
sm − (I − hmγWm−1)

−1
γ (hm+1qm − hmWm−1sm)

) , (8)

if the hypotheses of Lemma 1 hold.

2. The bad Broyden’s update, that works directly on the inversions. This
formula is easier and takes into account that in the practical implementation
of a W-method (2), the matrix Wm is not explicitly used [5]. Setting vm =
sm − hm+1γqm, m ≥ 1, and assuming vm 6= 0, we use

(I − hm+1γWm)−1 = (I − hmγWm−1)
−1 +

(
sm − (I − hmγWm−1)

−1
vm

vT
mvm

)
vT

m.

(9)
Obviously we get then

(I − hm+1γWm)−1
vm = sm,

so that secant equation Wmsm = vm is fulfilled. Note that for h constant, using
(5), if vT

mWm−1sm 6= 0 the update (9) is equivalent to

Wm = Wm−1 +
(qm −Wm−1sm)vT

mWm−1

vT
mWm−1sm

. (10)

On the contrary case, by Lemma 1, if vT
mWm−1sm = 0 for a fixed h > 0 then

I − hγWm is singular.

3. The Schubert’s update. When working with large systems with sparse
Jacobian it could be important to maintain the sparsity pattern of the exact
Jacobian during the integration. Indeed, one of the most important drawback
arising when using the updates (7) and (9) is the fill-in phenomenon. Working
with ODEs (1) arising for instance from the semidiscretization of PDEs we
usually have to face large dimensional problems with sparse Jacobian, typically
banded. Hence, in order to make our approach competitive with the standard
ROW-methods, that are able to exploit such sparsity structure, we make use of
the following update formula [3]. Setting

(PZ(M))ij :=
{

0 if Zij = 0
Mij if Zij = 1 , Zij :=

{
0 if (J(y0))ij = 0
1 if (J(y0))ij 6= 0 ,
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and

(si)j :=
{

0 if Zij = 0
sj if Zij = 1 , si ∈ RN , (11)

we consider the update

Wm = Wm−1 + PZ(D+(qm −Wm−1sm)sT
m), m ≥ 1, (12)

where D, D+ ∈ RN×N are diagonal matrices such that Dii = sT
i si, and

D+
ii =

{
1/Dii if Dii > 0,
0 if Dii = 0.

Formula (12) fulfils the secant equation Wmsm = qm unless si = 0 with
(ym)i 6= 0 for a certain i. Now, because of the sparsity assumptions, it would
be a nonsense to consider the application of formula (5) for the computation of
(I − hm+1γWm)−1, and it is more suitable to use a sparse LU factorization of
(I − hm+1γWm).

Actually, there exists a formula for updating the LU factorization ([7]) but it
is based on the updating of U and L−1. Since L−1 generally looses the original
bandwidth, this approach does not seem reliable.

Regarding the approximation properties of the above updates we have the
following results, that give a measure of the so-called deterioration of the ap-
proximations.

Proposition 2 Assume to work with the Euclidean norm ‖·‖2. Let f be con-
tinuously differentiable and let J be Lipschitz continuous

‖J(ya)− J(yb)‖2 ≤ γ ‖ya − yb‖2 , ya, yb ∈ RN . (13)

Then, assuming h constant, for m ≥ 1 we have

1. for the good Broyden’s update (6)

‖Wm − J(ym)‖2 ≤ ‖Wm−1 − J(ym−1)‖2 +
3
2
γ ‖ym − ym−1‖2 ; (14)

2. for the bad Broyden’s update (10), if there exists H > 0 and C > 0 such
that for 0 < h < H

∣∣vT
mWm−1sm

∣∣
‖sm‖2 ‖vT

mWm−1‖2
≥ C, m ≥ 1, (15)

then

‖Wm − J(ym)‖2 ≤
(

1 +
1
C

)
‖Wm−1 − J(ym−1)‖2 +

γ

(
1 +

1
2C

)
‖ym − ym−1‖2 . (16)
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Proof. For the good Broyden’s update (6) the result is well-known ([4]
p.175). For the bad Broyden’s update, by (10) we easily get

Wm − J(ym) = (Wm−1 − J(ym−1))
(

I − smvT
mWm−1

vT
mWm−1sm

)
+

J(ym−1)− J(ym) +
(qm − J(ym−1)sm)vT

mWm−1

vT
mWm−1sm

By the assumptions on f we have the relation

‖qm − J(ym)sm‖2 ≤
γ

2
‖sm‖22 , (17)

and so, by (13) we get

‖Wm − J(ym)‖2 ≤ ‖Wm−1 − J(ym−1)‖2
∥∥∥∥I − smvT

mWm−1

vT
mWm−1sm

∥∥∥∥
2

+

γ

(
1 +

‖sm‖2
∥∥vT

mWm−1

∥∥
2

2 |vT
mWm−1sm|

)
‖ym − ym−1‖2 .

Finally, by (15) we get the thesis.

Proposition 3 [14] Let f be continuously differentiable and assume that there
exists K = (K1, ...,KN ) ∈ RN , Ki ≥ 0, such that

∥∥eT
i (J(ya)− J(yb))

∥∥
2
≤ Ki ‖ya − yb‖2 , ya, yb ∈ RN .

Then for the Schubert’s update we have

‖Wm − J(ym)‖F ≤ ‖Wm−1 − J(ym−1)‖F +
3
2
‖K‖2 ‖ym − ym−1‖2 , (18)

where ‖·‖F denotes the Frobenius norm.

Under the hypothesis of the above propositions we can state that the dete-
rioration of the approximations provided by the three updates is of the type

‖Wm − J(ym)‖ ≤ c ‖Wm−1 − J(ym−1)‖+ O(h), m ≥ 1,

where the constant c depends on the method and the norm chosen. Therefore,
starting with the exact Jacobian W0 = J(y0), the above property implies that
for m ≤ N for some fixed N independent of h

Wm = J(ym) + O(h), 0 ≤ m ≤ N. (19)

As mentioned in previous section, the above property allows to shift some of
the order conditions of a W-method to higher orders. However, it is important
to point out that using the above rank-1 updates we actually cannot control
the deterioration of the approximations. The theoretical property given by (19)
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is fundamental to state the order conditions of the method, but the constant
before the O(h) term can become very large as m increases. Moreover, if we
investigate the order of the method, when h → 0 we have m = c/h and hence
Wm = J(ym)+O(1). For overcoming this problem, in practical implementation
we adopt the restart of the methods. We refer to Section 5 for more details.
Another reason that lead us to consider a periodic restart of the methods is
that the results of Propositions 2-3 do not produces information about the
preservation of the stability properties of the underlying method that follows
from a particular choice of h.

Remark 4 It is worthwhile nothing that the hypothesis (15) of Proposition 2
is actually rather common when solving ODEs where the function f arises from
the discretization of sectorial operators. In such cases the field of values of the
Jacobian F (J(ym)) is typically strictly contained in the left-(right-)half complex
plane. Hence, starting with W0 = J(y0) and maintaining h sufficiently small,
we can construct the sequence {Wm}m>0 such that F (Wm) remains strictly con-
tained in the left-(right-)half complex plane. Moreover, observing that

vT
mWm−1sm ≈ sT

mWm−1sm, as h → 0,

for such kind of problems we fall within the hypothesis (15).

Remark 5 We must observe that property (19) is also attained with Wm =
J(y0), but clearly this choice does not allow to fulfil the secant equation (3) that
is the main reason that lead us to consider the above described rank-1 updates.

3 An embedded WB-method of order 3

In this section we present an embedded W-method of order 3(2), based on the
property Wm = J(ym) + O(h) attainable with formulas (7), (9) and (12). We
call for convenience WB-method any W-method based on these updates. Since
we want the basic method to be stiffly accurate and with B-order q = 2, it is
not difficult to show that we need at least s = 4 internal stages. Starting from
the general formula

(I − hγW )ki = hf
(
ym +

∑i−1
j=1 αijkj

)
+ hW

∑i−1
j=1 γijkj , i = 1, ..., s,

ym+1 = ym +
∑s

i=1 biki,

the parameters γ, αij , γij , bi, i, j = 1, ..., s, have to be chosen in order to fulfil
certain conditions to obtain a fixed consistency order. We set as usual

αi =
i−1∑

j=1

αij , βij = αij + γij , βi =
i−1∑

j=1

βij , i, j = 1, ..., s.
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Defining b = (b1, ..., bs)
T , β = (βij), e = (1, ..., 1)T , αk =

(
αk

1 , ..., αk
s

)T , in
matrix form the conditions to be fulfilled up to order 3 are given by (see [21])

p = 1 (R1) bT e = 1
p = 2 (R2) bT βe = 1/2− γ
p = 3 (R3a) bT α2 = 1/3

(R3b) bT β2e = 1/6− γ + γ2

(W3) bT α = 1/2

(20)

Actually, we have a simplified set of conditions because we are working with
an autonomous systems and with Wm = J(ym)+O(h), m ≥ 0, (see again [21] for
details). Hence, with respect to a ROW-method the only additional condition
is (W3), that, for nonautonomous system, is a condition of order 2.

When a ROW-method is applied for semidiscretized PDEs or PDAEs the
following condition has to be fulfilled in order to avoid order reduction (see e.g.
[6], [12] and [22])

bT β
j
(2β

2
e− α2) = 0, p− 2 ≤ j ≤ s− 1, if p ≥ 3, (21)

where β = β + γI. The condition (21) allows to have B-order q ≥ 2. In our
case, since we want p = 3 with s = 4, using (20) the conditions (21) become

(B1) b4β43β32α
2
2 = 2γ4 − 2γ3 + γ2/3

(B2) b3β32α
2
2 + b4

(
β42α

2
2 + β43α

2
3

)
= 2γ3 − 3γ2 + 2γ/3

(B3) b4β43β32β2 = 0
(22)

We remember the following.

Definition 6 A ROW-method satisfying

βsi = bi, i = 1, ..., s− 1, bs = γ and αs = 1, (23)

is called stiffly accurate.

Methods which satisfies (23) yield asymptotically exact results for the Prothero
- Robinson problem y′ = λ(y−ϕ(x))+ϕ′(x) (see [5]). Since we want our method
to be stiffly accurate, by inserting (23) into (20)-(22) we get the simplified set
of conditions

(R1’) b1 + b2 + b3 = 1− γ
(R2’) b2β2 + b3β3 = 1/2− 2γ + γ2

(R3a’) b2α
2
2 + b3α

2
3 = 1/3− γ

(R3b’) b3β32β2 = 1/6− 3γ/2 + 3γ2 − γ3

(W3’) b2α2 + b3α3 = 1/2− γ
(B1’) b3β32α

2
2 = 2γ3 − 2γ2 + γ/3

(B3’) b3β32β2 = 0

(24)

Conditions (R3b’) and (B3’), require

1/6− 3γ/2 + 3γ2 − γ3 = 0.
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Among the three real solutions of the above equation, γ ≈ 0.43586 produces
an L-stable method (see [15] for a proof) so that we make this choice. Looking
at (B1’), (B3’), since 0.43586 is not a root of 2γ3 − 2γ2 + γ/3 we find β2 = 0.
Therefore, the conditions (24) become

(R1’) b1 + b2 + b3 = 1− γ
(R2”) b3β3 = 1/2− 2γ + γ2

(R3a’) b2α
2
2 + b3α

2
3 = 1/3− γ

(W3’) b2α2 + b3α3 = 1/2− γ
(B1’) b3β32α

2
2 = 2γ3 − 2γ2 + γ/3

(25)

Now, if we set α43 = 0, α42 = α32, α41 = α31, in order to have only three
function evaluations, we get α3 = 1, and the only free parameters are α2 and
α31 (or α32). Regarding the embedded method, it has to fulfil

(E1) b1 + b2 + b3 + b4 = 1
(E2) b3β3 + b4(1− γ) = 1/2− γ

(26)

Since the stability function R(z) of a ROW-method is given by (see [5])

R(z) = 1 + zbT (I − zβ)−1e,

the following result follows by direct computation.

Proposition 7 Let a ROW-method which satisfies (24) be given. For the em-
bedded method with stability function R(z) satisfying (26) we have

b4 =
−γ3R (−∞) + γ3 + γ/2− 2γ2

1/2− 2γ + γ2
. (27)

Relation (27) allows to define b4 in order to get a strongly A-stable method
or even an L-stable method (cf. [13], [15]). If we chose to have R (−∞) = 0
we get b4 = b4 but this choice would lead to a poorly accurate method, because
it would tend to underestimate the local error. Hence we choose b4 = γ/2
obtaining a strongly A-stable method with

∣∣R (−∞)
∣∣ ≈ 0.48. We still have one

free parameter, b2 (or b1). We set b2 in order to fulfil the higher order condition

b2α2 + b3α3 + b4α4 = 1/2. (28)

The coefficients of the embedded method, that we call WB23 are collected
in Table 1; α2 and α31 have been chosen experimentally by testing the method
on some Prothero-Robinson equations.
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γ = 4.358665215084590e− 01
α21 = 5.000000000000000e− 01 γ21 = −5.000000000000000e− 01
α31 = 3.000000000000000e− 01 γ31 = −6.509740048606094e− 01
α32 = 7.000000000000000e− 01 γ32 = 3.261356558646555e− 01
α41 = 3.000000000000000e− 01 γ41 = −1.333333333333333e− 01
α42 = 7.000000000000000e− 01 γ42 = −3.333333333333333e− 02
α43 = 0.000000000000000e− 01 γ43 = −2.691998548417924e− 01
b1 = 1.666666666666667e− 01 b1 = 5.666947609847634e− 01
b2 = 6.666666666666667e− 01 b2 = 3.024769995389324e− 01
b3 = −2.691998548417924e− 01 b3 = −8.710502127792520e− 02
b4 = 4.358665215084590e− 01 b4 = 2.179332607542295e− 01

Table 1: set of coefficients for WB23.

4 An embedded WB-method of order 4

In general terms, the construction of an embedded W-method of order 4(3) is
not very simple because there are 21 conditions for the basic method to get
p = 4 and 8 conditions for the embedded method to achieve p = 3. However,
with our assumptions of working with autonomous systems and approximations
of the type W = J + O(h) the situation is much simpler. We always refer to
[21] for the complete set of order conditions.

We want both methods to be stiffly accurate and so the choice of s = 6
internal stages is necessary (see also the construction of RODAS in [5]). Hence,
in our case the conditions for p = 4 are 11:

p = 1 (R1) bT e = 1
p = 2 (R2) bT βe = 1/2− γ
p = 3 (R3a) bT α2 = 1/3

(R3b) bT β2e = 1/6− γ + γ2

(W3) bT α = 1/2
p = 4 (R4a) bT α3 = 1/4

(R4b) ϕT αβe = 1/8− γ/3
(R4c) bT βα2 = 1/12− γ/3
(R4d) bT β3e = 1/24− γ/2 + 3γ2/2− γ3

(W4a) bT αβe = 1/6− γ/2
(W4b) bT βα = 1/6− γ/2

(29)

where we define α = (αij), and ϕ = (b1α1, ..., bsαs)T

Moreover we want the relation (21) to be fulfilled, now with p = 4 and s = 6.
Setting c1 = bT β4e, c2 = bT β2α2, c3 = bT β5e, c4 = bT β3α2, c5 = bT β4α2, by
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(21) we get the 4 additional conditions

(B1) 2c1 − c2 = 2γ4 − 4γ3 + 5γ2/3− γ/6
(B2) 10γc1 − 3γc2 + 2c3 − c4 = 8γ5 − 15γ4 + 6γ3 − 7γ2/12

(B3)
30γ2c1 − 6γ2c2 + 12γc3 − 4γc4 − c5 =

20γ6 − 36γ5 + 14γ4 − 4γ3/3

(B4) 42γ3c1 − 10γ3c2 + 14γ2c3 − 10γ2c4 − 5γc5 =
40γ7 − 70γ6 + 80γ3/3− 5γ4/2

(30)

After some computations we can simplify (30) into

γc1 = − 13
14c3

c5 = 15
7 γc3

c4 = −2γ5 + 3γ4 − γ3 + 1
12γ2 − 12

7 c3

γc2 = −2γ5 + 4γ4 − 5
3γ3 + 1

6γ2 − 39
21c3

(31)

Now our aim is to construct an embedded method such that both methods
are stiffly accurate. We have to impose the condition (23) and also

bi = αsi = βs−1,i i = 1, ..., s− 1, αs−1 = 1. (32)

Using firstly (23) and (R4c), (R4d), by the definitions of ci, i = 1, ..., 5 we find

c1 = γ
(
1/24− 2γ/3 + 3γ2 − 4γ3 + γ4

)
+ b5β54β43β32β2

c2 = γ
(
1/12− 2γ/3 + γ2

)
+

(b4β43β32 + b5β53β32 + b5β54β42)α2
2 + b5β54β43α

2
3

c3 = γb5β54β43β32β2

c4 = b5β54β43β32α
2
2+

γ
(
(b4β43β32 + b5β53β32 + b5β54β42)α2

2 + b5β54β43α
2
3

)
c5 = γb5β54β43β32α

2
2

(33)

Now, by inserting (33) into (31) we find the necessary condition

1
24
− 2

3
γ + 3γ2 − 4γ3 + γ4 = 0.

Among the roots we chose γ ≈ 0.5279 that leads to L-stability. With this choice
and by (33) we find that (31) become simply

(B1’) b5β54β43β32β2 = 0
(B2’) b5β54β43β32α

2
2 = 0

(B3’)
(b4β43β32 + b5β53β32 + b5β54β42)α2

2 + b5β54β43α
2
3 =

γ(2γ4 − 10γ3 + 9γ2 − 7γ/3 + 1/6)

(34)

Therefore, the system that we have to solve is given by (29) and (34). Look-
ing at (B1’) and (B2’), it is possible to show that the only possible choice is
given by b5 = 0 and β2 = 0. Using (23) and (32) we then simplify the system
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(29)-(34) into

(R1’) b1 + b2 + b3 + b4 = 1− γ
(R2’) b3β3 + b4β4 = 1/2− 2γ + γ2

(R3a’) b2α
2
2 + b3α

2
3 + b4α

2
4 = 1/3− γ

(R3b’) b4β43β3 = 1/6− 3γ/2 + 3γ2 − γ3

(W3’) b2α2 + b3α3 + b4α4 = 1/2− γ
(R4a’) b2α

3
2 + b3α

3
3 + b4α

3
4 = 1/4− γ

(R4b’) b4α4α43β3 = 1/8− 5γ/6 + γ2

(R4c’) b3β32α
2
2 + b4(β42α

2
2 + β43α

2
3) = 1/12− 2γ/3 + γ2

(W4a’) b4α43β3 = 1/6− γ + γ2

(W4b’) b3β32α2 + b4(β42α2 + β43α3) = 1/6− γ + γ2

(B3’) b4β43β32α
2
2 = γ(2γ4 − 10γ3 + 9γ2 − 7γ/3 + 1/6)

Now from (R4b’) and (W4a’) we compute α4. Setting α2, α3, we get then
b1, b2, b3, b4 from (R1’),(R3a’),(W3’), (R4a’). From (R4c’), (W4b’) and (B3’) we
get β32, β42, β43. From (R3b’) we obtain β3 and from (R2’) we find β4. Then
from (W4a’) we compute α43. For the remaining coefficients we proceed as
follows. For α32 and α42 we use the additional conditions

bT αα = 1/6 (35)
ϕT αα = 1/8

that are conditions of order 3 and 4 respectively for a general W-method. More-
over, setting α52 arbitrarily we compute α53, α53 using other two additional
conditions

bT α2α = 1/24
bT α2βe = 1/24− γ/6

that are both conditions of order 4. Table 2 collects the coefficients of the
method here proposed that we call WB34. The remaining free parameters α2, α3

and α52 have been fixed experimentally.
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γ = 5.728160624821350e− 01
α21 = 5.200000000000000e− 01 γ21 = −5.200000000000000e− 01
α31 = 2.851168665349716e− 01 γ31 = −1.034772479328808e + 00
α32 = 6.248831334650284e− 01 γ32 = 6.501423878169246e− 01
α41 = 1.046681454850720e + 00 γ41 = 2.625385974420247e− 01
α42 = −1.127221164631929e + 00 γ42 = 2.922670258511625e− 01
α43 = 3.910371962111624e− 01 γ43 = −9.114397095544884e− 01
α51 = 8.451547656533995e− 02 γ51 = 1.574388804512719e− 01
α52 = 1.140000000000000e + 00 γ52 = 6.277349506307095e− 02
α53 = −6.668002390497316e− 02 γ53 = −5.710378229055593e− 01
α54 = −1.578354526603668e− 01 γ54 = −2.219906150909184e− 01
α61 = 2.419543570166118e− 01 γ61 = 0.000000000000000e− 00
α62 = 1.202773495063071e + 00 γ62 = 0.000000000000000e− 00
α63 = −6.377178468105325e− 01 γ63 = 0.000000000000000e− 00
α64 = −3.798260677512852e− 01 γ64 = 0.000000000000000e− 00
α65 = 5.728160624821350e− 01 γ65 = −5.728160624821350e− 01
b1 = 2.419543570166118e− 01 b1 = 2.419543570166118e− 01
b2 = 1.202773495063071e + 00 b2 = 1.202773495063071e + 00
b3 = −6.377178468105325e− 01 b3 = −6.377178468105325e− 01
b4 = −3.798260677512852e− 01 b4 = −3.798260677512852e− 01
b5 = 0.000000000000000e− 00 b5 = 5.728160624821350e− 01
b6 = 5.728160624821350e− 01 b6 = 0.000000000000000e− 00

Table 2: set of coefficients for WB34.

Remark 8 It’s worthwhile nothing that conditions (35), that we chose for the
basic method (and not satisfied by the embedded one), completes the set of con-
ditions of order 3 for a general W-method. In this way, when the relation
W = J + O(h) deteriorates we lose only one order of consistency, getting an
embedded W-method of order 3(2).

Regarding WB23 of previous section, the situation is a bit more complicated,
because the deterioration mentioned above influences only the order of the basic
method, that drops to 2, whereas the condition (28) imposed for the embed-
ded method guarantees the preservation of the order. Therefore, as local error
estimator, WB23 can be negatively affected by the degree of the Jacobian ap-
proximations. Because of the small number of levels and the choice of having
only 3 function evaluations per step, it is not possible to impose the necessary
additional conditions for the basic method of WB23 for making it a method of
order 3 for arbitrary approximation of the Jacobian.

5 Numerical implementation

In this section we want to provide some details concerning the practical imple-
mentation of the methods just proposed WB23 and WB34. Looking at (2) we
observe that a direct implementation of such formula require, at each stage, the
matrix vector multiplication W

∑i−1
j=1 γijkj and the solution of a linear system
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with (I −hγW ). As in [9], [5], the former operation can be avoided introducing
the new stages

pi = γki +
i−1∑

j=1

γijkj , i = 1, ..., s.

Defining the matrix Γ = γI + (γij), we can get the inverse relation

ki =
1
γ

pi −
i−1∑

j=1

φijpj , (36)

where Φ = (φij) = 1
γ I − Γ−1 is a strictly lower triangular matrix. Inserting

formula (36) into the general formulation (2) leads to

(I − hγW )pi = hγf
(
ym +

∑i−1
j=1 aijpj

)
+ γ

∑i−1
j=1 φijpj , i = 1, ..., s,

ym+1 = ym +
∑s

i=1 diki,
(37)

where
(aij) = (αij) Γ−1 and (d1, ..., ds) = (b1, ..., bs) Γ−1.

Clearly, using the good and bad Broyden’s updates, the use of the inversion
formulas (8), (9), allows to compute the inverse of (I−hγW ) by means of a rank-
1 update at each step. However, when working with large problems with sparse
Jacobian the use of the inversion formulas for these updates is quite inefficient
because the inverses are full and hence all the necessary matrix operations to
perfom the update are unable to exploit the sparsity structure of the problem.
By (8), (9), since we can write

(I − hm+1γWm)−1 = (I − h1γW0)
−1 + u0v

T
0 + ... + umvT

m, (38)

(h1 being the first step) it is much more convenient to compute pi, i = 1, ..., s,
computing the LU factorization of (I − h1γW0) and then storing the update
vectors uk, vk, k ≥ 0. In this way we also avoid the initial inversion, i.e., the
explicit computation of (I − h1γW0)

−1. Since we are mainly interested in these
kind of problems the methods have been implemented in this manner. For the
good Broyden’s update, since we also need the matrix Wm to perform the update
of (I − hm+1γWm)−1 we use the recursion (similar to (38)) arising from (7). In
this way, with respect to a standard ROW-method these two update approaches
are able to work with only one factorization (unless we need to recompute the
Jacobian) and the cost of the computation of the Jacobian is substituted by
the cost for the computation of the update vectors. For the Schubert’s update,
the linear algebra cost is essentially the same of a ROW-method, but the cost
for the computation of the Jacobian is substituted by the cost of the sparse
operation (12).

In our numerical experiments, the stepsize selection that we adopt is given
by the classical formula

hnew = h min

{
facM ,max

{
facm, facs

(
tol

err

)1/p
}}

, (39)
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where we chose facM = 5, facm = 0.2 and facs = 0.75 when using the exact
Jacobian, and the more conservative set facM = 2, facm = 0.2 and facs = 0.75,
for the rank-1 updates. Because of the progressive deterioration of W = J+O(h)
we use p− 1 instead of p in (39) for the W-methods.

Regarding the norm of the local error estimate LE we consider the formula

errm =

√√√√N−1

N∑

i=1

(
LEi

rtol · (ym)i + atoli

)2

,

where atol ∈ RN and rtol ∈ R are the absolute and relative tolerances respec-
tively, so that the stepsize is accepted if errm ≤ rtol.

As anticipated at the end of Section 2, an important remark regard the
implementation of the WB-methods based on the updates considered. Formulas
(14), (16) and (18) actually do not produce information about the degree of
the deterioration of the approximations as m increases. Hence, besides the
theoretical properties of these updates, we could have a fast deterioration of
the spectral properties that affects the stability of the methods. However, the
numerical experiments reveal that this drawback can be overcome quite simply
by recovering the Jacobian at certain points during the integration. In this
sense, our idea is to recompute the Jacobian (i.e., to restart the method) when
a failed attempt occurs. Just to give an explanation of this idea let us consider
the Prothero-Robinson equation

y′ = λ(y − ϕ(t)) + ϕ′(t), λ = −500, ϕ(t) = 1/4 sin(t/4), (40)

for 0 ≤ t ≤ 10 and y(0) = 1. We integrate this equation (in the corresponding
autonomous form) using the just explained implementation with the following
methods: WB34, the ROW-method corresponding to the set of coefficients given
in Table 2; WB34g and WB34b, the W-methods of Table 2 implemented with
the updates (7) and (9) respectively with restart; WB34g-wr and WB34b-wr
that are the same methods but without restart. The results, given in Fig.1, are
exhaustive and confirm that the restart approach is necessary.

Regarding the sparse update, although it is always difficult to control the
progressive deterioration of the approximations, the experiments on large and
sparse problems reveal that this approach can often be implemented without
restart. Evidently, the preservation of the sparsity structure of the Jacobian
together with the theoretical properties of the update, lead to a negligible al-
teration of the stability properties of the underlying method. In any case, in all
the experiments of the next section the WB-methods are always implemented
with restart.

We have created a Matlab code ROSWB available at http://univaq.it/~novati.
The code is written following the format used in THE MATLAB ODE SUITE
[18] and allows to chose between WB23 and WB34 and also among some other
well known ROW-methods. The code permits to switch between the three rank-
1 updates presented, or to use the exact Jacobian (even numerically generated
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Figure 1: Stepsize curve of the WB34 method for the Prothero-Robinson prob-
lem (40) with and without restart.

by the Matlab function numjac), or also to keep it constant. We do not claim
that the implementation here presented is the best possible, but since in our
experiments we shall use it for each method, the comparisons that we are going
to present are surely significative.

6 Numerical experiments

In this section we present some numerical experiments in which we compare
the WB-methods with some classical ROW-methods implemented in ROSWB. In
particular we consider RODASP by Steinebach [20], a 6-stage method of order 4,
ROS3P [11], a 3-stage method of order 3, and ROS3PW [15], a 4-stage method
of order 3.

In the first two experiments we want to test the ROW-methods WB23 and
WB34. The aim is to test if the set of coefficients is actually well designed.
We compare these methods with the above ROW-methods on the following well
known test problems.

1. HIRES, the chemical reaction model proposed by Schäfer (see [5]). We
integrate this problem from 0 to 50.

2. ROBER, the reaction of Robertson (see [5]). We integrate this problem
from 0 to 1011.
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Figure 2: Number of steps - error diagram for HIRES.

In Figs. 2 and 3 we observe the results for the above problems in a number
of steps-precision diagram. The number of steps (NSTEPS) is displayed as a
function of the Euclidean norm of the error (ERR). The diagrams are obtained
changing the value of atol = rtol = TOL.

Both results show that the coefficients of WB34 are actually well designed.
The behavior of WB23 is also very interesting for HIRES (if compared with
RODASP), especially for low tolerances.

Now we want show the performances of our methods on three equations
arising from the semi-discretization of well-known parabolic problems. For each
example, we compare the obtained numerical results for each methods with a
reference solution for the given ODE. The computing time (NSEC) is displayed
as a function of the Euclidean norm of the error (ERR). For each problem we
set atol = rtol = TOL and the methods have been applied with

TOL = 10−2, 10−3, ...

We consider the following problems.

1. The FitzHugh and Nagumo model
{

∂u
∂t = ∂2u

∂x2 − g(u)− v
∂v
∂t = η(u− βv)
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Figure 3: Number of steps - error diagram for ROBER.

where
f(u) = u(u− α)(u− 1),

for 0 ≤ x ≤ 100 and 0 ≤ t ≤ 400, with boundary conditions

∂u

∂x
(0, t) = −0.3,

∂u

∂x
(100, t) = 0,

and initial conditions
u(x, 0) = v(x, 0) = 0.

We discretize with the method of lines and central differences with mesh-
size δ = 100/151, getting a system of 300 equations. As in [5], we chose
α = 0.139, η = 0.008, and β = 2.54

2. The NILIDI problem [25], i.e., the two-dimensional nonlinear diffusion
equation

∂u

∂t
= eu

(
∂2u

∂x2
+

∂2u

∂y2

)
+ u (18eu − 1) ,

on [0, π/3] × [0, π/3] and 0 ≤ t ≤ 1. We consider Dirichelet boundary
conditions and initial condition u(x, y, 0) = sin(3x) sin(3y). We discretize
with central differences and the method of lines with δ = π/93, getting a
system of 900 equations.
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Figure 4: Work-precision diagram for the FitzHugh & Nagumo problem.

3. The equation

∂u

∂t
= ν

(
∂2u

∂x2
+

∂2u

∂y2

)
− u

∂u

∂x
− u

∂u

∂y
, (41)

on [0, 1/2] × [0, 1/2] and 0 ≤ t ≤ 0.1, with ν = 0.1. Initial and time-
dependent boundary conditions are taken from the exact solution

u(x, y, t) =
1

1 + exp
(

x+y−t
2ν

) .

We discretize as before with δ = 1/42 getting a system of 400 equations.

In Figs. 4, 5, 6, we can observe the results obtained. WBxxg, WBxxb and
WBxxs, denote the WBxx method applied with the good Broyden’s, bad Broy-
den’s and Schubert’s update respectively. Moreover WBxxc denotes the WBxx
applied with Wm = J(y0). All methods are implemented with the stepsize
selection (39) and with restart when a failed attempt occurs.

The results for the FitzHugh and Nagumo problem (Fig. 4) show that the
best method is RODASP and also that the update approaches cannot outper-
form the use of the exact Jacobian. In particular for this example the methods
based on the good Broyden’s update are not suited. However it is interesting
to observe the comparison between WB34s, WB34b and WB34c that show the
improvement attainable using the updates with respect to the use of a constant
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Jacobian. The behavior of ROS3PW is similar to that of ROS3P, and hence it
is not represented. For the methods considered, in the following table (Table 3)
we also report the statistics corresponding to the choice of TOL = 10−6.

SS FA FE PD DEC LS NSC ERR
RODASP 894 10 5424 894 904 5424 43.6 2.00e-5
ROS3P 2864 6 5747 2864 2870 8610 151.6 1.27e-4
WB23 2426 4 7296 2426 2430 9720 127.0 4.87e-5
WB23b 3091 29 9334 29 30 15570 275.1 1.40e-3
WB23s 2837 0 8511 1 2837 11348 149.8 6.89e-4
WB34 629 1 3787 629 630 3780 29.6 1.45e-3
WB34b 1395 1 8375 2 2 9770 71.9 9.70e-4
WB34s 768 1 4613 2 769 4614 36.1 2.06e-3
WB34c 2127 1 12768 2 2128 12768 105.5 6.35e-3

Table 3. Statistics for the FitzHugh and Nagumo problem with TOL = 10−6.
SS:succesful steps; FA: failed attempts; FE: function evaluations;

PD: partial derivatives; DEC: LU decompositions; LS: linear systems;
NSC: seconds; ERR: final error (Euclidean norm).

In Fig. 5 the results for the NILIDI equation are shown.. Here the best
methods seem to be WB34, WB34b and WB34s. The behavior of WB23b and
WB23s (not plotted) is very similar to that of WB23 and it is interesting the
comparison of these methods with ROS3P and RODASP.

In Fig. 6 the results for the ODE arising from (41) are shown. The re-
sults of WB34g and WB34b are remarkable. Here the behavior of WB34 (not
plotted) is similar to that of ROS3PW. The worst methods were WB23s and
WB34c (not represented). For this experiment we also consider the numerical
observed temporal order (pnum). We compute the Euclidean norm of the error
at t = 0.1 with respect to the reference solution of the ODE (ERR in the tables
below) applying the methods with constant stepsize h. All WB-methods are
implemented without restart. Tables 4a, 4b, 4c, 4d, contain the results.

ROS3PW ROS3P WB23
h ERR pnum ERR pnum ERR pnum

2e-3 7.63e-8 9.19e-8 1.95e-8
1e-3 9.90e-9 2.95 1.46e-8 2.66 2.54e-9 2.94
5e-4 1.27e-9 2.97 2.64e-9 2.46 3.25e-10 2.96

2.5e-4 1.60e-10 2.98 5.59e-10 2.24 4.15e-11 2.97
Table 4a - Problem (41). Observed temporal order

for the ROW-methods of order 3.

RODASP WB34
h ERR pnum ERR pnum

2e-3 4.00e-9 3.04e-9
1e-3 1.00e-9 2.00 2.54e-10 3.58
5e-4 2.50e-10 2.00 1.94e-11 3.71

2.5e-4 6.24e-11 2.00 1.51e-12 3.69
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Figure 5: Work-precision diagram for the NILIDI problem.
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Table 4b - Problem (41). Observed temporal order
for the ROW-methods of order 4.

WB23g WB23b WB23s WB23c
h ERR pnum ERR pnum ERR pnum ERR pnum

2e-3 5.27e-7 5.34e-7 3.22e-7 3.39e-5
1e-3 1.57e-7 1.75 1.59e-7 1.75 9.23e-8 1.80 1.04e-5 1.71
5e-4 4.36e-8 1.85 4.38e-8 1.86 2.89e-8 1.67 2.92e-6 1.83

2.5e-4 1.15e-8 1.92 1.15e-8 1.92 8.21e-9 1.82 7.82e-7 1.90
Table 4c - Problem (41). Observed temporal order

for the W-methods based on the WB23 set of coefficients.

WB34g WB34b WB34s WB34c
h ERR pnum ERR pnum ERR pnum ERR pnum

2e-3 9.11e-8 9.72e-8 1.39e-7 1.53e-5
1e-3 1.62e-8 2.49 1.67e-8 2.54 2.05e-8 2.76 3.26e-6 2.24
5e-4 2.71e-9 2.58 2.74e-9 2.61 3.04e-9 2.75 5.71e-7 2.51

2.5e-4 4.08e-10 2.73 4.10e-10 2.74 4.37e-10 2.80 8.70e-8 2.72
Table 4d - Problem (41). Observed temporal order

for the W-methods based on the WB34 set of coefficients.

Looking at Tables 4a-4b, if we compare WB23 with ROS3P and ROS3PW,
and WB34 with RODASP, either in terms of numerical order and accuracy, we
can state that the WB-methods presented are well designed. Regarding the
order reduction of the W-methods considered (Tables 4c and 4d), the results
were expected (see the remark at the end of Section 4). However it is worth
nothing that the WB34x methods have an observed order around the value
pnum = 2.75, where the typical situation working with semidiscretized parabolic
PDEs and inexact Jacobian is pnum = 2. This is due to the additional conditions
(35). A final remark regards the comparison between the rank-1 updates and
the use of time-lagged Jacobians. Here all W-methods are implemented without
recovering the Jacobian, and hence, looking at the errors we can observe the
improvements attainable with the rank-1 updates.

7 Concluding remarks

In previous section we saw that the WB-methods represent an efficient class of
W-methods. The comparisons with the well known ROW-methods considered
show that especially the W-methods based on the bad Broyden’s update and
on the Schubert’s update are accurate and inexpensive for large problems with
sparse Jacobian. The accuracy is substantially due to the secant equation (3)
that allows to have a Jacobian approximations of the type

Wm = J(ym) + O(h). (42)
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As to the computational cost, the use of the Broyden’s updates allows to re-
duce drastically the number of LU decompositions (see Table 3). Moreover the
computation of the rank-1 updates is quite inexpensive (especially for the bad
Broyden’s update). For the Schubert’s update approach the computational cost
of the sparse update is nearly negligible. On the other hand the progressive
deterioration of (42) (that holds in particular for variable stepsize) forces the
restart of the methods in order to assure the stability.

The results of the numerical experiments presented are encouraging because
a deeper analysis on the stability properties attainable with the rank-1 updates
(together with an accurate error analysis) should allow the realization of even
more efficient algorithms, especially in what concerns the stepsize selection and
restart strategies. Another possible improvement could regard the use of a
symmetric sparse update, that consists in a rank-2 update, for problems where
this property holds for the Jacobian. From literature (see for instance [4]),
we know that this kind of update allows also the sequencing of the Cholesky
factorizations that could lead to very efficient W-methods.

Acknowledgement 9 The author is grateful to L. Angermann and R. Weiner
for some helpful bibliographic indications, to I. Moret for many useful discus-
sions about the Broyden’s updates, and to E. Felaco for some important software
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