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Abstract

This paper provides a new numerical strategy to solve fractional in

space reaction-diffusion equations on a bounded domain under homoge-

neous Dirichlet boundary conditions. Using the matrix transform method

the fractional Laplacian operator is replaced by a matrix which, in gen-

eral, is dense. The approach here presented is based on the approximation

of this matrix by the product of two suitable banded matrices. This leads

to a semi-linear initial value problem in which the matrices involved are

sparse. Numerical results are presented to verify the effectiveness of the

proposed solution strategy.

1 Introduction

Fractional-order in space mathematical models, in which an integer-order dif-
ferential operator is replaced by a corresponding fractional one, are becoming
increasingly used since they provide an adequate description of many processes
that exhibit anomalous diffusion. This is due to the fact that the non-local
nature of the fractional operators enable to capture the spatial heterogeneity
that characterizes these processes.

There are however some challenges when facing fractional models. First
of all, there is no unique way to define fractional in space derivatives and,
in general, these definitions are not equivalent especially when more than one
spatial dimension is considered [16]. In addition, considering that the value of
the solution at a given point depends on the solution behavior on the entire
domain, it is intuitive to understand that the boundary conditions deserve a
particular attention and should be appropriately chosen in order to model the
phenomenon properly.

In this paper we consider the following fractional in space reaction-diffusion
differential equation

∂u(x, t)

∂t
= −κα (−∆)α/2u(x, t) + f(x, t, u), x ∈ Ω ⊂ IRn, t > 0, (1)
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subject to homogeneous Dirichlet boundary conditions

u(x, t)|Ω̂ = 0, Ω̂ = IRn \ Ω, (2)

and the initial condition
u(x, 0) = u0(x), (3)

where κα represents the diffusion coefficient and the forcing term f(x, t, u) and
u0(x) are sufficiently smooth functions. The symmetric space fractional deriva-
tive −(−∆)α/2 of order α (1 < α ≤ 2) is defined through the spectral decom-
position of the homogeneous Dirichlet Laplace operator (−∆), [9, Definition 2].
Assuming that Ω is a Lipschitz domain, the spectrum of (−∆) is discrete and
positive, and accumulate at infinity. Thus,

−(−∆)α/2u =
∞∑

s=1

µα/2
s csϕs, (4)

where cs =
∫
Ω
uϕs are the Fourier coefficients of u, and {µs}, {ϕs} are the

eigenvalues and the eigenvectors of (−∆), respectively.
We remark that the fractional power of the Laplace operator is alternatively

defined in the literature using the Fourier transform on an infinite domain [12],
with a natural extension to finite domain when the function u vanishes on and
outside the boundary of the spatial domain. In this case, in fact, it is possible to
consider non-local problems on bounded domain by simply assuming that the
solution of fractional problem is equal to zero everywhere outside the domain
of interest. Using such definition and assuming to work with homogeneous
Dirichlet boundary conditions, in [14, Lemma 1] it has been proved that the
one-dimensional fractional Laplacian operator −(−∆)α/2 as defined in (4) is
equivalent to the Riesz fractional derivative ∂α

∂|x|α . Hence, it can be approximated

by the ‘fractional centered derivative’ introduced by Ortigueira in [11]. Çelik
and Duman in [5] used such a method for solving a fractional diffusion equation
with the Riesz fractional derivative in a finite domain. Moreover, by exploiting
the decay of the coefficients characterizing the method, in [10] a ‘short memory’
version of the scheme has been implemented. However, both the original and
the modified methods only work for one-dimensional space cases.

A mainstay in the numerical treatment of partial differential problems of type
(1)–(3) is to apply the method of lines. Discretizing in space with a uniformmesh
of stepsize h in each domain direction and using the matrix transfer technique
proposed in [8, 9] by Ilić et al., we obtain

−(−∆)α/2u ≈ −
1

hα
Lα/2u,

where L is the approximate matrix representation of the standard Laplacian
obtained by using finite difference methods. Consequently, (1) is transformed
into a system of ordinary differential equations

du

dt
= −

κα

hα
Lα/2u+ f , (5)
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where u and f denote the vectors of node values of u and f, respectively. The
matrix L raised to the fractional power α/2 is, in general, a dense matrix which
could be also very large depending on the numbers of mesh points used for the
spatial discretization. Therefore, the computational effort for solving (5) could
be really heavy, independently of the integrator used. Recently, some authors
have developed techniques for reducing this cost. In particular, in [4] has been
considered an approach which can be equally applicable to fractional-in-space
problems in two or three spatial dimensions. The computational heart of this
approach is the efficient computation of the fractional power of a matrix times
a vector. However, its effectiveness depends on the mesh discretization.

In this paper, we propose a solution strategy based on a suitable approxi-
mation of Lα/2. In particular, we look for a decomposition of the type

Lα/2 ≈ M−1K,

whereM andK are both banded matrices arising from a rational approximation
of the function zα/2−1, based on the Gauss-Jacobi rule applied to the integral
representation of Lα/2, cf. [6]. The poles of the formula depends on a continuous
parameter whose choice is crucial for a fast and accurate approximation. The
above factorization allow to approximate the solution of (5) by solving

M
du

dt
= −

κα

hα
Ku+M f . (6)

By virtue of the structure of the matrices M and K the numerical solution of
(6) may be computed in a more efficient way with respect to the one of (5). We
remark that the approach is independent of the Laplacian working dimension.

The paper is organized as follows. In Section 2, the main results about the
matrix transfer technique are recalled. Section 3 is devoted to the construction
of the rational approximation together with the analysis of the asymptotically
optimal choices of the poles. In Section 4 a theoretical error analysis is presented.
Numerical experiments are carried out in Section 5.

2 Background on the matrix transfer technique

For an independent reading, in this section the basic facts concerning the ma-
trix transfer technique proposed by Ilić et al. in [8, 9] to discretize the one-
dimensional fractional Laplacian operator are recalled. In addition, since in
this work we also lead with problems in two spatial dimensions, we refer to the
results given in [15] as well.

Working with the basic assumption that the fractional Laplacian operator
with Dirichlet boundary conditions can be defined as the fractional power of the
standard Laplacian, the matrix transfer technique simply consists in approxi-
mating the operator −(−∆)α/2 through the matrix −h−αLα/2, where h−2L is
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any finite-difference approximation of −∆, on a uniform mesh of size h. The
only important requirement is that the matrix L is positive definite so that its
fractional power is well defined. This requirement is fulfilled by the existing
standard central difference schemes. Working like that, the original problem
(1)–(3) is then transformed into the semi-linear initial value problem

du

dt
= −

κα

hα
Lα/2u+ f , t > 0, (7)

u(0) = u0,

where u0 denotes the vector of node values of u0.
It is important to remark that while L is typically sparse, when α 6= 2,

the matrix Lα/2 loses its sparsity and becomes dense. Observe moreover that
the stiffness property of (7) for α = 2 is essentially inherited by the fractional
counterpart so that an implicit scheme or an exponential integrator is generally
needed for solving this initial value problem. In both cases the density of Lα/2

may lead to a computational demanding integrator when the discretization is
sharp. In order to overcome the limitations in terms of computational efficiency,
we propose a strategy based on a suitable approximate factorization of Lα/2. In
the next section we focus on the construction of such approximation.

3 Approximation to the matrix fractional power

From the theory of matrix functions (see [7] for a survey), we know that the
fractional power of a generic matrix A can be written as a contour integral

Aβ =
A

2πi

∫

Γ

zβ−1(zI −A)−1dz,

where Γ ⊂ C\ (−∞, 0] is a suitable closed contour enclosing the spectrum of A,
σ(A), in its interior. The following known result (see, e.g., [2]) expresses Aβ in
terms of a real integral. The proof is based on a particular choice of Γ and a
subsequent change of variable.

Proposition 1 Let A ∈ Rm×m be such that σ(A) ⊂ C\ (−∞, 0] . For 0 < β < 1
the following representation holds

Aβ =
A sin(βπ)

βπ

∫ ∞

0

(ρ1/βI +A)−1dρ. (8)

In order to remove the dependence of β inside the integral we consider the
change of variable

ρ1/β = τ
1− t

1 + t
, τ > 0, (9)
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yielding

1

β

∫ ∞

0

(ρ1/βI +A)−1dρ

= 2

∫ 1

−1

(
τ
1− t

1 + t

)β−1(
τ
1− t

1 + t
I +A

)−1
τ

(1 + t)
2 dt

= 2τβ
∫ 1

−1

(1− t)
β−1

(1 + t)
−β

(τ (1− t) I + (1 + t)A)
−1

dt,

and hence

Aβ =
A sin(βπ)

π
2τβ

∫ 1

−1

(1− t)
β−1

(1 + t)
−β

(τ (1− t) I + (1 + t)A)
−1

dt,

(10)
that naturally leads to the use of the k-point Gauss-Jacobi rule. Such a formula
yields a rational approximation of the type

Aβ ≈ Rk(A) := A
∑k

j=1
γj(ηjI +A)−1, (11)

where the coefficients γj and ηj are given by

γj =
2 sin(βπ)τβ

π

wj

1 + ϑj
, ηj =

τ(1 − ϑj)

1 + ϑj
, (12)

in which wj and ϑj , are, respectively, the weights and nodes of the Gauss-Jacobi
quadrature rule with weight function (1− t)β−1(1 + t)−β . Of course, the above
approximation can be used in our case with β = α/2 whenever A = L represents
the discrete Laplacian operator with Dirichlet boundary conditions, whose spec-
trum is contained in R+. Denoting by z Pk−1(z) and Qk(z) the polynomials of
degree k such that Rk(z) = (z Pk−1(z))/Qk(z) we can approximate the solution
of (7) by solving (6) with M = Qk(L) and K = LPk−1(L). We remark that
the use of the Gauss-Jacobi rule ensures that γj > 0 and ηj > 0 for each j, and
hence it is immediate to verify that the spectrum of Rk(L) is strictly contained
in the positive real axis. This condition is fundamental to preserve the stability
properties of (7) whenever Lα/2 is replaced by Rk(L).

We need to mention that in the field of fractional calculus the approximation
(11) has already been used in [1] for the approximation of the Caputo’s fractional
derivative. Here, however, the definition of τ in (9), and the subsequent error
analysis will be completely different because of the spectral properties of the
Laplacian operator with respect to the ones of the first-derivative.

3.1 Choice of τ

The choice of the parameter τ in the change of variable (9) is crucial for the
quality of approximation attainable by (11). Assuming that the generic matrix
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A is symmetric and positive definite, let λmin and λmax be its smallest and largest
eigenvalues, respectively. Let moreover Λ = [λmin, λmax]. It is well known that

∥∥Aβ −Rk(A)
∥∥
2
≤ max

Λ

∣∣λβ −Rk(λ)
∣∣ . (13)

In this view, looking at (10), a good choice of τ is the one that minimizes,
uniformly with respect to λ ∈ Λ, the error of the Gauss-Jacobi formula when
applied to the computation of

∫ 1

−1

(1− t)
β−1

(1 + t)
−β

(τ (1− t) + (1 + t)λ)
−1

dt, λ ∈ Λ.

From the theory of best uniform polynomial approximation and its appli-
cation to the analysis of the Gauss quadrature rules (see e.g [13] for a recent
study) it is known that the position of the poles of the integrand function with
respect to the interval of integration, defines the quality of the approximation.
In our case, we observe that for each τ ∈ Λ the poles of the integrand function

fτ,λ(t) = (τ (1− t) + (1 + t)λ)
−1

,

are functions of λ defined by

pτ (λ) =
τ + λ

τ − λ
,

and we clearly have pτ (λ) > 1 for λ < τ , and pτ (λ) < −1 for λ > τ . Our aim is
to define τ in order to maximize the distance of the set

Qτ = {pτ (λ), λ ∈ Λ}

from the interval of integration [−1, 1] ⊂ R\Qτ . We observe that for λmin < τ <
λmax the worst case is given by λ = λmin or λ = λmax since we have respectively

min
λ∈Λ

dist(pτ (λ), [−1, 1]) = pτ (λmin)− 1,

or
min
λ∈Λ

dist(pτ (λ), [−1, 1]) = −pτ (λmax)− 1.

As consequence, the idea is to set τ such that

pτ (λmin)− 1 = −pτ (λmax)− 1, (14)

that leads directly to the equation

τ + λmin

τ − λmin
= −

τ + λmax

τ − λmax
,

whose solution is
τopt =

√
λminλmax. (15)
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Figure 1: Example of function pτ (λ) for λmin = 0.5, λmax = 4. The choice of
τ as in (15) ensures the symmetry of the set Qτ . The minimum distance of
the curve pτ (λ) from the set [−1, 1] is given by γ − 1 and is attained in either
λ = λmin or λ = λmax.

Formally, τopt is given by

τopt = arg max
λmin<τ<λmax

min
λ∈Λ

|pτ (λ)| .

In this way, the set Qτopt is symmetric with respect to the origin, that is
Qτopt = (−∞,−γ) ∪ (γ,+∞), where

γ =

√
κ(A) + 1√
κ(A)− 1

, (16)

in which κ(A) denotes the spectral condition number of A. This situation is
summarized in an example reported in Figure 1.

4 Error analysis

In this section we analyze the error of the rational approximation (11) with the
choice of τ = τopt in (9). We start with the following result, whose proof is
given in [13, Th.4.3-4.4].

Theorem 1 Let g(z) be a function analytic in an open subset of the complex
plane containing the ellipse

Γρ =

{
z =

1

2

(
ρeiθ +

1

ρeiθ

)
, ρ > 1, θ ∈ [0, 2π]

}
.
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Let moreover p∗k[g] be the polynomial of degree ≤ k of best uniform approximation
of g in [−1, 1] and

E∗
k [g] = max

t∈[−1,1]
|g(t)− p∗k[g](t)| .

Then

E∗
k [g] ≤

2M(ρ)

(ρ− 1)ρk
, (17)

where
M(ρ) = max

z∈Γρ

|g(z)| .

Theorem 2 Let A be a symmetric positive definite matrix and 0 < β < 1. Then
for k sufficiently large, the error of the rational approximation (11) generated
by the Gauss-Jacobi rule applied to the integral (10), for τ = τopt is given by

∥∥Aβ −Rk(A)
∥∥
2
≤ C ‖A‖2 τ

β (ρM + 1)

(ρM − 1) (ρM − γ)

k

ρ2kM
,

where C is a constant independent of k, and

ρM = γ +
√
γ2 − 1.

Proof. For λ ∈ Λ let

fλ(t) = (τopt (1− t) + (1 + t)λ)
−1

,

and

I(fλ) =

∫ 1

−1

(1− t)β−1 (1 + t)−β fλ(t)dt.

Let moreover Ik(fλ) be the corresponding k-point Gauss-Jacobi approximation
with weights wj , j = 1, . . . , k. By standard arguments we have that

|I(fλ)− Ik(fλ)| ≤
∣∣I(fλ − p∗2k−1[fλ])

∣∣ +
∣∣Ik(fλ − p∗2k−1[fλ])

∣∣
≤ 2CβE

∗
2k−1[fλ], (18)

where, since wj > 0,

Cβ =

k∑

j=1

|wj | =

k∑

j=1

wj =

∫ 1

−1

(1− t)
β−1

(1 + t)
−β

dt.

Now, independently of λ ∈ Λ, the choice of τ = τopt makes possible to use the
bound (17) for each 1 < ρ < ρM where ρM solves

1

2

(
ρM +

1

ρM

)
= γ,

since Qτopt = (−∞,−γ) ∪ (γ,+∞). Thus by (18), (17) and using

M(ρ) = max
z∈Γρ

|fλ(z)| ≤
1

γ − 1
2

(
ρ+ 1

ρ

) ,

8



we obtain

|I(fλ)− Ik(fλ)| ≤
4Cβ

(ρ− 1)ρ2k−1
(
γ − 1

2

(
ρ+ 1

ρ

)) , 1 < ρ < ρM . (19)

Now, neglecting the factor 1/(ρ − 1) and then minimizing with respect to ρ
yields

ρ =
2k − 1

2k

(
γ +

√
γ2 − 1 +

1

(2k − 1)2

)

≈
2k − 1

2k
ρM =: ρ∗.

Hence, for k large enough (we need ρ∗ > 1), we can use ρ∗ in (19), obtaining

|I(fλ)− Ik(fλ)| ≤
8keCβ (ρM + 1)

(ρM − 1) ρ2kM (ρM − γ)
. (20)

Indeed, defining k∗ such that

2k − 1

2k
≥

2

ρM + 1
for k ≥ k∗

we have
1

2k−1
2k ρM − 1

≤
ρM + 1

ρM − 1
.

Moreover, in (20) we have used the inequalities

1
(
2k−1
2k ρM

)2k−1
≤

e

ρ2k−1
M

,

(
γ −

1

2

(
2k − 1

2k
ρM +

2k

2k − 1

1

ρM

))
≤

2k

ρM (ρM − γ)
.

Finally, since by (10)

∥∥Aβ −Rk(A)
∥∥
2
≤

‖A‖2 sin(βπ)

π
2τβ max

λ∈Λ
|I(fλ)− Ik(fλ)| ,

using (20) we obtain the result.

Corollary 1 The asymptotic convergence factor fulfils

lim
k→∞

∥∥Aβ −Rk(A)
∥∥1/k
2

≤

(
4

√
κ(A)− 1

4

√
κ(A) + 1

)2

.

Proof. By (16)

ρM = γ +
√
γ2 − 1 =

4

√
κ(A) + 1

4

√
κ(A)− 1

.

9



5 10 15
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

5 10 15
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

α = 1.2
α = 1.5
α = 1.8

α = 1.2
α = 1.5
α = 1.8

Figure 2: Relative error of the rational approximation versus k, the number of
points of the Gauss-Jacobi rule, for some values of α. The one- and the two-
dimensional cases are on the left and on the right, respectively. In the first case
the dimension of the problem is 200 and in the second one it is 400.

Remark 1 From the above analysis it is easy to observe that for the Laplacian
operator L, discretized with standard central differences (3-points or 5-points in
one or two dimensions, respectively), we have

(
4

√
κ(L) + 1

4

√
κ(L)− 1

)2

≈ 1−
2π

N
,

where N represents the number of discretization points in one dimension.

In Figure 2 we plot the relative error for the one- and two-dimensional Lapla-
cian discretized as in the previous remark for some values of α. The geometric
convergence theoretically proved in this section is clear in the pictures, together
with the substantial independence of α, which is absorbed by the weight func-
tion. It is also quite evident that the method is particularly effective for the
two-dimensional case; this represents an important feature since most of the
standard techniques for the discretization of the fractional Laplacian only work
in one dimension.

4.1 Choice of k

Independently of the above analysis, we observe that the error with respect to
k can be easily monitored by using (13) with λ = λmin or λ = λmax, and hence
working scalarly. This consideration suggests a simple strategy for the choice of
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k when the rational approximation is employed to solve

du

dt
= −

κα

hα
Lα/2u+ f(t,u), t > 0, (21)

u(0) = u0

Let
Ek = Rk(L)− Lα/2

be the error of the rational approximation and let v(t) be the solution of the
corresponding perturbed problem

dv

dt
= −

κα

hα

(
Lα/2 + Ek

)
v + f(t,v), t > 0, (22)

v(0) = u(0)

Setting g(u) = −κα

hαL
α/2u+ f(t,u), we assume that (21) satisfies the one-sided

Lipschitz condition

〈g(u1)− g(u2),u1 − u2〉 ≤ m ‖u1 − u2‖
2 , m < 0, u1,u2 ∈ R

N .

Let w(t) = u(t)− v(t). Then

d

dt
‖w(t)‖

2
= 2 〈w′,w〉

= 2 〈g(u)− g(v),u− v〉 + 2
κα

hα
〈Ekv,u− v〉

≤ 2m ‖u− v‖
2
+ 2

κα

hα
‖Ekv‖ ‖u− v‖ .

Moreover
d

dt
‖w(t)‖

2
= 2 ‖w(t)‖

d

dt
‖w(t)‖ ,

that finally yields

d

dt
‖w(t)‖ ≤ m ‖w(t)‖+

κα

hα
‖Ekv(t)‖

Now, since w(0) = 0, by Gronwall inequality we obtain

‖w(t)‖ ≤
κα

hα
‖Ek‖

∫ t

0

em(t−s) ‖v(s)‖ ds. (23)

Proposition 2 1. Assume that ‖v(s)‖ ≤ c for s ∈ [0, t]. Then

‖u(t)− v(t)‖ ≤
κα

hα
‖Ek‖

c

m

(
emt − 1

)
. (24)

2. Assume that also (22) satisfies a one-sided Lipschitz condition, that is, there
exist m < 0 such that
〈
g(u1)− g(u2)−

κα

hα
Ek(u1 − u2),u1 − u2

〉
≤ m ‖u1 − u2‖

2
, u1,u2 ∈ R

N .

(25)
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Assume moreover that u = 0 is an equilibrium point for (21), that is, f(t, 0) = 0.
Then there exists m̃ < 0 such that

‖u(t)− v(t)‖ ≤
κα

hα
‖Ek‖ ‖v0‖ te

m̃t. (26)

Proof. (24) follows immediately by (23). In order to prove (26), let m̃ :=
max(m,m). Condition (25) ensures that for each z(t), solution of (22) with
initial condition z(0) = z0, we have

‖v(t) − z(t)‖ ≤ em̃t ‖v0 − z0‖ .

Since we have assumed that z = 0 is a solution we have

‖v(t)‖ ≤ em̃t ‖v0‖ .

Inserting this bound in (23) (with m → m̃) we immediately find (26).
The above proposition can easily be used to select a proper value of k. Indeed

for using (24) one can consider the approximation

m ≈ −
(λmin(L))

α/2
Kα

hα
(27)

and define c := ‖v0‖. The approximation (27) can also be used for m̃ whenever
it is possible to use (26). Finally, since

‖Ek‖ ≤
∣∣∣Rk(λmin(L))− λ

α/2
min(L)

∣∣∣ ,

working scalarly we can easily select k such that

‖u(t)− v(t)‖ ≤ tol.

5 Solving fractional in space reaction-diffusion

problems

As already said in Section 2, if we discretize on a uniform mesh the fractional
Laplacian operator occurring in (1), we obtain the initial value problem

du

dt
= −

κα

hα
Lα/2u+ f , u(0) = u0. (28)

Therefore, the application of the rational approximation (11) of Lα/2, based
on the k-point Gauss-Jacobi rule and given by Rk(L) ≡ M−1K, leads to the
following initial value problem

M
du

dt
= −

κα

hα
Ku+M f , t > 0, (29)

u(0) = u0.
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The sparse structure of the matrices M and K represents the main advantage
of this approach in terms of computational work and memory saving.

Following the examples reported in [14], we first focus on two fractional
in space diffusion equations with different initial conditions. Then, we con-
sider a reaction-diffusion equation with forcing term independent of the solu-
tion. All of these examples are in one spatial dimension. In each case, dis-
cretizing the spatial domain Ω = (0, a) with a uniform mesh having stepsize
h = a/(N + 1), we consider the standard 3-points central difference discretiza-
tion of the Laplacian L = tridiag(−1, 2,−1) ∈ IRN×N . Finally, we also report
the results obtained by applying our approach for the numerical solution of a
fractional reaction-diffusion example in two space dimensions. In this case, we
discretize in space the problem via the 5-points finite difference stencil. The
matrix L is therefore a block tridiagonal matrix of size N2 having the following
form L = tridiag(−I, B,−I), with I denoting the identity matrix of size N and
B = tridiag(−1, 4,−1) ∈ IRN×N .

In all examples, we solve (28) and (29) by the MATLAB routine ode15s.
Moreover, we indicate by ‘exact’ the analytical solution, by ‘MT’ the solution
of the problem (28), obtained by applying the matrix transfer approach, and by
‘rational’ the solution arising from (29).

Example 1 Consider the problem (1) on the spatial domain Ω = (0, π), with
κα = 0.25 and f = 0. According to [14, Section 3.1], the analytic solution
corresponding to the initial condition u0(x) = x2(π − x), is given by

u(x, t) =

∞∑

n=1

8(−1)n+1 − 4

n3
sin(nx) exp(−καn

αt).

Setting α = 1.8, at time t = 0.4 in the left-hand side of Figure 3 the exact
solution is compared with the numerical solutions of the semi-discrete problems
(28) and (29) with h = π/201 (that is h = 0.0157) and k = 2. On the right
picture, the step-by-step maximum norm of the difference between the analytic
solution and the numerical ones is reported. As one can see, the numerical
solution provided by the rational approximation is in good agreement with the
one obtained by the matrix transfer technique.

To illustrate the impact of the fractional order in space we consider the
following example which differs from the previous one only for the choice of the
initial condition.

Example 2 Consider now the problem (1) on the spatial domain Ω = (0, π),
with κα = 0.25, f = 0 and u0(x) = sin(4x).
In this example, we use N = 500 and we compute the numerical solutions pro-
vided by the matrix transfer technique and the rational approximation approach
with k = 3. In particular, the solutions profiles corresponding to α = 1.1 and
α = 1.9 are shown in Figure 4 at time t = 0.3. It is interesting to see that the
diffusion depends on the value of the fractional order α.
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Figure 3: Comparison of the analytic solution of the problem in Example 1
with the numerical solutions provided by the rational approach and the matrix
transfer technique at t = 0.4 (left) and corresponding errors (right).

Example 3 Consider the problem (1) on the spatial domain Ω = (0, 1), with
u0(x) = 0 and

f(x, t) =
καt

α

2 cos(απ/2)

(
2

Γ(3 − α)
[x2−α + (1− x)2−α]

−
12

Γ(4− α)
[x3−α + (1 − x)3−α] +

24

Γ(5− α)
[x4−α + (1 − x)4−α]

)
+

+α tα−1x2(1− x)2.

The exact solution is given by

u(x, t) = tαx2(1− x)2.

In our experiments, we select the model parameters κα = 2, α = 1.7 and
discretize the spacial domain using N = 400. In Figure 5 we report the step-by-
step error provided by the numerical solutions obtained by applying the Gauss-
Jacobi rule with k = 1, 3, 5 at t = 0.5 compared with the one obtained by solving
directly (28). As expected, the approximation of the solution provided by the
rational approach improves as k increases.

Example 4 We solve the fractional reaction-diffusion equation in two space
dimensions

∂u(x, y, t)

∂t
= −κα (−∆)α/2u(x, y, t) + f(x, y, t, u), (x, y) ∈ (0, 1)× (0, 1),

14
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step-by-step maximum norm of their difference (right) for α = 1.1 (top) and
α = 1.9 (bottom), respectively.
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Figure 5: Comparison of the errors provided by solving the problem of the
Example 3 using both rational with k = 1 (blue dashed-dot-line), k = 3 (red
dashed-line) and k = 5 (black dot-line) and MT (green solid-line).
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4∑

j=1

(1 + µ
α/2
j )vj + αtα−1 sin3(πx) sin3(πy)− καu,

where

v1 = 9 sin(πx) sin(πy), µ1 = 2π2,

v2 = −3 sin(πx) sin(3πy), µ2 = 10π2,

v3 = −3 sin(3πx) sin(πy), µ3 = 10π2,

v4 = sin(3πx) sin(3πy), µ4 = 18π2,

subject to u(x, y, 0) = 0 and homogeneous Dirichlet boundary conditions [3].
The exact solution to this problem is

u(x, y, t) = tα sin3(πx) sin3(πy).

The numerical solution provided by the rational approach based on the Gauss-
Jacobi rule with k = 7 and the matrix transfer technique are drawn at t = 1 in
Figure 6 using α = 1.5, κα = 10 and N = 40 points in each domain direction.
It is worth noting that in order to obtain the same accuracy, the matrix transfer
technique computationally costs three times the rational approach.
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Figure 6: Comparison of the analytical solution of the problem in Example 4
with the numerical solution provided at t = 1 by rational (top) and MT (bot-
tom) and corresponding relative errors (right) for α = 1.5 and κα = 10.
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6 Conclusions

In this paper we have proposed a rational approximation to the discrete frac-
tional Laplacian. When applied for solving the reaction-diffusion equations this
leads to a semi-discrete problem which can be solved in an efficient way due to
the band structure of the matrices occurring in the definition of the approxima-
tion.

With respect to the existing approaches based on the discretization of the
Riesz derivative the main advantages are the ones of the Matrix Transfer Tech-
nique itself, that is: 1) the approach can be generalized to work in more than
one dimension without modifying the overall solution methodology; 2) it does
not require to work with a uniform grid in space; 3) all linear algebra tasks are
with sparse matrices.

We also remark that solving reaction-diffusion equations through the Ma-
trix Transfer Technique requires the computation of Lα/2 (that means to work
with full matrices) or the computation of matrix functions by vector of the

type
(
I + cLα/2

)−1
v or exp(−cLα/2)v (c > 0) for an implicit or an exponential

integrator respectively. This matrix function approach can be based on the con-
struction of the Krylov subspaces with repect to L (or something related with
its inverse) and v. This technique, used in [15], has the advantage that only the
sparse matrix L is involved in the computation. Of course the vector v changes
at each integration step so many Krylov subspaces need to be built. We cannot
claim here that our strategy is generally better than a Krylov based integrator;
they share the property of working sparsely but the overall performances will
depends on many factors, such as the accuracy and the complexity of the un-
derlying integrator, the rate of convergence of the Krylov processes with respect
to the accuracy of our rational approximations, the time step.
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