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Abstract

In this paper we study some properties of the classical Arnoldi based methods for solving
infinite dimensional linear equations involving compact operators. These problems are intrin-
sically ill-posed since a compact operator does not admit a bounded inverse. We study the
convergence properties and the ability of these algorithms to estimate the dominant singular
values of the operator.
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1 Introduction

We consider linear equations of the type

Af = g, (1)

where f and g belong to a Hilbert space H, and A : H → H is a compact linear operator. These
kind of operators possess the general property that the spectrum σ(A) is either finite or countably
infinite; in the latter case the sequence of eigenvalues {λn}n≥1 (arranged in order of decreasing
magnitude) converges to 0. As consequence the problem (1) is ill-posed since the operator does
not possess a bounded inverse. An important example of this kind of problems is provided by the
Fredholm integral equation of the first kind

(Af) (x) =

∫
Ω

k(x, y)f(y)dy = g(x), (2)

where Ω ⊆ Rq is open and connected. Whenever the kernel k(x, y) fulfils certain hypothesis, as
for instance when it has compact support, the corresponding operator A is compact on a suitable
Banach space. More generally, if ∫

Ω

∫
Ω

|k(x, y)|2 dxdy <∞, (3)

then A : L2(Ω) → L2(Ω) is compact.
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Numerically, problems like (1) are generally faced by solving an algebraic linear system of
equations

Ahfh = gh (4)

arising from a suitable discretization of the operator A that depends on a parameter h > 0. Since
the ill-posedness is inherited by the finite dimensional problem (4), this system is generally solved
through some kind of regularization such as the popular Tikhonov method (see e.g. [10, Chapter
5] for an overview). We remark, however, that some classical iterative methods for linear systems
are themselves regularizing and are sometimes used to approximate the solution of (4) without
additional regularization. Among the Krylov type methods, the most highly regarded to this
purpose are probably the Conjugate Gradient in the Hermitian case and the LSQR ([19]) in the
general nonhermitian one, that, in exact arithmetic, is equivalent to the Conjugate Gradient applied
to the normal equation (CGLS). In fact, because of the ill-conditioning of Ah, (4) is generally solved
in the least-square sense, and this justifies the use of methods able to solve efficiently the normal
equation. A well known property of the Conjugate Gradient method is its ability of approximating
the dominating eigenvalues, that is, the dominating singular values when applied to AHh Ah. This is
the main reason for which these methods are fruitfully employed to regularize an ill-posed problem.

The main drawback of the CGLS and the LSQR is that they need to work with the transpose
that in some important applications is not known since A or Ah are only defined through their
action. For this reason the Arnoldi based methods such as the well-known GMRES have been
recently employed in this field and they have been shown to be a valid alternative to the transpose
based method. In this sense, the first attempt was presented in [4]. We also quote here [6]
for a recent survey. A general impression is that the Arnoldi based methods are competitive or
better than the transpose based ones when the operator is nearly Hermitian or nearly normal,
but definitely inferior if it is not the case. Nevertheless, some numerical experiments on highly
non-normal problems like the famous equation [1] (known as BAART, see also [11])∫ π

0

exp(x cos y)f(y)dy = 2
sinh(x)

x
, x ∈ [0, π/2] , (5)

reveal that the Arnoldi based methods are actually really competitive, both in terms of accuracy
and speed.

In this paper, working in the continuous framework defined by (1), we try give a theoretical
justification of some important features of the Arnoldi based methods, that are commonly consid-
ered true from experimentation. In particular, since the condition (3) implies that the operator
(2) belongs to the subclass of the so called Hilbert-Schmidt operators (see [5, XI.6]), we use the
properties of these operators to study the convergence rate with respect to the extendibility of the
Krylov subspaces. In particular we are able to show that the rate of convergence is comparable
with the rate of decay of the singular values of A. In the finite dimensional case, under special
properties on the singular values, similar results were given in [18]. We remark that for linear
equations of the type (I + λA)f = g, where A is compact and λ > 0, the analysis allows to show
the superlinear convergence of the residuals ([14]) that we are not able to show for problems like
(1). Among the existing works in which the superlinear convergence of Krylov methods is studied
in the continuous setting, we quote here the recent paper [13] and its wide bibliography. As for
the finite dimensional case, we remember [22], where many Krylov methods are considered.

In this work we also show that for equations involving Hilbert-Schmidt operators the Arnoldi
based methods are in fact iterative regularization approaches since the Arnoldi algorithm is able
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to provide, step by step, improving approximations of the dominant singular value of A. Together
with the speed, this property ensures that these methods possess the basic features to be employed
in the field of the regularization of certain kind of ill-posed problems.

The paper is organized as follows. In Section 2 we state the framework and the main features
of the Arnoldi based methods FOM and GMRES. In Section 3 we study the convergence of the
methods. The analysis is improved and extended in Section 4, where we also study the decay rate
of the residual in terms of ℓp sequences. Section 5 is devoted to the analysis of the singular value
approximations.

2 The Arnoldi based methods

Let H be a Hilbert space, with scalar product <,> and norm ∥·∥ defined as

∥x∥ = ⟨x, x⟩1/2 .

Throughout the paper we assume that H is separable, that is, it admits a countable orthonormal
basis {φn}n∈N. For a given p > 0, we denote by ℓp the set of the positive sequences {aj}j≥1 such
that ∑

j≥1
apj <∞.

Let A : H → H be a linear operator. Given g ∈ H, we denote by Km = span{g,Ag, . . . , Am−1g}
the Krylov subspaces generated by A and g. Setting N = supm(dimKm), the Arnoldi algorithm
computes an orthonormal basis {w1, ..., wm} of Km for each m ≤ N . In particular, we have

w1 =
g

∥g∥
,

wm+1 =
(I − Pm)Awm
∥(I − Pm)Awm∥

,

where Pm is the orthogonal projection onto Km. If, for some m, (I − Pm)Awm = 0, then N = m
and wN+1 = 0. As consequence, given g ∈ H and a sequence {fm}m≥1, fm ∈ Km, such that
Afm − g ⊥ Km, for 1 ≤ m ≤ N , we have that AfN − g = 0, so that, fN is the solution of
Af = g. Note that Afm − g ⊥ Km if and only if Pm (Afm − g) = 0, that is, fm is the solution
of PmA|Kmfm = g. In this sense, the sequence {fm}m≥1 is well defined only if the operator
PmA|Km : Km → Km is invertible for each m ≤ N , and this of course depends on the properties of
A. The method just described is commonly referred to as Full Orthogonalization Method (f0 = 0).
We recall the following basic result ([21, §1.9]).

Theorem 1 Let A : H → H be a compact normal operator. Let moreover {λn}n∈S be the sequence
(finite S = {1, ..., d} or countably infinite S = N) of non-zero eigenvalues counted according to their
multiplicities and {φn}n∈S the corresponding orthonormal sequence of eigenvectors. Then

Ax =
∑

n∈S
λn ⟨x, φn⟩φn, x ∈ H. (6)

Moreover A is self-adjoint if and only if λn ∈ R, n ∈ S, and is positive if and only if λn > 0,
n ∈ S.
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Proposition 2 Let A : H → H be a compact self-adjoint positive operator. Let EA be the closed
subspace of H generated by {φn}n∈S, that is, the range of A. If g ∈ EA then the FOM approximation
fm (f0 = 0) is well defined for each m ≤ N . If dimEA = d then N ≤ d.

Proof. Let x ∈ H, x ̸= 0. Then by (6)

⟨Ax, x⟩ =
∑

n∈S
λn |⟨x, φn⟩|2 , (7)

so that ⟨Ax, x⟩ ≥ 0 by hypothesis. The condition ⟨Ax, x⟩ = 0 is only possible if ⟨x, φn⟩ = 0 for each
n, that is, for x ∈ E⊥

A . Now taking g ∈ EA, since EA is invariant with respect to A, we have that
Km(A, g) ⊆ EA for each m. Therefore, for w ∈ Km, w ̸= 0, the singularity condition PmAw = 0
implies ⟨PmAw,w⟩ = 0, that is, ⟨Aw,w⟩ = 0, which contradicts what stated before. Finally, the
condition Km(A, g) ⊆ EA for each m, obviously yields N ≤ d.

Now assume to consider a sequence {fm}m≥1, fm ∈ Km, such that the corresponding residual
norm ∥Afm − g∥ is minimized over all the elements of Km, for 1 ≤ m ≤ N . As before, if N <∞, we
have that AfN − g = 0, so that, fN is the solution of Af = g. Such a sequence can be constructed
with the well known GMRES algorithm (f0 = 0). It is also well known that Afm − g ⊥ AKm,
that is, QmAfm − g = 0 where Qm is the projection onto Km orthogonal to AKm. The GMRES
approximation is uniquely defined if the operator QmA|Km : Km → Km is invertible for each
m ≤ N .

Theorem 3 ([21, Th.1.9.3]) Let A : H → H be a compact linear operator. Then there exists a
decreasing sequence of positive real number {σn}n∈S (finite or countably infinite and converging to
0) and two orthonormal sequences {φn}n∈S, {ψn}n∈S, such that

Ax =
∑

n∈S
σn ⟨x, φn⟩ψn, x ∈ H. (8)

The sequence {σn}n∈S is uniquely determined and consists of the eigenvalues of the positive self-

adjoint operator (A∗A)
1/2

(the singular values of A) counted according to their multiplicities;
{φn}n∈S is the corresponding sequence of eigenvectors.

Remark 4 Assuming that a compact linear operator is not of finite rank, for each g ∈ H, the
equation Af = g has a candidate solution f given by

f =
∑

n≥1

⟨g, ψn⟩
σn

φn.

Since ∥f∥2 =
∑
n≥1

∣∣∣ ⟨g,ψn⟩
σn

∣∣∣2 by Parseval identity, f ∈ H if and only if{
|⟨g, ψn⟩|
σn

}
n≥1

∈ ℓ2. (9)

Assuming that {σn}n≥1 ∈ ℓp, p > 0, by the generalized Hölder inequality (see e.g. [12, §2.7]) we
have that

{|⟨g, ψn⟩|}n≥1 ∈ ℓ 2p
2+p

. (10)

Since 2p
2+p < p, the condition (10) expresses what is commonly called Picard Condition, that is, the

coefficients |⟨g, ψn⟩| must decay faster than the singular values, [10, §1.2.3].
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Proposition 5 Let A : H → H be a compact linear operator. Let EA∗A be the closed subspace of H
generated by the sequence {φn}n∈S defined in (8). If Km ⊆ EA∗A then the GMRES approximation
fm (f0 = 0) is uniquely defined for each m ≤ N . If dimEA∗A = d then N ≤ d.

Proof. Assume there exists w ∈ Km, w ̸= 0, such that QmAw = 0. Since QmAw is uniquely
determined by the conditions QmAw ∈ Km and Aw−QmAw ⊥ AKm we must have Aw−QmAw ⊥
Aw that leads to

⟨Aw,Aw⟩ = ⟨QmAw,Aw⟩ = 0.

Since
⟨Aw,Aw⟩ = ⟨A∗Aw,w⟩ =

∑
n∈S

σ2
n |⟨w,φn⟩|

2
,

this quantity is zero only if ⟨w,φn⟩ = 0 for each n ∈ S, which contradicts the hypothesis.

Working with normal operators the situation is simpler.

Proposition 6 Let A : H → H be a compact normal operator. If g ∈ EA, the range of A, then the
GMRES approximation fm is uniquely defined for each m ≤ N . If dimEA = d then N ≤ d.

Proof. By (6), if g ∈ EA then Km ⊆ EA for each m. Following the proof of Proposition 5 we
easily achieve the result.

We remark that Proposition 2 automatically states that if the operator is not of finite rank
then the FOM approximation fm (f0 = 0) is well defined for each m ≤ N . Indeed, x ∈ E⊥

A means
x = 0 by Parseval identity. The same consideration holds for Proposition 5.

In the remainder of the paper we always assume to work with operators whose rank is not finite,
that is, S = N in Theorems 1 and 3. All results concerning FOM and GMRES can be extended to
finite rank operators under the hypotheses of Propositions 2 and 5.

3 Convergence analysis

Definition 7 Let A : H → H be a bounded linear operator, and let {φn}n∈N be any orthonormal
basis of H. If ∑

n∈N
∥Aφn∥2 <∞ (11)

then A is a Hilbert-Schmidt operator.

Theorem 8 ([21, §2.4])Let C2(H) be the set of Hilbert-Schmidt operators on H. C2(H) has the
structure of a Hilbert space with respect to the inner product [, ] defined by

[A,B] = trace(B∗A) :=
∑

n∈N
⟨Aφn, Bφn⟩ , A,B ∈ C2(H),

where {φn}n∈N is any orthonormal basis of H. The corresponding norm is given by

∥A∥2HS = trace(A∗A) =
∑

n∈N
∥Aφn∥2 . (12)
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We observe that relation (11) ensures that a Hilbert-Schmidt operator is also compact. Indeed,
by (11) and (12), each orthonormal sequence {ψn}n≥1 is such that ∥Aψn∥ → 0. Since a bounded
linear operator A is compact if and only if ⟨Aψn, ψn⟩ → 0 for any orthonormal sequence {ψn}n≥1

([21, Th.1.8.7]), the statement follows from the Cauchy-Schwartz inequality. Observe moreover
that since

trace(A∗A) =
∑

j∈N
σ2
j ,

by (12) we have that for each orthonormal sequence {ψn}n≥1 it holds∑
n≥1

∥Aψn∥2 ≤
∑

j∈N
σ2
j . (13)

Theorem 9 Let A ∈ C2(H) with a singular value expansion (8). If g satisfies the condition (9)
then ∥fm − f∥ → 0. Moreover, there exists a non negative sequence {ai}i≥1 ∈ ℓ2, such that

∥Afm − g∥ ≤
(∑

i>m
a2i

)1/2
. (14)

Proof. Since the GMRES minimizes the residual in Km we have

∥Afm − g∥ ≤ ∥APmf − g∥ .

Moreover Pmf → f as m → ∞ and thus we have ∥Afm − g∥ → 0. Since the solution is unique,
∥fm − f∥ → 0. For the second part, let {zi}i∈N be a basis of H such that {z1, ..., zm} is an
orthonormal system for AKm. We have ⟨Afm − g, zi⟩ = 0 for i = 1, ...,m. Hence

Afm − g =
∑

i>m
⟨Afm − g, zi⟩ zi

=
∑

i>m
⟨fm − f,A∗zi⟩ zi,

and so

∥Afm − g∥2 =
∑

i>m
|⟨fm − f,A∗zi⟩|2

≤ ∥fm − f∥2
∑

i>m
∥A∗zi∥2 .

Since ∥fm − f∥ → 0 for m→ ∞, by (13) and since A∗ is still Hilbert-Schmidt we obtain the result
taking ai := ∥fm − f∥ ∥A∗zi∥.

4 Extendibility of the Krylov subspaces

The connection between the residuals of FOM and GMRES, expressed by the famous peak-plateau
phenomenon (see e.g. [3]), ensures that the GMRES convergence implies the FOM convergence.
This means that the sequence of FOM approximations is bounded, that is, we have ∥fm∥ ≤M . As
consequence, we have that the FOM residual (and hence the GMRES one) is bounded byMhm+1,m,
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where hm+1,m := ⟨wm+1, Awm⟩ = ∥(I − Pm)Awm∥. Indeed, since the FOM approximation satisfies
Pm (Afm − g) = 0, and Pmg = g, we have

Afm − g = (I − Pm)Afm

= (I − Pm)A
∑m

i=1
⟨fm, wi⟩wi

= (I − Pm)A ⟨fm, wm⟩wm,

because PmAwi = Awi for i = 1, ...,m− 1. Therefore

∥Afm − g∥ = hm+1,m |⟨fm, wm⟩| ≤ hm+1,m ∥fm∥ . (15)

We start with the following result.

Lemma 10 ([17, p. 125]). Let A : H → H be a bounded linear operator with singular values
{σj}j∈N. Let {g1, ..., gn} and {h1, ..., hn} be any pair of finite orthonormal systems in H. Then

|det [⟨gi, Ahj⟩]| ≤
∏n

j=1
σj .

As shown in [14], since the matrix [⟨wi+1, Awj⟩] is upper triangular we have that∏n

j=1
hj+1,j = det [⟨wi+1, Awj⟩] ≤

∏n

j=1
σj . (16)

Definition 11 Let A : H → H be a compact operator and let p > 0. Then A is p-nuclear and we
write A ∈ Cp(H) if {σj}j∈N ∈ ℓp.

The above definition implies that Hilbert-Schmidt operators are 2-nuclear operators. In this
situation the self adjoint positive operator A∗A is 1-nuclear, since {σj}j∈N ∈ ℓ2 implies

{
σ2
j

}
j∈N ∈

ℓ1. We remark that the class C1(H) is often called trace-class whereas Cp(H), p ≥ 1, is also called
von Neumann-Schatten class (see [21, Ch.2]).

Assuming that A ∈ Cp(H), p > 0, by the arithmetic-geometric mean inequality

(∏n

j=1
hj+1,j

)p/n
≤
∑
j≥1 σ

p
j

n
. (17)

Under the hypothesis of 0 < p ≤ 1, a very similar result ([18, Th. 3.1]) can be derived using [15,
Th. 5.8.10]. Here we can state the following.

Proposition 12 Let A ∈ Cp(H) with p ≥ 1. Then {hj+1,j}j∈N ∈ ℓp.

Proof. Therefore, let {φn}n∈N be the orthonormal basis of eigenvectors of A∗A. Let moreover
H be the positive square root of A∗A, defined by

Hx =
∑

n∈N
σn ⟨x, φn⟩φn, x ∈ H,
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so that we can consider the polar decomposition A = UH, where U is a partial isometry [5, p.935].
For any orthonormal sequence {zj}j≥1 we have∥∥∥H1/2zj

∥∥∥2 = ⟨zj , Hzj⟩ =
∑

i≥1
σi |⟨zj , φi⟩|2 ,

where H1/2 is the positive square root of H. Setting q be such that

1 =
1

p
+

1

q
,

using Hölder inequality we have∥∥∥H1/2zj

∥∥∥2 =
∑

i≥1
σi |⟨zj , φi⟩|2/p |⟨zj , φi⟩|2/q

≤
(∑

i≥1
σpi |⟨zj , φi⟩|

2
)1/p (∑

i≥1
|⟨zj , φi⟩|2

)1/q
≤

(∑
i≥1

σpi |⟨zj , φi⟩|
2
)1/p

.

Thus ∑
j≥1

∥∥∥H1/2zj

∥∥∥2p ≤
∑

j≥1

∑
i≥1

σpi |⟨zj , φi⟩|
2

=
∑

i≥1
σpi
∑

j≥1
|⟨zj , φi⟩|2

≤
∑

i≥1
σpi . (18)

Now, ∑
j≥1

hpj+1,j =
∑

j≥1
⟨wj+1, UHwj⟩p

=
∑

j≥1

⟨
H1/2U∗wj+1,H

1/2wj

⟩p
≤

∑
j≥1

∥∥∥H1/2U∗wj+1

∥∥∥p ∥∥∥H1/2wj

∥∥∥p
≤

(∑
j≥1

∥∥∥H1/2U∗wj+1

∥∥∥2p)1/2(∑
j≥1

∥∥∥H1/2wj

∥∥∥2p)1/2

.

Since both {wj}j≥1 and {U∗wj+1}j≥1 are orthonormal systems the result follows from (18).

The above proposition show the connection between the extendibility of the Krylov subspaces
and the singular values, for p (≥ 1)-nuclear operators. The case 0 < p < 1 is more difficult to study
since the Hölder inequality is reversed (see e.g [12, §2.8]) and we cannot arrive at (18). We need
some additional hypothesis as stated by Proposition 14.

Lemma 13 [2, p.259]Let {aj}j≥1 , {bj}j≥1 be non increasing sequences of real numbers such that∑n
j=1 aj ≤

∑n
j=1 bj for each n ≥ 1. Then, for any convex function Φ, that is,

Φ(αt+ (1− α)u) ≤ αΦ(t) + (1− α)Φ(u), t, u ∈ R, α ∈ (0, 1),

and such that Φ(t) → 0 as t→ −∞, we have
∑n
j=1 Φ(aj) ≤

∑n
j=1 Φ(bj)
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Proposition 14 Let A ∈ Cp(H) with p > 0. If {hj+1,j}j∈N is non increasing then {hj+1,j}j∈N ∈
ℓp. Moreover if

hj+2,j+1 ≤
(∏j

i=1
hi+1,i

)1/j

, j ∈ N, (19)

then {hj+1,j}j∈N ∈ ℓp+ε for each ε > 0.

Proof. By (16) we have that for each n ≥ 1∑n

j=1
log hj+1,j ≤

∑n

j=1
log σj . (20)

Therefore, if {hj+1,j}j∈N is non increasing, applying Lemma 13 with Φ(t) = exp(pt) we obtain the

result. The weaker hypothesis (19) ensures that the sequence

sj :=

(∏j

i=1
hi+1,i

)1/j

is non increasing. Moreover by (16) and using the arithmetic-geometric mean inequality we obtain

∏n

j=1
sj ≤

∏n

j=1

(∏j

i=1
σi

)1/j

≤
∏n

j=1

(
1

j

j∑
i=1

σpi

)1/p

≤
∏n

j=1

(
C

j

)1/p

where C =
∑
j≥1 σ

p
j . Working as before with Φ(t) = exp(pt), p > p, we have that {sj}j∈N ∈ ℓp

and hence the result.

In Figure 1 we compare the behavior of the sequences {hj+1,j}j∈N and {σj}j∈N for the problem

(5) in which the singular values decay exponentially (that is, {σj}j∈N ∈ ℓp for each p > 0). In the
same figure we also consider the compact self-adjoint operator defined by the kernel

k(x, y) =

{
x(y − 1), x < y,
y(x− 1), x ≥ y,

x, y ∈ [0, 1] , (21)

which represents the Green function for the second derivative (see [11]). The singular values are
σj = (jπ)−2 and hence the corresponding sequence is ℓp for each p > 1/2.

Theorem 15 Let A ∈ Cp(H), p > 0. If the condition (9) is satisfied then for the GMRES residual
it holds

{∥Afm − g∥}m≥1 ∈ ℓp. (22)

Proof. Since the convergence is ensured by the Picard Condition (9), by (15) we have that

∥Afm − g∥ ≤ Chm+1,m.
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Figure 1: Decay behavior of the sequences {hj+1j}j∈N and {σj}j∈N for the problem (5) on the left,

and (21) on the right.

Therefore, by (16) ∏n

m=1
∥Afm − g∥ ≤ Cn

∏n

m=1
σm.

Since {∥Afm − g∥}m≥1 is non increasing, the result follows immediately from Lemma 13.

The theoretical analysis given in this section does not allow to state the q-superlinear con-
vergence of the Arnoldi based methods. Indeed, by (22) we have only proved that the rate of
convergence is equal to the decay rate of the singular values. On the other side it is well known in
literature that for problems like (I + λA)f = g (λ > 0) the q-superlinear convergence is ensured
(see e.g. [14]). We can explain this basic difference in the following way. Denoting by Hs

m ∈ Cm×m

the Hessenberg matrix whose entries hi,j are given hi,j = ⟨wi, Awj⟩, it is known that the FOM
residual can also be written as

∥Afm − g∥ = hm+1,m

∣∣eHm(Hs
m)−1e1

∣∣ ,
where ei is the i-th element of the canonical base in Cm. It is known from [16] that Hs

m is
nonderogatory, that is, the minimal polynomial q(z) is the characteristic polynomial, so that we
can write

(Hs
m)−1 = −

(∑m−1

j=0
αj+1(H

s
m)j
)

1

α0
, (23)

which arises from the equation

0 = q(Hs
m) = α0I + α1H

s
m + ...+ αm (Hs

m)
m
.

Since αm = 1, α0 = (−1)m det(Hs
m), and exploiting the Hessenberg structure of Hs

m, which yields

eHm(Hs
m)ke1 = 0, k = 0, ...,m− 2,

eHm(Hs
m)m−1e1 =

∏m−1

j=1
hj+1,j ,
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we finally obtain

∥Afm − g∥ =

∏m
j=1 hj+1,j

|det(Hs
m)|

. (24)

Since span{g,Ag, . . . , Aj−1g} = span{g, (I + λA)g, . . . , (I + λA)j−1g}, the numerator of (24) does
not depend on the invertibility of the operator that defines the equation (A or I + λA), but only
on the extendibility of the Krylov subspaces. On the other side, the matrix Hs

m is expected to
retain the spectral properties of A or I + λA, and hence, only in the latter case we can state the
existence of a constant C such that 1/ |det(Hs

m)| ≤ C (at least for m large enough). Such a bound
immediately yields the q-superlinear convergence for nuclear operators by using (17).

5 The approximation of the singular values

We denote by Hm ∈ C(m+1)×m the matrix containing Hs
m with entries hi,j = ⟨wi, Awj⟩, i =

1, ...,m+ 1, j = 1, ...,m. We have

Awk =
∑k+1

i=1
hi,kwi, k ≤ m. (25)

Let us consider the SVD factorization of Hm, that is, for 1 ≤ k ≤ m we consider the equations

Hmφ
(m)
k = σ

(m)
k ψ

(m)
k , (26)

H∗
mψ

(m)
k = σ

(m)
k φ

(m)
k , (27)

where
{
σ
(m)
k

}
k=1,...,m

are the singular values, arranged in decreasing order, and where ψ
(m)
k ∈

Cm+1, φ
(m)
k ∈ Cm, are the k-th left and right singular vector respectively. Denoting by ψ

(m)
kj and

φ
(m)
kj the j-th entry of the vectors ψ

(m)
k and φ

(m)
k , we can state the following result, proved in [18]

in the finite dimensional case.

Proposition 16 Let A : H → H be a linear operator. Let moreover

u
(m)
k =

∑m+1

j=1
wjψ

(m)
kj , k ≤ m+ 1,

v
(m)
k =

∑m

j=1
wjφ

(m)
kj , k ≤ m.

Then

Av
(m)
k − σ

(m)
k u

(m)
k = 0, (28)

Pm(A∗u
(m)
k − σ

(m)
k v

(m)
k ) = 0, (29)

PmA
∗u

(m)
m+1 = 0. (30)

Proof. (28) follows directly by (25), (26), and using the Hessenberg structure of Hm. Indeed
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we have

Av
(m)
k =

∑m

j=1
Awjφ

(m)
kj

=
∑m

j=1

∑j+1

i=1
hi,jwiφ

(m)
kj

=
∑m+1

i=1
wi
∑m

j=1
hi,jφ

(m)
kj

=
∑m+1

i=1
wiσ

(m)
k ψ

(m)
ki

= σ
(m)
k u

(m)
k .

Moreover, since hi,j = ⟨wi, Awj⟩ = ⟨A∗wi, wj⟩, for j ≤ m the j-th entry of H∗
mψ

(m)
k is given by∑m+1

i=1
hj,iψ

(m)
ki =

∑m+1

i=1
⟨wj , A∗wi⟩ψ(m)

ki

=
⟨
A∗u

(m)
k , wj

⟩
.

Then, using (27) we have that⟨
A∗u

(m)
k , wj

⟩
= σ

(m)
k φ

(m)
kj

= σ
(m)
k

⟨
v
(m)
k , wj

⟩
,

which yields (29) by ⟨
A∗u

(m)
k − σ

(m)
k vk, wj

⟩
= 0, j ≤ m.

Finally, (30) follows directly by H∗
mψ

(m)
m+1 = 0.

Observe that by Parseval identity
∥∥∥u(m)

k

∥∥∥ =
∥∥∥ψ(m)

k

∥∥∥
2
= 1, k ≤ m+1, and

∥∥∥v(m)
k

∥∥∥ =
∥∥∥φ(m)

k

∥∥∥
2
=

1, k ≤ m. Moreover by Parseval equation⟨
u
(m)
i , u

(m)
k

⟩
=

∑m+1

j=1

⟨
u
(m)
i , wj

⟩⟨
wj , u

(m)
k

⟩
=

∑m+1

j=1
ψ
(m)
ij ψ

(m)
kj

= δik.

Analogously
⟨
v
(m)
i , v

(m)
k

⟩
= δik. In this view, equations (28)-(29) state that the triplets

(
σ
(m)
k , u

(m)
k , v

(m)
k

)
,

1 ≤ k ≤ m, that can be generated by the Arnoldi algorithm, are worth of further investigation in
order to understand if we are able to construct an approximation of the expansion (8).

Theorem 17 Let A ∈ C2(H). Then for each fixed k∥∥∥A∗u
(m)
k − σ

(m)
k v

(m)
k

∥∥∥→ 0, m→ ∞.

12



Proof. By the definition of v
(m)
k in Proposition 16 we have that v

(m)
k ∈ Km and hence, by (29),

σ
(m)
k v

(m)
k is the orthogonal projection of A∗u

(m)
k onto Km, i.e.,

Pm(A∗u
(m)
k ) = σ

(m)
k v

(m)
k .

Therefore ∥∥∥A∗u
(m)
k − σ

(m)
k v

(m)
k

∥∥∥2 =
∥∥∥A∗u

(m)
k

∥∥∥2 − ∥∥∥σ(m)
k v

(m)
k

∥∥∥2
=

∑
i≥m+1

∣∣∣⟨A∗u
(m)
k , wi

⟩∣∣∣2
=

∑
i≥m+1

∣∣∣⟨u(m)
k , Awi

⟩∣∣∣2
≤

∑
i≥m+1

∥Awi∥2 . (31)

Thus, by (13), we have that
∥∥∥A∗u

(m)
k − σ

(m)
k vk

∥∥∥2 is bounded by the tail of a convergent series and

hence the result follows.

In the above theorem we have assumed that the orthonormal system {w1, ..., wm} that represent
an orthonormal basis of Km, generates the whole space H as m→ ∞. Proposition 16 and Theorem

17 states that the sequence
{
σ
(m)
k

}
m≥1

tends to a certain singular value of A as m → ∞ but we

cannot be sure that this singular value is exactly σk. In order to fix the problem, we need to show
that each σk converges to a singular value of Hm as m → ∞. This is proved by the following,
whose consequence is the one to one correspondence between the dominant singular values of A
and the ones of Hm.

Theorem 18 Let A ∈ C2(H) with a singular value expansion given by (8). For a fixed k let
moreover

φ
(m)
kj = ⟨wj , φk⟩ , j ≤ m.

Then ∥∥∥H∗
mHmv

(m)
k − σ2

kv
(m)
k

∥∥∥
2
→ 0, m→ ∞.

Proof. By (8) we have
A∗Aφk = σ2

kφk. (32)

Writing

φk =
∑

j≥1
⟨φk, wj⟩wj ,

then substituting in (32) and splitting the sum, we obtain∑m

j=1
⟨φk, wj⟩A∗Awj+

∑
j≥m+1

⟨φk, wj⟩A∗Awj = σ2
k

∑m

j=1
⟨φk, wj⟩wj+σ2

k

∑
j≥m+1

⟨φk, wj⟩wj .

Therefore, for i ≤ m,∑m

j=1
⟨φk, wj⟩ ⟨wi, A∗Awj⟩+

∑
j≥m+1

⟨φk, wj⟩ ⟨wi, A∗Awj⟩ = σ2
k ⟨wi, φk⟩ .
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Figure 2: Plot of the singular values of the matrix Hm versus the iteration number m, for the
problem (5). The solid lines represent the singular values of the operator.

For the second term on the left we have∣∣∣∑
j≥m+1

⟨φk, wj⟩ ⟨wi, A∗Awj⟩
∣∣∣ ≤

∑
j≥m+1

|⟨φk, wj⟩| |⟨wi, A∗Awj⟩|

≤
(∑

j≥m+1
|⟨φk, wj⟩|2

)1/2 (∑
j≥m+1

|⟨wi, A∗Awj⟩|2
)1/2

≤
(∑

j≥m+1
∥A∗Awj∥2

)1/2
,

that goes to 0 as m→ ∞ since A∗A is still Hilbert-Schmidt. Therefore we have proved that∑m

j=1
⟨φk, wj⟩ ⟨wi, A∗Awj⟩ → σ2

k ⟨wi, φk⟩ ,

as m→ ∞. Since ⟨wi, A∗Awj⟩ is just the (i, j) entry of the matrix H∗
mHm the result follows.

In Figure 2 we show the convergence of the singular values for the problem (5).

Proposition 19 Let A ∈ C2(H) with a singular value expansion given by (8). Then for each fixed

k,
∣∣∣⟨u(m)

k , ψk

⟩∣∣∣→ 1 and
∣∣∣⟨v(m)

k , φk

⟩∣∣∣→ 1 as m→ ∞.

Proof. By (8) we have

Av
(m)
k =

∑
n≥1

σn

⟨
v
(m)
k , φn

⟩
ψn.

Moreover by (28)

Av
(m)
k = σ

(m)
k u

(m)
k

= σ
(m)
k

∑
n≥1

⟨
u
(m)
k , ψn

⟩
ψn,

14



so that, for each n,

σn

⟨
v
(m)
k , φn

⟩
= σ

(m)
k

⟨
u
(m)
k , ψn

⟩
. (33)

At the same time

A∗u
(m)
k =

∑
n≥1

⟨
u
(m)
k , ψn

⟩
A∗ψn

=
∑

n≥1
σn

⟨
u
(m)
k , ψn

⟩
φn,

and
σ
(m)
k v

(m)
k = σ

(m)
k

∑
n≥1

⟨
v
(m)
k , φn

⟩
φn.

By (29) we then have

A∗u
(m)
k − σ

(m)
k v

(m)
k =

∑
n≥1

(⟨
u
(m)
k , ψn

⟩
σn −

⟨
v
(m)
k , φn

⟩
σ
(m)
k

)
φn

=
∑

i≥m+1
qiwi,

where
qi =

⟨
A∗u

(m)
k − σ

(m)
k v

(m)
k , wi

⟩
.

Since qi → 0 as m→ ∞ by Theorem 17, uniformly with respect to n, we have that for each n⟨
u
(m)
k , ψn

⟩
σn =

⟨
v
(m)
k , φn

⟩
σ
(m)
k + cm, cm → 0. (34)

Now, joining (33) and (34) we find⟨
u
(m)
k , ψn

⟩
σ2
n =

⟨
u
(m)
k , ψn

⟩(
σ
(m)
k

)2
+ cmσn.

Since σ
(m)
k → σk, and since the above equation is true for each n we have

⟨
u
(m)
k , ψn

⟩
→ 0 for

k ̸= n and m→ ∞ and consequently ∣∣∣⟨u(m)
k , ψk

⟩∣∣∣→ 1.

Analogously one shows that
∣∣∣⟨v(m)

k , φk

⟩∣∣∣→ 1.

Proposition 19 shows that the vectors u
(m)
k (v

(m)
k ) tends to eiθψk (eiθφk) for a certain angle

θ. In Figure 3, using again the model problem (5) we can observe the convergence to 1 of the

sequences
{∣∣∣⟨v(m)

k , φk

⟩∣∣∣}
m≥1

and
{∣∣∣⟨u(m)

k , ψk

⟩∣∣∣}
m≥1

for k = 1, 2, 3.

Joining the results of this section, we have that if A is a Hilbert-Schmidt operator, then for

each fixed k and up to a given phase angle,
(
σ
(m)
k , v

(m)
k , u

(m)
k

)
→ (σk, φk, ψk) as m → ∞. This

means that in general we cannot expect that for a given m,
(
σ
(m)
k , v

(m)
k , uk

)
≈ (σk, φk, ψk) for

k = 1, ...,m but only for k ≪ m, where the distance between k and m depends on the rate of decay
of the singular values. In any case we can expect that for k ≪ m the Arnoldi algorithm is able to
approximate the truncated expansion∑k

j=1
σj ⟨·, φj⟩ψj ≈

∑k

j=1
σ
(m)
j

⟨
·, v(m)

j

⟩
u
(m)
j ,
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Figure 3: Convergence of the singular first three singular vectors with respect to the dimension of
the Krylov subspaces for problem (5).

and consequently that ∥∥∥∥A−
∑k

j=1
σ
(m)
j

⟨
·, v(m)

j

⟩
u
(m)
j

∥∥∥∥ ≈ σk+1.

Remark 20 An interesting consequence of the results of this section is that for Hilbert-Schmidt
operators ∥Hm∥ → ∥A∥ even if A is highly non normal.

5.1 The self-adjoint case

Under the hypothesis that the operator A is self-adjoint, in order to state the convergence of the
singular values of Hm we do not require that A is Hilbert-Schmidt.

Theorem 21 Let A : H → H be a self-adjoint compact operator. Under the hypothesis of Propo-
sition 16, for each fixed k ∥∥∥Au(m)

k − σ
(m)
k v

(m)
k

∥∥∥→ 0, m→ ∞. (35)
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Proof. Following the proof of Theorem 17 we have∥∥∥Au(m)
k − σ

(m)
k v

(m)
k

∥∥∥2 =
∑

i≥m+1

∣∣∣⟨Au(m)
k , wi

⟩∣∣∣2
=

∑
i≥m+1

∣∣∣∣∑m+1

j=1
ψ
(m)
kj ⟨Awj , wi⟩

∣∣∣∣2
=

∑
i≥m+1

∣∣∣∣∑m+1

j=1
ψ
(m)
kj hi,j

∣∣∣∣2
≤

∑
i≥m+1

∣∣∣∣∣
(∑m+1

j=1

∣∣∣ψ(m)
kj

∣∣∣2)1/2(∑m+1

j=1
|hi,j |2

)1/2
∣∣∣∣∣
2

=
∑

i≥m+1

∣∣∣∣(∑m+1

j=1
|hi,j |2

)∣∣∣∣
= |hm+1,m|2 + |hm+1,m+1|2 + |hm+2,m+1|2 , (36)

where the last equality follows from the Hessenberg structure of Hm. At this point since hm+1,m →
0 as m→ ∞ when working with compact operator (the proof follows the one of [21, Th.1.8.7] with
a slight modification) and since, under the same hypothesis

hm+1,m+1 = ⟨wm+1, Awm+1⟩ → 0,

we obtain the result

Observe that since hm+1,m = hm,m+1, by (36) and |⟨wi, Awj⟩| ≤ ∥Awj∥ we have∥∥∥Au(m)
k − σ

(m)
k vk

∥∥∥2 ≤ 3 ∥Awm+1∥2 . (37)

By comparing this bound with (31) we can understand that for self-adjoint Hilbert-Schmidt oper-
ators the convergence of the singular values can be very fast. In order to avoid repetitions we omit
the proof of the following result, that is essentially based on the convergence stated by (35).

Proposition 22 The results of Theorem 18 and Proposition 19 remain true when A : H → H is
a self-adjoint compact operator.

In Figure 4 we show the convergence of the singular values for the self-adjoint operator defined
by (21).

5.2 A further note on the GMRES residual

Using the singular value analysis just presented, we can state the following (cf [8]).

Proposition 23 For the GMRES residual it holds

∥Afm − g∥ =
∣∣∣⟨g, u(m)

m+1

⟩∣∣∣ , (38)

where u
(m)
m+1 is defined as in Proposition 16.
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Figure 4: Plot of the singular values of the matrix Hm versus the iteration number m, for the
problem (21). The solid lines represent the singular values of the operator.

Proof. Since Afm − g ∈ Km+1 = span{u(m)
1 , . . . , u

(m)
m+1} we can write

Afm − g =
∑m+1

i=1

⟨
Afm − g, u

(m)
i

⟩
u
(m)
i . (39)

Moreover, using the condition Afm− g⊥AKm, and taking
{
v
(m)
i

}
i=1,...,m

as an orthonormal basis

for Km, we have ⟨
Afm − g,Av

(m)
i

⟩
= σ

(m)
i

⟨
Afm − g, u

(m)
i

⟩
= 0, i = 1, ...,m.

Using the above relation in (39) we obtain

Afm − g =
⟨
Afm − g, u

(m)
m+1

⟩
u
(m)
m+1.

The result then follows from the expansion

Afm = A
∑m

i=i

⟨
fm, v

(m)
i

⟩
v
(m)
i

=
∑m

i=i
σ
(m)
i

⟨
fj , v

(m)
i

⟩
u
(m)
i ,

which yields ⟨
Afm, u

(m)
m+1

⟩
= 0.

Observe that by Proposition 19 we can expect that

∥Afm − g∥ ≈ |⟨g, ψm+1⟩| ,
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Figure 5: GMRES residual history for the problem (5) on the left, and (21) on the right.

that is, {∥Afm − g∥}m≥1 is close to a ℓ 2p
2+p

sequence (cf. (10)). Similar arguments, but with a

completely different approach, where used in [8] in the finite dimensional case. Formula (38) is also
interesting since it allows to compare the GMRES with the truncated singular value decomposition,
TSVD. Indeed, the m-th TSVD approximation is given by

fTSV Dm =
∑m

j=1

⟨g, ψj⟩
σj

φj ,

so that ∥∥AfTSV Dm − g
∥∥ =

(∑
j≥m+1

|⟨g, ψj⟩|2
)1/2

.

In Figure 5 we report two experiments in which we plot the GMRES residual, comparing it
with the sequences {σm}m≥1, {hm+1,m}m≥1 and {|⟨g, ψm+1⟩|}m≥1. The comparisons (even on

other problems not reported) confirm the theoretical analysis of Section 4, and reveal that the
sequence {|⟨g, ψm+1⟩|}m≥1 well represents the GMRES behavior, especially for problems where
the singular values decay exponentially.

6 Conclusion

The results exposed in this paper represent a theoretical justification of some important properties
of the Arnoldi based methods already observed experimentally. We refer in particular to [6, 7, 18],
where many experiments concerning the rate of convergence of the Arnoldi methods and the
SVD approximation have been presented on some classical linear ill-posed problems. While not
considered in this paper, the use of the Arnoldi algorithm for solving the Tikhonov minimization is
fully justified for linear equations involving Hilbert-Schmidt operators, especially for what concerns
the parameter choice rule such as the L-curve analysis [9], the Generalized Cross Validation, or the
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Reginska criterium [20]. Indeed, the efficiency of these techniques is closely related to the efficient
approximation of the dominating singular values of the underlying operator.
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[12] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities. Second Edition. Cambridge University
Press, 1952.

[13] R. Herzog, E. Sachs, Superlinear convergence of Krylov subspace methods for self-adjoint
problems in Hilbert space, SIAM J. Numer. Anal. 53 (2015), 1304–1324.

[14] I. Moret, A note on the superlinear convergence of GMRES, SIAM J. Numer. Anal. 34 (1997),
513–516.

20



[15] O. Nevanlinna, Convergence of Iterations for Linear Equations. Birkhäuser, Basel, 1993.
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