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Abstract

The paper deals with the computation of functions of fractional powers
of differential operators. The spectral properties of these operators natu-
rally suggest the use of rational approximations. In this view we analyze
the convergence properties of the shift-and-invert Krylov method applied
to operator functions arising from the numerical solution of differential
equations involving fractional diffusion.

1 Introduction

Problems involving fractional powers of differential operators arise in various
fields of applications. As a model we can consider the space fractional Bloch-
Torrey equation involving the two dimensional fractional Laplacian operator:

∂

∂t
y(t, x) = −Kα(−∆)α/2y(t, x) + F (t, y(t)), t > t0, x ∈ Ω, (1.1)

y(t, x) = 0, x ∈ ∂Ω,

y(t0, x) = y0(x),

where Kα is a positive real parameter depending only on α, Ω is a bounded do-
main and the linear operator (−∆)α/2, with 1 < α ≤ 2, can be defined through
the eigenfunction expansion of the standard Laplacian by raising the eigenvalues
to the fractional power α/2. In this sense, the fractional Laplacian is identified
with the fractional power of the classical Laplacian with Dirichlet boundary
conditions (cf. [23, Definition 1]). In other words, the operator (−∆)α/2 plays
the role of a fractional differential operator (see [38, 39, 4, 40]). Such type of
models have been widely considered in describing the phenomenon of the anoma-
lous diffusion in various scientific areas. In the sequel we will consider also the
time-fractional counterpart of (1.1) where ∂

∂ty(t, x) is replaced by a fractional
Caputo’s derivative. Concerning the spatial discretization of the Laplacian, with
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homogeneous Dirichlet boundary conditions, classical finite differences lead to
a banded or block banded matrix A whose power Aα/2 is an approximation to
(−∆)α/2. This procedure, called ”matrix transfer technique”, was proposed in
[22, 23]. We remark that the fractional Laplace operator is alternatively defined
using the Fourier transform on an infinite domain [35]. Using such definition
and assuming to work with homogeneous Dirichlet boundary conditions, in [38,
Lemma 1] it has been proved that the definition used in the present paper is
equivalent to the Riesz fractional derivative, so that other kinds of discretization
are possible (see e.g. [33]).

Depending on the method used to solve (1.1), the approximate solution can
be expressed through functions of the standard Laplacian. We refer in particu-
lar to functions f(x), for x > 0, like (1+ txc)−1 or exp(−txc), t > 0, and similar
ones, where 1/2 < c ≤ 1 and assuming to work with the standard branches
of these functions. The presence of singularities as well as of branch cuts may
affect the performance of any approximation method. For the treatment of
some functions involving (−∆)α/2, the use of the Standard (polynomial) Krylov
Method (SKM) has been investigated in [39]. As it is well known such procedure
presents some drawbacks in dealing with discretizations of differential operators.
In this paper we consider in alternative the one-pole rational method usually
called the shift-and-invert Krylov Method (SIKM). We develop a convergence
theory assuming to work more generally with positive self-adjoint linear oper-
ators acting on suitable Hilbert spaces. The convergence theory embraces the
case of functions that can be represented either in the Stieltjes integral form or
in a more general Dunford-Taylor form.

The paper is organized as follows. In Section 2 we give an outline of some
widely used Krylov methods. In Section 3 we present a convergence analysis
for the SIKM. In Section 4 we discuss some cases related to problems like (1.1)
giving some hints about the proper choice of the pole. Practical a posteriori
error bounds that can be used to arrest the process are discussed in Section 5.
The results of some numerical experiments are reported in Section 6 .

2 Krylov approximations

Let X be a (separable) Hilbert space endowed with the scalar product ⟨·, ·⟩ and
norm ∥·∥, and let A be a positive self-adjoint closed linear operator with dense
domain D(A) ⊆ X and spectrum σ(A) ⊂ [a,+∞), for a > 0. Moreover we as-
sume that A has compact inverse. Since in practice we deal with discretizations
of differential operators, this turns out to be a realistic framework in order to
investigate the features of the SIKM. As mentioned, the fractional powers of
A can be defined by considering the orthonormal basis of eigenvectors uk ∈ X
corresponding to eigenvalues λ2k > 0, k = 1, 2, ... . Then, for 1

2 < c < 1, the
fractional power Ac is a self adjoint positive linear operator defined as

Acv =
∞∑
k=1

λ2ck bkuk,
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for any v =
∑∞

k=1 bkuk ∈ D(Ac), with D(A) ⊆ D(Ac) ⊆ X, where

D(Ac) =

{
v =

∞∑
k=1

bkuk :

∞∑
k=1

λ2ck |bk|2 < +∞

}
.

As it is well known, other definitions can be adopted (see [10, 27]).
From now on let Πk denote the set of the algebraic polynomials of degree

less or equal than k. We recall that Kk(T, v) = {p(T )v, p ∈ Πk−1} indicates
the k-th Krylov subspace associated with a linear operator T and a vector v.
Projections on such subspaces are widely used dealing with functions of large
matrices. For the computation of

y = f(A)v,

these procedures produce approximations of the type y = Ri,j(A)v, where Ri,j

is a rational function, i.e., Ri,j =
pi

qj
, pi ∈ Πi, qj ∈ Πj . More precisely, for k ≥ 1,

let Kk be a subspace of dimension k associated to a rational function of A and
let Vk : Ck → Kk be a linear operator, such that V ∗

k Vk = Ik (the identity in
Ck), where V ∗

k denotes the adjoint of Vk. Then

y = Vkf(Bk)V
∗
k v, (2.1)

can be taken as an approximation in Kk to y, provided that Bk ∈ Ck×k is
suitably defined.

Dealing with matrices, commonly used approaches are the Standard Krylov
Method (SKM), the Extended Krylov Method (EKM) and the the shift-and-
invert Krylov method (SIKM), often called restricted-denominator Arnoldi method.
These procedures belong to the class of the rational Krylov methods ([2, 17, 7,
8]).

The SKM yields polynomial approximations by projecting the problem onto
the classical Krylov spaces Kk(A, v). The EKM works on spaces generated
both by A and A−1, producing rational approximations where qj(x) = xj , and
i > j, usually i = 2j. The third method, the SIKM, gives one (repeated)-pole
rational approximations with i ≤ j, projecting the problem onto the Krylov
spaces associated to the resolvent

Z = (δI +A)−1, (2.2)

where δ is a suitable parameter.
In the matrix case, for functions like those we are interested in, the conver-

gence of the SKM may depend dramatically on the conditioning of the matrix
A (see e.g. [5, 6, 39]). In fact, denoting by λmin and λmax respectively its
minimum and its maximum eigenvalue, for the approximations in Kk(A, v) an

error like exp
(
−2k

√
λmin

λmax

)
may occur. A better behavior can be expected

from the EKM, introduced by Druskin and Knizhnerman in [6] (see also [26]
for extensions). Since the approximations are sought in K2k(A,A

−kv), that is,
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j = k, i = 2k, an O
(
exp

(
−2k 4

√
λmin

λmax

))
error can be predicted. If A represents

a discretization of an unbounded operator, then the convergence of both these
methods may degenerate as the discretization is improved. This reflects the fact
that if A is just the underlying unbounded operator then both the Standard and
the Extended Krylov subspaces can be defined only for sufficiently regular data,
as it occurs for any super-diagonal ( i > j) rational function of A. Moreover,
even if they are well defined, a loss of regularity occurs with respect to v.

The third approach, the SIKM, does not suffer of such drawbacks. Up from
the early papers [29] and [37] concerning the matrix exponential, various appli-
cations have been discussed in literature. However, few existing results apply
to our context.

In order to describe the SIKM, for a given v ∈ X and Z as in (2.2), let Kk =
Kk(Z, v), k ≥ 1. By the Arnoldi (Lanczos) algorithm we can build up an or-
thonormal sequence {vj}j≥1, such that for each k, Kk(Z, v) = span {v1, v2, ...., vk} , v1 =

v/ ∥v∥. Let Vk be represented by the matrix whose columns are such basis vec-
tors. Setting Hk = V ∗

k ZVk it holds that

ZVk = VkHk + hk+1,kvk+1(V
∗
k vk)

∗, (2.3)

where hk+1,k = v∗k+1Zvk > 0. Under our assumptions Hk is tridiagonal Hermi-
tian. In the original formulation of the SIKM, the matrix Bk in (2.1) is taken
as

Bk = H−1
k − δI. (2.4)

This corresponds to the SKM applied to the problem rewritten as y = u(Z)v,
where u(z) = f(z−1− δ). Observe that in the matrix case σ(Bk) ⊆ [λmin, λmax].

An often adopted alternative to (2.4) is

Bk = V ∗
k AVk. (2.5)

This formula is commonly used for defining rational Krylov methods. See [2]
for an implementation. It can be seen that both (2.4) and (2.5) satisfy

∥y − y∥ ≤ 2 ∥v∥ min
pk−1∈Πk−1

max
z∈σ(Z)∪σ((δI+Bk)−1)

|u(z)− pk−1(z)| . (2.6)

As a matter of fact, the two approaches give very similar results. Observe
that (2.4) avoids applications of A. Yet, it requires the use of H−1

k . In this
respect, in the self-adjoint case the situation simplifies, since Hk is Hermitian
and tridiagonal. Thus, if k is not very large, the method can be easily imple-
mented by means of the eigendecomposition. We point out that if A is an
operator, in order to use (2.5) we must require that Kk ⊂ D(A). On the other
hand, (2.4) can be used anyway, even if v /∈ D(A). In both cases, if defined, the
approximations possess at least the same regularity as v.

The SIKM, as well as the EKM, has the computational advantage that all
the linear systems to be solved share the same coefficient matrix. We notice that
for functions like those here considered, multi-pole rational approximations have
been proposed in [20, 18, 19].

5



3 A convergence analysis of the SIKM

In this section we will examine the convergence of the SIKM for functions related
to evolution problems like (1.1). Clearly, if u(z) = f(z−1 − δ) is continuous in
[0, 1

δ+a ] then (2.6) ensures the convergence as k → +∞. At first let us consider
the matrix case. In order to estimate the rate of convergence some classical
results of approximation theory can be employed, involving the well known
inverse Zhukovski function

Φ(ω) = ω +
√
ω2 − 1, ω ≥ 1. (3.1)

Proposition 3.1 Assume that σ(A) ⊂ [a, b]. For any given δ ≥ 0 assume that
u(z) = f(z−1−δ) is analytic for 0 < ℜz < δ−1 and continuous in [0, δ−1]. Then
for every integer k ≥ 1

min
pk−1∈Πk−1

max
z∈σ(Z)∪σ((δI+Bk)−1)

|u(z)− pk−1(z)| ≤ 2M
ρk

1− ρ
, (3.2)

where M = maxz∈[0,δ−1] |u(z)| and

ρ = max

(√
δ + b−

√
δ + a√

δ + b+
√
δ + a

,

√
b(δ + a)−

√
b(δ + a)√

b(δ + a) +
√
b(δ + a)

)
.

Proof 3.2 We can see that σ(Z) ∪ σ((δI + Bk)
−1) ⊂ [(δ + b)−1, (δ + a)−1].

Then, by a well-known bound given in [9] concerning Faber series, we realize
that

min
pk−1∈Πk−1

max
z∈[(δ+b)−1,(δ+a)−1]

|u(z)− pk−1(z)| ≤ 2M
Φ(ω)−k

1− Φ(ω)−1
,

where

ω = min

(
2δ + b+ a

b− a
,
b(δ + a) + a(δ + b)

b(δ + a)− a(δ + b)

)
.

This gives the bound.

In order to simplify the notation, from now on we will replace the current
index k with m+ 1, for m ≥ 1. Namely, setting Z = (δI +A)−1, δ ≥ 0, and re-
ferring to the notation of the previous section, let us consider the approximation
to y = f(A)v given by

y = Vm+1f(Bm+1)V
∗
m+1v, (3.3)

with Bm+1 = H−1
m+1 − δI or Bm+1 = V ∗

m+1AVm+1.

Optimizing the bound (3.2) by choosing δ =
√
ab, by (2.6) we get

∥y − y∥ ≤ 2M
4

√
b

a
exp

(
−2m 4

√
a

b

)
∥v∥ . (3.4)
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Observe that, for δ =
√
ab the condition number of δI + A is raised to 1/2

with respect to b
a . Anyhow, as b → +∞ (for a fixed a) the bound becomes

meaningless. In order to deal with this situation we resort to some integral
representations. In the sequel we will denote by C any positive constant inde-
pendent of the parameters involved.

At first we consider functions that can be represented in a Stieltjes integral
form

f(x) =

∫ ∞

0

g(λ)(λ+ x)−1dλ, x > 0, (3.5)

where g(λ) is such that the integral is absolutely convergent. The results
stated below extend directly, with the obvious changes, to more general Stieltjes
(Markov) formulations. The treatment of such cases by rational Krylov meth-
ods has been already considered in the literature. Among the others, we quote
[6, 26, 28, 31, 1, 2, 18, 19, 13]. We also quote the recent thesis [36], where new
results on polynomial and extended Krylov approximations to Stieltjes func-
tions are given. In particular in [36], as well as in [31, 13], restarted procedures
have been analyzed.

In the matrix case, error bounds for the SIKM can be found in [28, 31]. In
particular in [28] (see also [2, Section 6]) it was shown that, assuming σ(A) ⊂
[a, b], δ =

√
ab, Bm+1 = H−1

m+1 − δI, then for y defined by (3.3) we have

∥y − y∥ ≤ C exp

(
−2m 4

√
a

b

)
. (3.6)

We notice that such bound holds even for the EKSM, as shown in [6, 26]. Any-
how, the crucial issue is that the bound degenerates as the spectrum enlarges.
As mentioned, this is the situation we want to analyze in view to applications
involving differential operators. In [28] it was observed that the rate of con-
vergence of the SIKM actually turns out to be independent of the size of the
spectrum, provided that the parameter δ is properly chosen. The results given
below will clarify more precisely this point.

We point out that not all the functions of our interest can be represented
by a form (3.5). Simple examples are exp(−xc) with 1

2 < c ≤ 1, and more

generally the Mittag-Leffler functions Eβ(−xc), for β
2 +c ≥ 1 (see Section 4). In

order to treat these cases, we resort to a suitable Dunford-Taylor representation.
Precisely, for any ϑ ∈ (0, π2 ] let us consider the open sector

Σϑ = {λ ∈ C : λ = r exp(iφ) : r ∈ (0,∞), |φ| < ϑ} , (3.7)

and let Γϑ denote its boundary. Let us assume that f(λ) is analytic in C+ =
{λ : ℜλ > 0} and continuous on Γπ

2
= iR with |f(λ)| → 0 as |λ| → ∞ for

ℜλ ≥ 0. Under these assumptions y = f(A)v can be represented in the Dunford-
Taylor form

y =
1

2πi

∫
Γϑ

f(λ)(λI −A)−1vdλ, (3.8)

for any ϑ ∈ (0, π2 ]. Accordingly, the approximation (3.3) can be represented in
the same way. In order to simplify our analysis, below we will refer to ϑ = π

2 .
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We point out that analogous results could be obtained for other choices of ϑ.
Since we have supposed the function f to be analytic in C+, the analysis, with
the appropriate changes, could be carried out also for sectorial operators.

For λ /∈ [a,∞) we define the function

ω(λ) =
δ + 2a+ |a− λ|

|δ + λ|
, (3.9)

and for p > 1, q = p
p−1 , we set

cp = Γ(2(q − 1))
1
q ,

cp = Γ(2(2q − 1))
1
q ,

where Γ is the Gamma function. Moreover let Φ be defined by (3.1).
Now, referring to (3.3), we give some convergence results for the SIKM whose

proofs are reported in the Appendix.

Proposition 3.3 Assume σ(A) ⊂ [a,+∞), for a > 0. Let v ∈ X. For any
given δ ≥ 0 and m ≥ 1 take Km+1 = Km+1(Z, v), Bm+1 = H−1

m+1 − δI. For
some p > 1 and for any R ≥ δ, if y is defined by (3.5) assume that

sp =

(∫ ∞

R

|g(λ)|p dλ
) 1

p

<∞, (3.10)

and set

Sm(R) =

∫ R

0

|g(λ)| (λ+ a)−1Φ(ω(−λ))−mdλ ;

if y is defined by (3.8) with ϑ = π
2 then assume that

sp =

(∫ ∞

R

(|f(ir)|+ |f(−ir)|)p dr
) 1

p

<∞, (3.11)

and set

Sm(R) =

∫ R

0

|f(ir)|+ |f(−ir)|√
a2 + r2

Φ(ω(ir))−mdr.

Then in both cases we have

∥y − y∥ ≤ C ∥v∥ (Sm(R) +Km(R)), (3.12)

with
Km(R) = cpsp(R)(qm)−

2
p (δ + a)−

1
p .

The results below show that the rate of convergence of the SIKM can improve
with the regularity of the data, as it was pointed out for entire functions in [16].
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Proposition 3.4 Assume σ(A) ⊂ [a,+∞), for a > 0.Let v ∈ D(A). For any
given δ ≥ 0 and m ≥ 1 take Km+1 = Km+1(Z, v) and Bm+1 = V ∗

m+1AVm+1.
Then in both cases, defining sp as before and respectively

Sm(R) =

∫ R

0

|g(λ)| (λ+ a)−2Φ(ω(−λ))−mdλ,

Sm(R) =

∫ R

0

|f(ir)|+ |f(−ir)|
a2 + r2

Φ(ω(ir))−mdr,

we have
∥y − y∥ ≤ C ∥(A− aI)v∥ (Sm(R) +Km(R)), (3.13)

where
Km(R) = cpsp(R)(qm)−

2(p+1)
p (δ + a)−

p+1
p .

It is also interesting to observe that, as stated below, for regular data the
convergence occurs under weaker assumptions on g and f .

Proposition 3.5 With the notation of Propositions 3.4, assume that |g(λ)| ≤
M for all λ ≥ R in (3.5) or |f(ir)|+ |f(−ir)| ≤M for all r ≥ R in (3.8). Then
we have

∥y − y∥ ≤ C ∥(A− aI)v∥
(
Sm(R) +

Mm−2

δ + a

)
. (3.14)

Remark 3.6 For R ≫ δ + a, in the previous bounds we can take C ≈ 4 (see
the proofs in the Appendix).

The value of a can be any in the interval (0, λmin] where λmin stands for
the minimum eigenvalue of A. Thus, as expected, the bounds depend on λmin.
Nevertheless, we observe that referring to the differential operators of our in-
terest, this value remains uniformly bounded from below independently of the
quality of the discretization.

We notice that, for the implementation of the formulae, in evaluating Sm(R)
(or Sm(R)) by means of any composite quadrature rule, one can exploit the
behavior of the function ω. For instance, dealing with (3.5) we observe that
ω(−λ) is increasing for λ ∈ [0, δ] and decreasing for λ ∈ [δ,R]. Analogously,
referring to (3.8), assuming without loss of generality δ > 2a, one verifies that

ω(λ) is increasing in
[
0,
√
δ(δ − 2a)

]
and decreasing in

[√
δ(δ − 2a), R

]
. The

value of R should be taken sufficiently large, depending on the behavior of g or
f .

In summary, the above formulas say that the error can be bounded as

∥y − y∥ ≤ CρmR + CRm
−c,

for some 0 < ρR < 1 and c > 0, where the coefficients C and CR depend on g or
f . Moreover ρR → 1 and CR → 0 as R→ ∞. Thanks to the above observations,
considering (3.5) we have

ρR = max
{
Φ(ω(0))−1,Φ(ω(−R))−1

}
,
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whereas for (3.8), for δ > 2a,

ρR = max
{
Φ(ω(0))−1,Φ(ω(iR))−1

}
.

Since this holds for any operator with spectrum in [a,+∞), this means that
when the spectrum of A enlarges to infinity, a sublinear convergence term may
appear. Anyway, the rate of convergence cannot become arbitrarily slow.

As it was frequently observed, a priori bounds for Krylov methods often turn
out to be unreasonably rather pessimistic and this occurs also for the bounds
developed in this section. This is mainly due to the so-called adaptivity of the
methods to the spectrum. For discussions on this point we refer to [24, 25, 1].

4 Parameter selection and applications

Even if pessimistic, the a priori error bounds could give us some suggestions
about the choice of the parameter δ. For instance, one could minimize the bounds
for some suitable value of m and R, or one could simply balance the two factors
in ρR. For some specific functions, it is also possible to adopt values already
proposed in the literature (see [29, 37, 28, 32]. Referring to the matrix case,
the accuracy is also affected by the conditioning of δI + A. Thus, in choosing
the parameter δ, this issue should be taken into consideration. From this point
of view, a too small value of δ might be inconvenient. As observed, if σ(A) ⊂
[a, b], the choice δ =

√
ab allows to improve considerably the conditioning with

respect to the one of A. Indeed, Z can be viewed as a common preconditioner
for all the shifted matrices involved in the integral representations (see also
[37]). In this respect, referring to the Stieltjes formula, one can see that taking
δ =

√
ab, the spectral condition number of all the preconditioned matrices

Z(λI + A) = (λ− δ)Z + I (as well as that of δI + A) is less or equal to
√
b/a,

which can be reached at λ = 0 and for λ→ ∞.
In some cases a suitable choice of the parameter is suggested by the particular

function involved, as it occurs in those we consider below. As already mentioned
they concern functions related to numerical methods for solving initial value
problems of type (1.1) or their time-fractional counterparts. Without loss of
generality we set Kα = 1, for any for 1 < α < 2.

Example 4.1 In classical implicit one-step methods the solution of systems like
(I+tA

α
2 )y = v, for some t > 0, is required. By obvious reasons the computation

of A
α
2 should be avoided. The function f(x) = (1 + tx

α
2 )−1 is analytic with a

cut on the negative real axis. Accordingly (see [11, 27]), it can be represented in
the form (3.5) where

g(λ) = −ℑf(λeiπ)
π

, (4.1)

namely

g(λ) =
t sin(πα2 )

π

(
λ

α
2

1 + 2tλ
α
2 cos

(
πα
2

)
+ t2λα

)
. (4.2)

10



Clearly all the results in Section 3 apply. Note that |g(λ)| takes its maximum at

λ∗ = t−
2
α . It seems reasonable to pick just δ = λ∗, even more when α is close to

2. The aim of this choice is to minimize the error component corresponding to
the values of λ close to λ∗. This appears more evident looking at the equivalent
formula

f(x) =
sin(πα2 )

π

∫ ∞

0

(
λ

α
2

1 + 2λ
α
2 cos

(
πα
2

)
+ λα

)
(λ+ t

2
αx)−1dλ.

Example 4.2 The exponential-like functions called φ-functions are defined by

φ0(z) = exp(z),

φk(z) =
φk−1(z)− φk−1(0)

z
, φk(0) =

1

k!
, k ≥ 1.

As it is well known, they represent the core of the modern exponential integrators
(see [21] for a review). In order to apply such methods for solving (1.1), one
has to compute

yk(t) = tkφk(−tA
α
2 )v, t > 0,

for some given v and for some (small) values of k. Here we focus the attention
on φ0(−tA

α
2 ) = exp(−tAα

2 ) which is the analytical semigroup having A
α
2 as

its infinitesimal generator. Considering exp
(
−txα

2

)
, if α = 1 then it has the

Stieltjes representation (3.5) with

g(λ) =
sin(t

√
λ)

π
.

Clearly the assumptions of Proposition 3.3 do not hold. But, if v ∈ D(A) (or if
A is a matrix), then Proposition 3.5 applies and the convergence occurs. As an

alternative one could also use the function f(x) = 1−exp(−t
√
x)

x , which can be
represented (cf. [6]) as

f(x) =
1

π

+∞∫
0

sin(t
√
λ)

λ
(λ+ x)−1dλ, x > 0. (4.3)

For 1 < α < 2 we realize that |g(λ)| cannot be bounded in [0,∞) (see also
Example 4.3 below), since for x > 0, we obtain (see [11, 27])

exp
(
−xα

2

)
=

1

π

∞∫
0

exp
(
−λα

2 cos
(
απ
2

))
λ+ x

sin
(
λ

α
2 sin

(απ
2

))
dλ.

Therefore no result of Section 3 relative to the representation (3.5) can be used
for this form. Nevertheless we can resort to (3.8), with f(λ) = exp(−tλα

2 ),
since

∣∣exp(−tλα
2 )
∣∣ ≤ exp(−tr α

2 cos(α2 ϑ)), for t > 0 and for |ϑ| ∈ (0, π2 ]. Similar
considerations can be made for the functions φk for k ≥ 1. Even in this case
for small t a choice like δ = t−

2
α seems reasonable.
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Example 4.3 The above observations can be extended to the generalized Mittag-
Leffler (ML) functions depending on two positive real parameters β, γ. They
are defined by the series expansion

Eβ,γ(z) =
∑∞

k=0

zk

Γ(βk + γ)
, z ∈ C, (4.4)

where Γ denotes the gamma function. For 0 < β ≤ 1 and 1 < α < 2, they are
closely related to the fractional differential problem

0D
β
t y(t) +KαA

α
2 y = F (t), t ∈ [0, T ], (4.5)

y(0) = y0,

where Kα > 0 and 0D
β
t u(t) denotes the Caputo’s fractional derivative of order

β (cf. [34]). Setting Kα = 1, the solution to (4.5) can be expressed as

y(t) = Eβ,1(−tβA
α
2 )y0 +

∫ t

0

(t− s)β−1Eβ,β(−A
α
2 (t− s)β)F (s)ds.

In particular, for k = 0, 1, ... , we have∫ t

0

(t− s)β−1Eβ,β(−(t− s)βA
α
2 )skds = tβ+kEβ,β+k+1(−tβA

α
2 ).

Arguing as in [39, Proposition 4.4], it can be seen that Eβ,γ(−tβA
α
2 ) has the

Stieltjes representation (3.5) with

g(λ) = −
ℑEβ,γ(−tβλ

α
2 exp( iαπ2 ))

π
.

We recall that (cf. [34, Theorem 1.6]) if πβ
2 < arg(z) < π then it is

|Eβ,γ(z)| ≤
C

1 + |z|
. (4.6)

Therefore, as pointed out in [39] where the use of the SKM has been discussed,
we have

|g(λ)| ≤ C

1 + tβλ
α
2
,

provided that α + β < 2. Otherwise we have to adopt the representation (3.8)
with f(λ) = Eβ,γ(−tβλ

α
2 ). In fact, since α

2 + β < 2, from (4.6) we get

|f(λ)| ≤ C

1 + tβ |λ|
α
2
.

Thus the corresponding results stated in Section 3 can be applied. We point out
that the computation of ML functions, of scalar as well as of matrix argument,
has been recently addressed by various authors. See among the others [30, 15,
14, 39].

Observe that, due to (2.6), in all the three cases, for every δ and m the error
vanishes as the parameter t goes to zero.
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5 A posteriori error estimates

An important issue in the application of any approximation method is of course
the a posteriori error evaluation. An often adopted stopping criterium for Krylov
methods for f(A)v is based on the norm of the so called generalized residual.
Referring to the previous notations, this is given by

rm+1 = hm+2,m+1

∣∣< em+1, f(Bm+1)V
∗
m+1v >

∣∣ .
A similar residual-based estimator has been used in [19]. Unfortunately, sim-
ilarly to what happens for linear systems, it has been observed that in many
cases this error-estimate turns out to be unreasonably optimistic. Thus it is rea-
sonable to have at disposal some suitable a posteriori error bound for a check.

Employing the SIKM with Bm+1 = H−1
m+1− δI or Bm+1 = V ∗

m+1AVm+1, for
λ /∈ [a.+∞), let us set

D(λ) = (λI −A)−1 − Vm+1(λI −Bm+1)
−1V ∗

m+1. (5.1)

Observe that by the triangle inequality

∥D(λ)∥ ≤ 2

dist(λ, [a,∞))
. (5.2)

In this way we can express the error in the approximation of (3.5) and (3.8) in
the following forms respectively

y − y = −
∫ ∞

0

g(λ)D(−λ)vdλ, (5.3)

y − y =
1

2πi

∫
Γϑ

f(λ)D(λ)vdλ. (5.4)

By the theory before developed, we have to evaluate something like

∥y − y∥ =

∥∥∥∥∫
Γ

ψ(λ)D(λ)vdλ

∥∥∥∥ ,
for some contour Γ and a suitable function ψ. A well known result (see [3])
concerning the GMRES and the FOM applied to the linear system

((λ+ δ)−1I − Z)x = v,

yields the inequality

min
pm∈Πm

∥∥∥∥ pm(Z)v

pm((λ+ δ)−1)

∥∥∥∥ ≤ µm(λ),

where, for m ≥ 1 the non increasing sequence {µm(λ)} is defined by

µm(λ) =
ξm(λ)µm−1(λ)√
µm−1(λ)2 + ξm(λ)2

,

13



with µ0(λ) = ∥v∥ and, referring to (2.3),

ξm(λ) =

∣∣∣∣∣∣det((λ+ δ)−1I −Hm)−1
m∏
j=1

hj+1,j

∣∣∣∣∣∣ .
Accordingly, by (8.1) (see Lemma 8.1 in Appendix) we get

∥D(λ)v∥ ≤ ∥D(λ)∥µm(λ),

and we derive the a posteriori bound

∥y − y∥ ≤
∫
Γ

|ψ(λ)| ∥D(λ)∥µm(λ)dλ.

One can also make use of the inequality

µm(λ) ≤ µm,j(λ) :=
ξm(λ)µj(λ)√
µj(λ)2 + ξm(λ)2

, (5.5)

for any j ≤ m − 1. Having at disposal the eigenvalues of of Hm,, say ϑj , for
j = 1, , , .m, recalling that hj+1,j ≥ 0 we can compute ξm(λ) by

ξm(λ) =
|λ+ δ|m

∏m
j=1 hj+1,j∏m

j=1 |1− (λ+ δ)ϑj |
.

Dealing with formulas (3.5), using (5.2) and (5.5), from (5.3) we get the error
bound

∥y − y∥ ≤
∫ ∞

0

|g(λ)|
a+ λ

µm,0(−λ)dλ. (5.6)

On the other side, working with (3.8) and taking ϑ = π/4, that is, λ = re±iπ/4,
by (5.2) we have

∥D(λ)∥ ≤ 2√(
a√
2

)2
+
(
r − a√

2

)2
=

2
√
2√

a2 +
(√

2r − a
)2 ,

and therefore from (5.4) we have

∥y − y∥ ≤
√
2

π

∫ ∞

0

∣∣f (reiπ
4

)∣∣+ ∣∣f (re−iπ
4

)∣∣√
a2 +

(√
2r − a

)2 µm,0

(
rei

π
4

)
dr. (5.7)
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6 Numerical experiments

In this section we present the results of some numerical experiments. At first we
take −A obtained by central-differences discretization of the standard Laplacian
operator with homogeneous Dirichlet boundary conditions in one and two di-
mensions. In one dimension the spatial domain is the interval [0, 1], discretized
with N = 1600 equally spaced internal grid points, and the starting vector of
the Krylov process is the pointwise discretization of x(1−x). In two dimensions
we consider a uniform discretization of the square [0, 1] × [0, 1] with N = 2500
internal grid points. The starting vector is the discretization of xy(1−x)(1−y).
In Figures 1 and 2 we consider the computation of y = (I + tA

α
2 )−1v, for dif-

ferent values of α, by using the SIKM with δ = t−2/α and δ =
√
ab ( a = λmin,

b = λmax) and comparing it with the SKM. In Figures 3 and 4 we show the
same comparisons for the computation of y = exp(−tAα

2 )v.
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Figure 1: Convergence history for the computation of (I + tA
α
2 )−1v , one di-

mension, N = 1600.

Observe that for the two different values of δ considered, the shape of the
error curve are different. Both give a sufficiently fast convergence, even if the
value δ = t−

α
2 seems in general to work better. This was also confirmed by

other experiments we made with other values of t.
Figure 5 refers to the two dimensional case. Therein we report the a priori

bound (3.14) together with the a posteriori bounds (5.6) and (5.7), with δ =
t−2/α, again for the matrix functions considered above. We remark that all
the integrals involved in the bounds are numerically evaluated by means of a
composite Gauss-Legendre rule after suitable substitutions. The constant C in
(3.14) has been set equal to 4 (see Remark 3.6).

As expected, the a priori bounds are pessimistic. Nevertheless, we point out
that the a posteriori ones are fairly accurate.

Figures 6 and 7 concern the a priori bound (3.12), again with C = 4, on ar-
tificial examples. In order to simulate the spectral properties of self-adjoint
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Figure 2: Convergence history for the computation of (I+ tA
α
2 )−1v, two dimen-

sions, N = 2500.

unbounded operators, we consider diagonal matrices whose spectrum grows
quadratically with the dimension. Our aim is to show the sublinear conver-
gence whenever λmax → ∞, and that this convergence rate is well captured
by the a priori bound (3.12). This is particularly clear in Figure 6, where we
consider the computation of (I + tA

α
2 )−1v where

A = diag
(
k2
)
, k = 1, ..., N, (6.1)

and v = (1, ..., 1)T .
In Figure 7 we consider the computation of exp(−tAα

2 )v with

A =

(
diag (j)

diag
(
k2
) ) , j = 1, ..., N/2, k = N/2 + 1, ..., N, (6.2)

and v = (1, ..., 1)T . In this situation, the sublinear behavior is less evident
because of the nature of the underlying function, that is, because the error
rapidly goes to 0. Nevertheless also in this case the a priori bound is able to
describe rather well the rate of convergence for large values of N .

7 Conclusion

We have analyzed the convergence of the shift-and-invert Krylov subspace method
for functions of fractional powers of some differential operators. A priori error
bounds have been provided. Such bounds point out a possible sublinear conver-
gence of the method. Anyhow, they are independent of the size of the spectrum
of the involved operators. This implies that, dealing with discrertizations, the
rate of convergence cannot become arbitrarily slow as such discretizations are
refined. A posteriori bounds were also proposed to control the behavior of the
procedure.
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Figure 3: Convergence history for the computation of exp(−tAα
2 )v, one dimen-

sion, N = 1600.
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8 Appendix

Lemma 8.1 Referring to formulae (5.1), (3.1) and (3.9). Let v ∈ X, m ≥
1,Km+1 = Km+1(Z, v), Bm+1 = H−1

m+1 − δI. Then for every pm ∈ Πm we have

D(λ)v =
D(λ)pm(Z)v

pm((λ+ δ)−1)
. (8.1)

Let v ∈ D(A), m ≥ 1,Km+1 = Km+1(Z, v), Bm+1 = V ∗
m+1AVm+1, then (8.1)

holds and

D(λ)v =
D(λ)pm(Z)(A− aI)v

(λ− a)pm((δ + λ)−1)
. (8.2)

Moreover

min
pm∈Πm

max
z∈(0, 1

δ+a ).

∣∣∣∣ pm(z)

pm((δ + λ)−1)

∣∣∣∣ ≤ 2Φ(ω(λ))−m. (8.3)

Proof 8.2 Using the identities (λI − A) = (λ+ δ)I − Z−1 and λI −Bm+1 =
(λ+ δ)I−H−1

m+1 we realize that D(λ)(λI−A)Zpm−1(Z)v = 0 for every pm−1 ∈
Πm−1. Hence, we easily get (8.1). This follows similarly when v ∈ D(A) and
B = V ∗

m+1AVm+1. In order to get (8.2), let w = pm(Z)v and observe that

D(λ)w =
1

λ− a
((λI−A)−1(A−aI)−Vm+1(λI−Bm+1)

−1(Bm+1−aI)V ∗
m+1)w.

Hence, assuming that Bm+1 = V ∗
m+1AVm+1, then (8.2) follows. Finally (8.3)

follows from a well known result given in [12].

Proof 8.3 of Propositions 3.3. For the sake of clarity we consider the two cases
separately. Consider at first (3.5). We have

∥y − y∥ ≤ I1 + I2, (8.4)

where

I1 =

∥∥∥∥∥
∫ R

0

g(λ)D(−λ)vdλ

∥∥∥∥∥ ,
I2 =

∥∥∥∥∫ ∞

R

g(λ)D(−λ)vdλ
∥∥∥∥ .

By (5.2), for λ ≥ 0,
∥D(−λ)∥ ≤ 2/(a+ λ).

Since σ(Z) ⊂ (0, 1
δ+a ], by Lemma 8.1 we get

∥D(−λ)v∥ ≤ 4 ∥v∥Φ(ω(−λ))−m

a+ λ
, (8.5)

with

ω(−λ) = δ + 2a+ λ

|δ − λ|
. (8.6)
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Thus we obtain
I1 ≤ 4Sm(R) ∥v∥ . (8.7)

Using (8.6) for λ > R and recalling that for x ≥ 0

Φ(1 + x)−m ≤ C exp(−m
√
2x), (8.8)

we get

Φ(ω(−λ))−m ≤ C exp

(
−2m

√
δ + a

λ− δ

)
.

Then, by (8.5) we obtain

I2 ≤ C ∥v∥
∫ ∞

R

|g(λ)|
a+ λ

exp

(
−2m

√
δ + a

λ− δ

)
dλ.

Taking into account of (3.10), by Hölder inequality we get, for q = p
p−1 ,

I2 ≤ C ∥v∥ sp(R)

(∫ ∞

R

1

λq
exp

(
−2qm

√
δ + a

λ

)
dλ

) 1
q

= C ∥v∥ sp(R)
R

1
p

(∫ ∞

1

1

ξq
exp

(
−2qm

√
δ + a

ξR

)
dξ

) 1
q

≤ C ∥v∥ 2sp(R)

R
1
p

(∫ 1

0

x2q−3 exp

(
−2qmx

√
δ + a

R

)
dx

) 1
q

.

Observing that, for τ > 0 it is∫ 1

0

x2q−3 exp(−τx)dx ≤ τ−2(q−1)

∫ τ

0

t2q−3 exp(−t)dt (8.9)

≤ Γ(2(q − 1))τ−2(q−1), (8.10)

we obtain
I2 ≤ C ∥v∥Km(R).

Collecting this with (8.7) one proves the result.
Considering now (3.8) with Γ = iR, we realize that

∥y − y∥ ≤ 1

2π

∫ ∞

−∞
∥f(iλ)D(iλ)v∥ dλ,

and therefore

∥y − y∥ ≤ 1

2π
(I1 + I2), (8.11)
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where

I1 =

∫ R

0

(∥f(ir)D(ir))v∥+ ∥f(−ir)D(−ir)v∥)dr,

I2 =

∫ ∞

R

(∥f(ir)D(ir))v∥+ ∥f(−ir)D(−ir)v∥)dr.

By (5.2) we clearly have

∥D(±ir)∥ ≤ 1√
a2 + r2

.

Therefore, by Lemma 8.1 we now obtain

∥D(±ir)v∥ ≤ 4 ∥v∥Φ(ω(±ir))m√
a2 + r2

, (8.12)

where

ω(±ir) = δ + a+ |a∓ ir|
|δ ± ir|

.

Then I1 ≤ 4Sm(R) ∥v∥ . Moreover, one verifies that for r ≥ R it is

ω(±ir)) ≥ 1 +
δ + a

3r
.

Therefore, by (8.8) we have

Φ(ω(±ir))−m ≤ C exp

(
−m

√
2(δ + a)

3r

)
. (8.13)

Finally, by assumption (3.11), by (8.12) and (8.13) we obtain, for q = p
p−1 ,

I2 ≤ C ∥v∥ sp(R)

(∫ ∞

R

rq exp

(
−qm

√
δ + a

2r

)
dr

) 1
q

,

and, arguing as before, we finally have

I2 ≤ C ∥v∥Km(R). (8.14)

This concludes the proof.

Proof 8.4 of Proposition 3.4. The statement can be proved arguing as before
using now (8.2).

Proof 8.5 of Proposition 3.5. The proof follows from (8.4) and (8.11) using
again (8.2).
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