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Abstract

In this paper we introduce an explicit one-step method that can be
used for solving sti¤ problems. This method can be viewed as a modi�-
cation of the explicit Euler method that allows to reduce the sti¤ness in
some sense. Some numerical experiments on linear sti¤ problems and on
the Van der Pol�s equation show the e¤ectiveness of the method.

1 Introduction

Given a function f : R�RN ! RN , x0 2 R and a vector y0 2 RN , consider the
initial value problem (IVP)�

y0 (x) = f(x; y (x)); x > x0;
y (x0) = y0:

(1)

As well known, if (1) is sti¤, explicit methods generally provide a good approx-
imation of the solution only if the integration step is chosen very small, and
this choice is usually unfeasible from the computational viewpoint. For this
reason, implicit methods are generally used to face such problems, but they
require the solution of a nonlinear system of equation at each step. Obviously
this represents a serious drawback if N is large.
When f(x; y (x)) = Ay(x) + g(x), with A 2 RN�N constant coe¢ cients

matrix, and g : R ! RN , in order to overcome the drawbacks of the classical
explicit and implicit methods, in recent years some authors introduced new kind
of methods for (1), the so called exponential integrators, based on the polyno-
mial approximation of the evolution operator exp(hA), where h is the step size,
by means of a Krylov projection method (see e.g. [2], [3]), a series expansion
method ([1], [5], [6], [10]), or an interpolation method ([4], [7]). Such methods
generally performs better than classical explicit and implicit methods. Such im-
provement is substantially due to the fact that they are �problem dependent�, in
the sense that they provide a polynomial approximation pm(hA) of exp(hA) that
depends on the spectral property of A. In particular, Krylov projection methods
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de�ne pm as the polynomial that interpolates the exponential function at the so
called Ritz values of A. On the other hand, if 
 is a compact that approximates
the convex hull of the spectrum of A, �(A), series expansion methods de�ne pm
as the polynomial that approximates in some sense the exponential function in
h
, and interpolation methods de�ne pm as the polynomial that interpolates
the exponential in a suitable set of points that depends on 
. Anyway, these
classes of methods present also some disadvantages. Indeed, Krylov projection
methods are generally quite expansive, whereas series expansion methods and
interpolation methods are cheaper but require the initial localization of �(A).
One of the most important features of these methods, that is of particular

importance when they are applied to solve sti¤ problems, is that the coe¢ cients
of the polynomials pm depend on the stepsize h. As consequence, the corre-
sponding A-stability regions depend on h and the methods behave as they were
A-stable (see e.g. [3]). For the method we are going to introduce, we want to
maintain the above property of having the A-stability function depending on
the stepsize and on the problem. This will constitute the relationship between
our method and the exponential integrators.
Given xn > x0, n = 1; 2; :::, let yn be the approximation of y(xn) provided

by a certain discrete method. In the numerical implementation of any discrete
method, one usually has to adopt a certain stepsize control procedure in order
to maintain the local error less than a �xed tolerance �, i.e.,

kyn � y(xn)k � �; n = 1; 2; :::: (2)

This accuracy requirement obviously leads to a restriction of the stepsize hn =
xn�xn�1;, that is, hn � hn;�, n = 0; 1; :::. If the problem is sti¤, for any explicit
method hn;� is forced to be less than a certain quantity hs, i.e.,

hn;� � hs (3)

that obviously depends on the sti¤ness and the method used. On the other
side, working with an A-stable method one has more than what is necessary,
because the condition (3) is not present, but, except for some special cases, the
condition (2) does not allow to choose steps too large. Hence, the idea is to
de�ne an explicit method for which the sti¤ness does not force to maintain the
step sizes less than a �xed quantity hs. In other words, we want to create an
explicit method where (3) is replaced by a restriction of the type

hn;� � hn;s (4)

where hn;s can grow during the integration.
In order to do this, in this paper we introduce a new one-step explicit method

that can be considered �problem dependent�, designed in particular to face sti¤
IVPs. We consider a modi�cation of the Euler method of the type

yn+1 = yn + hn'(hn;Mn)f(xn; yn); (5)

where Mn 2 RN�N and ' : R� RN�N ! RN�N is de�ned by

'(hn;Mn) := (1 + hn) (1 + hnMn)
�1
:
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For a such kind of method, the A-stability region depends on hn and Mn. As
we shall see, the matrixMn can be chosen in order to enlarge or also restrict the
A-stability region dynamically during the integration in a close connection with
the accuracy requirement (2). As already said, the aim is to create an explicit
integrator for which the restriction (3) is remarkably relaxed. Indeed, we shall
demonstrate that de�ning suitably the matrix sequence fMngn�0 the method
(5) will be asymptotically stable under the stepsize condition

hn � chn�1; c > 1: (6)

Because of (6), such a method can be considered as an intermediate approach,
between the explicit and the backward Euler methods.
Regarding the construction of the matrix sequence fMngn�0, we want that

such matrices have the properties of scaling the problem eliminating in some
sense the sti¤ness, or, in other words, preconditioning the problem. As we shall
see there are many ways to de�ne such matrices, but most of them require
additional work, such as approximating the inverse of the Jacobian of f , or
approximating its eigenvalues. Since we want to avoid such computations, we
shall create an automatic procedure that, starting from M0 = IN (identity
matrix of orderN), dynamically updateMn using some informations on the local
error. Mn will be maintained diagonal so that the computation of '(h;Mn) will
not represent a signi�cant additional cost. As we shall see, the only additional
cost will be due to two further evaluation of f .
The paper is organized as follows. In Section 2 we de�ne the scaled Euler

method and in Section 3 we study the linear stability. In Section 4 we de-
scribe the algorithm that de�nes the matrix sequence fMngn�0 and study the
asymptotic stability corresponding to this choice. In Section 5 we present some
numerical details and the �nal algorithm that was used for the numerical exper-
iments of Section 6. Finally, in Section 7 some ideas to extend the properties of
the scaled Euler method to higher order one-step methods are presented.

2 The scaled Euler method

Consider the method (5)

yn+1 = yn + h'(h;Mn)f(xn; yn);

where h is the step size that, at the moment, we consider constant,Mn 2 RN�N
and '(h;Mn) 2 RN�N . Clearly, depending on ', such a method can be of order
p = 0 or p = 1. In order to have p = 1, we must require that

lim
h!0

'(h;Mn) = IN ; (7)

where IN denotes the identity matrix of order N . Moreover, with the aim of
�scaling�the problem, we require that

lim
h!1

'(h;Mn) =M�1
n : (8)
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The relations (7) and (8) lead to de�ne

'(h;Mn) := (1 + h) (1 + hMn)
�1
: (9)

Due to the condition (8) we call scaled Euler method the corresponding method

yn+1 = yn + h (1 + h) (1 + hMn)
�1
f(xn; yn): (10)

Clearly, the choice (9) is only one among the possible choices of ' that satisfy
the requirements (7) and (8).

3 Linear stability

In order to understand the reasons that lead us to introduce a method of type
(10), and in particular, in order to understand the requirement (8), let us con-
sider the linear stability properties of this method.
Consider the scalar test IVP�

y0 (x) = �y (x) ; x > 0;
y (0) = 1;

(11)

where � 2 C� := fz 2 C : Re z < 0g. Applying the scaled Euler method (10)
to (11) with Mn :=M 2 R, M > 0, and ' : R2 ! R, the A-stability function is
given by

R(h; �;M) := 1 + h�
1 + h

1 + hM
:

Hence, the corresponding A-stability region

S(h;M) := fh� 2 C : jR(h; �;M)j � 1g

depends on h and M , and it is easy to see that S(h;M) is a circle of radius

�(h;M) :=
1

'(h;M)
=
1 + hM

1 + h

centered at the point ��(h;M). In this way, by (7), S(h;M) tends to the A-
stability region of the Euler method for h! 0, and, for h!1, S(h;M) tends
to the circle of radius M and centered in �M .
Just to have an example, if � = r exp(i�), where r > 0, �=2 < � < 3�=2,

de�ning
M := � r

cos �
> 0; (12)

one gets a method that is asymptotically stable for each h � 1, because���R(h; r exp(i�);� r

cos �
)
��� � 1

for

h � h�; with h� :=
1

2

 
1 +

r
1� 8 cos �

r

!
� 1;

4



for r > 0; �=2 < � < 3�=2. Hence, in a certain sense the sti¤ness has been
eliminated, because we are not forced to use a small step even when r is very
large, or, in other words, the choice of h has become independent of the problem.
De�ning M > � r

cos � the A-stability region becomes larger, but the approx-
imation of exp(h�) becomes worse for small values of h. In fact, if we consider
for instance the real case � = �, � = �r, solving with respect to x the equation����exp(�hr)� �1� hr 1 + h1 + hx

����� = 0
we get

x = x(h; r) = 1 +
r

2
+
1

12
r(r + 6)h+O(h2):

Hence, de�ning

M =M(h) := 1 +
r

2
+
1

12
r(r + 6)h; (13)

that tends to 1 + r=2 for h ! 0, the corresponding method is very e¢ cient
because it allows to get an approximation of the exponential of order 3

exp(�hr)�
 
1� hr 1 + h

1 + h
�
1 + r

2 +
1
12r(r + 6)h

�! = 1

12
c3h4 +O(h5): (14)

Moreover, with this choice ofM depending on h, we obtain a method A0-stable,
because �����1� hr 1 + h

1 + h
�
1 + r

2 +
1
12r(r + 6)h

� ����� � 1
for each h � 0, r � 0.

4 The de�nition of Mn

The expressions (12) and (13) given as possible de�nitions forM are interesting
only from a theoretical viewpoint, because we were considering the simple scalar
problem (11). For N -dimensional nonlinear problems (1), such expressions have
no signi�cance unless the problem is approximated using the Jacobian of f . In
any case, even considering linear problems of the type�

y0 (x) = Ay(x) + g(x);
y (x0) = y0;

(15)

where A 2 RN�N and �(A) � C�, the use of (12) or (13) would require the
inversion of A, so that the method cannot be considered explicit anymore.
Of course, a possible alternative consists in using an approximation of A�1,

that, in the nonlinear case, would require the computation of the Jacobian of
f and the approximation of its inverse at each step. Anyway, intuitively, such
kind of approach should not provide an e¤ective improvement with respect to
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any implicit method based on the same approximation. Another way consists
in de�ning M equal to the diagonal matrix having kAk (here k�k denotes a
certain arbitrary natural matrix norm) as diagonal elements. This is equivalent
to consider M scalar equal to kAk, and ' : R2 ! R. If A is symmetric, by
previous section we know that this choice guarantees asymptotic stability for
h � 1, but can lead to poor results in the approximation of the components of
the solution with respect to the smallest eigenvalues of A. In the nonlinear case
this choice obviously requires the evaluation of the Jacobian. Another possible
choice ofM , consists in de�ning it as a diagonal matrix whose diagonal elements
are approximation of the modulus of the eigenvalues of A. Also this choice could
present a lot of problems for large systems, especially in the nonlinear case.
In order to avoid all these drawback, our idea is to de�ne a sequence fMngn�0

of diagonal matrices without using any informations on f (or A in the linear
case). Starting from M0 equal to the identity matrix of order N (i.e., starting
with the explicit Euler method), we want to de�ne dynamically Mn by moni-
toring the local error.
Given yn, h, Mn, let �(xn+h; h;Mn) and �(xn+h; h=2;Mn) be the approx-

imations of y(xn + h) furnished by the method (10) with stepsizes h and h=2
respectively. As well known it is possible to estimate the local error by means
of

e(xn + h; h;Mn) := �(xn + h; h;Mn)� �(xn + h; h=2;Mn); (16)

and we suppose that we are using a step size control technique that, by moni-
toring the quantities (16), allows to obtain hn such that

ke(xn + hn; hn;Mn)k1 � � (17)

where � is a �xed tolerance.
In order to de�ne Mn+1, let 
; � 2 R be such that 
 > 1, 0 < � < 1. We

compute two further approximations �(xn+hn; hn;M 0) and �(xn+hn; hn=2;M 0)

of y(xn + hn) with M 0 :=Mn
. For i = 1; 2; :::; N , let M
(i)
j be the i-th element

of the diagonal of Mj , j = 0; 1; :::, and let v(i) be the i-th element of a vector
v 2 RN . We de�ne

M
(i)
n+1 :=

(
M

(i)
n 
 if

��e(i)(xn + hn; hn;M 0)
�� < ��e(i)(xn + hn; hn;Mn)

��
max

�
1;M

(i)
n �
�

if
��e(i)(xn + hn; hn;M 0)

�� > ��e(i)(xn + hn; hn;Mn)
��

(18)
In doing so, we create an automatic procedure that can be applied to both linear
and nonlinear case, that requires at each step only two additional approxima-
tions, but no inversion nor eigenvalue estimation.
In order to understand how the de�nition (18) of the matrix sequence fMngn�0

re�ects on the asymptotic stability of the method, examine the scalar test equa-
tion (11). Under the hypothesis that hn has been chosen such that the relation
(17) holds, if we de�ne Mn+1 as stated in (18), we want to understand how
large it is possible to choose hn+1 in order that����1 + hn+1� 1 + hn+1

1 + hn+1Mn+1

���� � 1: (19)
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The following lemma can be demonstrate by direct computation.

Lemma 1 Given �;Ma;Mb > 0, we have����1 + h� 1 + h

1 + hMa

���� = ����1 + h0� 1 + h0

1 + h0Mb

����+ � (20)

for h0 > 0 given by

h0 := c(h;Ma;Mb)h�K� +O(�2); (21)

where K > 0 and

c(h;Ma;Mb) :=
1

2h

0@h 1 + h

1 + hMa
Mb � 1 +

s�
h
1 + h

1 + hMa
Mb � 1

�2
+ 4h

1 + h

1 + hMa

1A
(22)

that satis�es the relations

c(h;Ma;Mb)

�
� 1 for Mb �Ma

< 1 for Mb < Ma

and

lim
h!1

c(h;Ma;Mb) =
Mb

Ma
:

Proposition 2 For the (11) assume that at each step

je(xk + hk; hk;Mk)j � � jykj ; k � 0:

If ����1 + hn� 1 + hn
1 + hnMn

���� � 1 (23)

then ����1 + hn+1� 1 + hn+1
1 + hn+1Mn+1

���� � 1
for

hn+1 := 2c(hn;Mn;Mn+1)hn �K�; (24)

where K > 0.

Proof. Since hn+1 is such that

je(xn+1 + hn+1; hn+1;Mn+1)j � � jyn+1j ;

we have�����1 + hn+1� 1 + hn+1
1 + hn+1Mn+1

�
yn+1

���� � je(xn+1 + hn+1; hn+1;Mn+1)j+�����
 
1 +

hn+1
2

�
1 + hn+1

2

1 + hn+1
2 Mn+1

!
yn+1

�����
�

 
� +

�����1 + hn+1
2

�
1 + hn+1

2

1 + hn+1
2 Mn+1

�����
!
jyn+1j :(25)
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Therefore, by (23) and Lemma 1 we get the thesis.
Hence, under the assumption that � is chosen very small, without making any

consideration about the values of 
 and �, we can observe that if Mn+1 �Mn,
since c(hn;Mn;Mn+1) � 1 for each value of hn, we can double the stepsize
maintaining the asymptotic stability requirement (19).
In order to de�ne suitably the values of 
 and �, it is important to investigate

the behavior of the function c(h;Ma;Mb). To this purpose, in the following two
pictures we consider two plots of this function. In the �rst one (Fig.1) we
consider Ma > Mb, and in the second one (Fig.2) Ma < Mb.
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Fig.1

Looking at the case of Ma > Mb, we observe that the curve of c(h;Ma;Mb)
moves upward for Mb !Ma. Since we want the restriction (24) not too strong,
the idea is to de�ne � and then Mn+1 such that the curve remains above a
certain value 1=2 < � < 1. In this way, by (24) we can maintain the asymptotic
stability requirement with hn+1 not less than hn. In order to do this, it is easy
to show that the function

d( ) := c(h;Ma;Ma );  � 0;

is a monotone increasing function. Solving with respect to  the equation

d( )� � = 0;

we get

 =  (h; �;Ma) =
h2�2Ma + h�Ma � 1 + �� h+ h�2

h�Ma(1 + h)
: (26)

This means that, given hn, Mn, choosing � such that

 (hn; �;Mn) � � < 1 (27)

and de�ning Mn+1 := Mn� allows to have c(hn;Mn;Mn+1) � � and therefore
the condition that ensure (19) becomes

hn+1 � 2�hn: (28)
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It is possible to demonstrate that, if for a given � and h,  is negative, then
c(hn;Mn;Mn+1) � � for each � � 0. Summing up the above arguments, in
order to realize the restriction (28) with � �xed a priori, in general we cannot
maintain � constant during the procedure, but we have to de�ne it using (27).
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Regarding the caseMa �Mb, as stated in Lemma 1 we have c(h;Ma;Mb) �
1 and

lim
h!1

c(h;Ma;Mb) =
Mb

Ma
:

As we can see in the picture above, the functions get a maximum value m > Mb

Ma

for small value of h. However, this does not happen when Ma is small, as we
can see in the picture below (Fig.3).
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In fact, solving with respect to h the equation

c(h;Ma;Mb) =
Mb

Ma
=: 
;
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we �nd
h =

1


(Ma � 1)� 1
: (29)

Fixed 
, by (29) we must have

Ma 6=M
 :=

 + 1



> 1: (30)

Hence, for each h � 0, we have that

c(h;M;M
) < 
 for M �M


and
lim
h!1

c(h;M;M
) = 
:

Since we start with M0 = 1, for a given �xed 
, until Mn is no longer larger
than M
 we have c > 1, but not c > 
. If M > M
 , since asymptotically
c(h;M;M
) > 
, we know that when the step is su¢ ciently large, the restriction
(24) becomes

hn+1 � 2
Mn+1

Mn
hn = 2
hn: (31)

Alternatively, one can also require that

c(hn;Mn;Mn+1) � � > 1:

In order to obtain this, as before, one can chose 
 �  (hn; �;Mn) and de�ne
Mn+1 :=Mn
 that lead to hn+1 � 2�hn. Anyway, this choice can be dangerous
because it can lead to values for 
 too large, that can determine instability.

5 Numerical implementation

Regarding the practical implementation of the scaled Euler method, the step
size control procedure we use is the Richardson extrapolation as explained in
[9]. In particular, let " be the tolerance for the local error and let hn�1 be the
previous stepsize used for computing yn. On the basis of what stated in the
previous section, we �x initially h := 2
hn�1 and compute �(xn+h; h;Mn) and
�(xn + h; h=2;Mn). Then, we solve with respect to h0 the equation

h

h0
=

�
2
ke(xn + h; h;Mn)k1

"

� 1
2

(32)

where e(xn + h; h;Mn) is de�ned by (16). If h >> h0 then we de�ne h :=
2h0 and recompute �(xn + h; h;Mn) and �(xn + h; h=2;Mn). We repeat the
procedure until h � 2h0 and then de�ne hn := h and the new approximation
yn+1 := �(xn + h; h;Mn). Note that the last values �(xn + hn; hn;Mn) and
�(xn + hn; hn=2;Mn) will be used to de�ne Mn+1.
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The following algorithm summarizes the practical implementation of the
scaled Euler method with the adaptive construction of the matrix sequence
fMngn�0.
Algorithm
1. given ", h0, 
, �, M0 equal to the identity matrix of order N , n := 0;
2. while xn � xf

3. n := n+ 1, h := 2
hn�1;
4. compute �(xn + h; h;Mn) and �(xn + h; h=2;Mn);
5. compute h0 using (32);
6. if h >> 2h0, then h := 2h0, go to 4;
7. if h � 2h0, yn+1 := �(xn + h; h;Mn), hn := h;
8. de�ne M 0 :=Mn
 and compute

�(xn + hn; hn;M
0) and �(xn + hn; hn=2;M 0);

9. for i = 1; :::; N , compute �i =  (h; �;M
(i)
n ) and de�ne

M
(i)
n+1 :=

(
M

(i)
n 
 if

��e(i)(xn + hn; hn;M 0)
�� < ��e(i)(xn + hn; hn;Mn)

��
max

�
1;M

(i)
n �i

�
if

��e(i)(xn + hn; hn;M 0)
�� > ��e(i)(xn + hn; hn;Mn)

�� ;
10. xn := xn + hn;

11. end

6 Numerical examples

In this section we want to test our method on some simple sti¤ problems. The
aim is to put in evidence some of the characteristics of the scaled Euler method.
Besides the trend of the step size, we want moreover to monitor the evolution
of the matrix sequence fMngn�0.

Problem 1

In this �rst example we consider the scalar test equation (11) with � :=
�1000. We want to integrate it from x0 = 0 to xf = 400, with initial condition
y(0) = 1. Fixed the tolerance " = 10�5, in Fig.4 we can see the curve of the
step size chosen by the method and the curve that represents the evolution of
the sequence fMngn�0. The method is implemented with 
 = 1:1 and � = 0:95
and requires 124 steps.
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Fig.4-a Step size for Problem 1
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Fig.4-b fMngn�0 for Problem 1

As we can understand looking at Fig.4a, after the brief transient phase the
step size become very large. In particular, during the stationary phase, the
accepted steps grow with the relation hn+1 = 2
hn (namely, with the maximum
step size admitted), because fMngn�0 grows monotonically.
In the pictures below (Fig.5), we observe the accepted steps an the values

of fMngn�0 during the brief transient phase. It is interesting to observe the
condensation around the value 500 of the �rst values of the sequence fMngn�0.
This is due to the approximation (14), and con�rms that the way chosen to
de�ne such sequence is correct.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10 ­3

x

st
ep

 s
iz

e

Fig.5-a Step size in the transient phase
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Fig.5-b fMngn�0 in the transient phase

In the complex case with � := �1000 + 500i, integrating from 0 to 100 with
the same initial condition and the same values of ", 
 and �, the Scaled Euler
requires 234 steps, and the curve of the step size is very similar to that of the
above real case. Indeed, in the stationary phase the accepted steps follow the
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relation hn+1 = 2
hn. During the transient phase, the evolution of fMngn�0
does not take into account of the imaginary part of �, in the sense that there is
a condensation around 500 as before.

Problem 2

Consider the problem�
y0 (x) = A(y(x)� vF (x)) + vF 0(x);
y (x0) = y0;

where

A :=

�
�1670 830
1660 �840

�
; v :=

�
1
1

�
; F (x) := cos(x) exp(�2x); y0 :=

�
2
2

�
:

The solution is given by y (x) = exp(Ax) + vF (x). The eigenvalues of A are
�1 = �2500, �2 = �10. Integrating this equation from 0 to 100 with " = 10�5,
in Fig.6-a we can see the step curve of the scaled Euler method implemented
with 
 = 1:2 and � = 0:95.
Even if the last steps accepted are very large, the method requires 1293

steps to perform the integration. As we can understand looking at Fig.6-b, and
remembering that we are working with a method of order 1, the large number
of steps is due to long transient phase of the solution, caused by �2.
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Fig.6-a Step size for Problem 2
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Fig.6-b Step size in the transient phase

Problem 3

Consider the heat equation

@u

@t
��u = 0 in (0; T )� 
;

u = 0 on (0; T )� @
;
ujt=0 = u0 on 
;
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where � is the two dimensional Laplacian operator, 
 = (0; 1)2, @
 is the
boundary of 
 and u0 is a given function. Discretizing this equation with the
method of lines using central di¤erences on a uniform meshgrid of meshsize
h = 1=(n+ 1), we get an ordinary di¤erential equation of the type�

y0 (t) = Ay(t);
y (0) = y0:

with A 2 Rn2�n2 . As is well known, with the above discretization, A is a
symmetric matrix and �(A) is contained in the real interval [�4(n + 1)2(1 +
cos(�=(n + 1));�4(n + 1)2(1 � cos(�=(n + 1))]: Choosing n = 10 (that implies
�min � �948:4 and �max � �19:6) and initial condition y0 = (1; 1; :::; 1)T =n we
integrate the above equation from 0 to 10. Fixed the tolerance " = 10�5 in Fig.7
is shown the curve of the step size chosen by the method, that is implemented
with 
 = 1:05 and � = 0:95. The integration requires 314 steps.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

x

st
ep

 s
iz

e

Fig.7 Step size for problem 3

As expected, the method is able to detect when all the components of the
solution become smooth, allowing the growth of the step size.

Problem 4

In the last example we consider the van der Pol�s equation

y01(x) = y2(x);

y02(x) = �(1� y21(x))y2(x)� y1(x);

with initial conditions y1(0) = 2, y2(0) = 0. As is well known, for large values
of �, the problem becomes very sti¤. In our test we de�ne � = 500. For this
problem we choose " = 10�5, 
 = 1:05 and � = 0:95. Integrating this equation
from 0 to 450, in Fig.8 is plotted the numerical solution of the equation. This
integration requires about 9000 steps, but, as we shall see, this large number of
steps is not due to the sti¤ness nor to the nonlinearity of the problem, but only
to the order of the method.
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Fig.8 Numerical solution of Problem 4

In Fig.9 we can see the plots of the step size and of the sequence fM (2)
n gn�0

(the sequence fM (1)
n gn�0 is forced to stay closed to 1 on the whole interval). By

comparing the solution with the pictures here below we can perfectly understand
how the method works. As in the previous cases, we can observe that the
sti¤ness is weakened by the method because when the solution is smooth, the
method automatically allows the growth of the step size and the values of the
sequence fM (2)

n gn�0. On the other side, we can also observe that approaching
the steepest part of the solution (around the point x = 400), the step size is
drastically reduced and the sequence fM (2)

n gn�0 is forced to go back to 1, so
that the method behaves very similarly to the standard explicit Euler method.
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Fig.9-a Step size for Problem 4
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7 Possible extension to higher order methods

The numerical experiments of previous section con�rm that the scaled Euler
method constitutes an interesting issue to face sti¤ problems. However, being a
one-order method, it cannot be competitive with other higher order sti¤ solvers
such as the well known Rosenbrock method, especially where the solution is
highly varying. In order to overcome this drawback, in this section we want to
propose an idea to extend the main features of the scaled Euler method to build
higher order methods. The idea is to de�ne a new class of explicit Runge-Kutta
methods, or, to be more precise, to extend the class of Runge-Kutta methods.
As is well known, an explicit � -stages Runge-Kutta method can be written

in the following form
yn+1 = yn + h

X�

j=1
cjKj ; (33)

where cj 2 R, j = 1; :::; � , and, as usual,

K1 = f(xn; yn);

Kj = f(xn + ajh; yn + h
Xj�1

s=1
bjsKs); j = 2; :::; � ; (34)

with aj ; bjs 2 R� j = 2; :::; � , s = 1; :::; j � 1. In order to face sti¤ problems,
generalizing the construction of the scaled Euler method, the idea is to de�ne
cj = cj(h;M), j = 1; :::; � , as suitable functions of h and M , where M is chosen
to scale the problem and can also be dependent on n. The coe¢ cients aj and
bjs can be maintained constant.
From now on we always assume cj = cj(h;M), j = 1; :::; � . We want to de�ne

these functions such that for � � 4 the A-stability function of the corresponding
method is of the form

� = 2 : R2(h; �;M) := 1 + h�'2 +
h2�2

2
'22

� = 3 : R3(h; �;M) := 1 + h�'3 +
h2�2

2
'23 +

h3�3

6
'33

� = 4 : R4(h; �;M) := 1 + h�'4 +
h2�2

2
'24 +

h3�3

6
'34 +

h4�4

24
'44

where

'2 = '2(h;M) :=
1 + h2M

1 + h2M2
;

'3 = '3(h;M) :=
1 + h3M2

1 + h3M3
;

'4 = '4(h;M) :=
1 + h4M3

1 + h4M4
:

In this way, it is easy to prove that for � � 4 we obtain a method of order �
with an A-stability region that, if M > 1, is larger than the A-stability region
of a � -order explicit Runge-Kutta method.
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Example 3 Just to give an example, for � = 2 the order conditions become

c1 + c2 = '2;
a2c2 =

1
2'

2
2:

With the above two conditions, we can create, for instance, the methods de�ned
by the Butcher arrays

0 0 0
1=2 1=2 0

'2 (1� '2) '22

;
0 0 0
1 1 0

'2
�
1� 1

2'2
�

1
2'

2
2

that are obtained setting a2 = 1=2 and a2 = 1 and that can be viewed as a scaled
generalized Euler method and as a scaled Heun method respectively.

A rigorous analysis of the ideas proposed in this section is now in progress.
A number of numerical experiments in which the above two method were imple-
mented replacing the constant M with the matrix sequence fMngn�0 de�ned
using a stepsize control technique as for the scaled Euler method, have already
revealed that these methods actually work very well.

8 Conclusions

The numerical experiments presented in the paper show that the scaled Euler
method can be used to solve sti¤ problems. The method is able to detect
where the solution is smooth, allowing the growth of the step size. Indeed, the
A-stability region varies dynamically with the solution: it is large where the
solution is smooth, and it collapses to the circle centered in �1 and radius 1
during the transient phases, in a close connection with the accuracy require-
ments. Since the method is explicit, the most important feature with respect to
other sti¤ solvers regards the computational cost. Whenever one has to solve
sti¤ initial value problems arising from the discretization of partial di¤erential
equations the use of a standard sti¤ solvers can be extremely expansive because
of the dimension of the problem. If we consider, as example, the Rosenbrock
method applied to problem 3 (as implemented in the ODE23S Matlab rou-
tine, see [8]) with the same accuracy requirement used above (i.e., the absolute
tolerance " = 10�5), the integration requires 55 steps whereas the scaled Euler
method 314. As is well known the computational cost of the Rosenbrock method
is essentially that of an inversion (LU factorization) at each step. Hence, we
have 55 inversions versus 314 matrix-vector multiplication; even considering the
particular sparsity pattern of the matrix, the scaled Euler method is surely
cheaper.
As mentioned in the introduction, in order to overcome the problem of the

computational cost of the classical implicit methods, the exponential integrators
based on Krylov projection techniques or other approximation techniques seems
to be quite e¤ective. However, contrary to the classical methods as well as the
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scaled Euler method, these methods are not able to face nonlinear problems
unless a preliminary linearization is made.
Concluding, we want to say that when a rigorous analysis about the possible

extension to higher order methods of the basic features of the scaled Euler
method will be ready, such methods will constitute an e¤ective alternative to the
classical sti¤ solvers, especially for large dimensional problems. The basic point
is that when solving a certain problem the accuracy requirement introduces an
upper bound for the feasible step size. Hence, using a classical implicit method,
the possibility of having arbitrary large step sizes (allowed by the fact that it
makes inversions) is not so important. In the author�s opinion, it is much more
important to be able to solve a sti¤ problems e¢ ciently, without solving one or
more linear systems at each step.
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