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Abstract

We consider the numerical solution of the fractional order epidemic

model on long time-intervals of a non-fatal disease in a population. Under

real-life initial conditions the problem needs to be treated by means of an

implicit numerical scheme. Here we consider the use of implicit fractional

linear multistep methods of Adams type. Numerical results are presented.
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1 Introduction

The problem of spreading of a non-fatal disease in a population which is assumed
to have constant size over the period of the epidemic can be formulated in terms
of the following first order model (see [1])







x′(t) = −βx(t)y(t)
y′(t) = βx(t)y(t) − γy(t)
z′(t) = γy(t)

(1)

with initial conditions

x(t0) = N1 ≥ 0, y(t0) = N2 ≥ 0, z(t0) = N3 ≥ 0, (2)

where, at time t ≥ t0, x(t) is the number of susceptible individuals, y(t) is
the number of infected individuals, able to spread the disease by contact with
susceptible ones, z(t) is the number of isolated individuals, who cannot get or
transmit the disease for various reasons. Moreover, β > 0 is the rate of infection
and γ > 0 is the rate at which current infective population is isolated. The non-
fatality of the model (1) depends on the values of this two parameters. In Figure
1 we show an example of solution of (1) for small initial values.
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Figure 1: Plots of numerical solutions for x(t), y(t), z(t) versus time such that
N1 = 20, N2 = 15, N3 = 10, β = 0.01 and γ = 0.02.

The fractional order extension of this model have been first studied in [2],
where the authors replace the first derivatives in (1) by the Caputo’s fractional
derivative of order 0 < α < 1, defined by (see e.g. [3])

Dα
t0
f(t) =

1

Γ(1 − α)

∫ t

t0

(t− s)−αf ′(s)ds,

where f is a given function, and Γ(·) denotes tha gamma function It is known
that Dα

t0
f(t) → f ′(t) as α → 1. The main reason that leads to this extension

(typically with α chosen close to 1) is to reduce the error that may arise from
neglected parameters or simplifications in the model (1), as for instance the
choice of constant rate of infection β and isolation γ. This seems correct in
principle since this two parameters may change accordingly with the experience
on the spreading of a certain epidemic, that is, on the history of the process. In
this view, the use of α < 1 has just the effect of transforming (1) into a model
with memory.

Without loss of generality, we assume that the process starts at time t0 = 0.
Then, using the simplified notation f (α)(t) = Dα

0 f(t) we consider the numerical
solution of the following fractional system of equations.







x(α)(t) = −βx(t)y(t)
y(α)(t) = βx(t)y(t) − γy(t)

z(α)(t) = γy(t)

(3)

Some of the recent analytic methods for solving nonlinear problems like (??)
include the Adomian decomposition method (ADM [?]), homotopy-perturbation
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method (HPM [3]), variational iteration method (VIM [?]) and homotopy analy-
sis method (HAM [10,12,13]). They are relatively new approaches to provide an
analytical approximate solution (see also [11]) to linear and nonlinear problems
and they provide immediate and visible symbolic terms of analytic solutions, as
well as numerical approximate solutions to both linear and nonlinear differential
equations (see [12–14]). Anyway, such analytic methods are generally effective
only for small time intervals.

In this paper we intend to solve (??) by discrete methods for FDEs, since we
prefer to avoid restriction on the time interval under investigation. This may be
important to forecast the end of the epidemic. Moreover, using real-life values
for the initial conditions (2), the problem (3) may become highly stiff and then
it will necessary to employ an implicit time-stepping scheme. In this situation,
the use of analytic approximation by polynomials, attainable for instance by
homotopy analysis method (HAM [2]), seems unreliable. Here, we consider the
use of the implicit Fractional Adams methods of order 2, that reduces to the
classical trapezoidal rule in the case of α = 1.

The paper is organized as follows. In Section 2 the stability of the model
(3) is investigated. Section 3 is devoted to describe the methods which are used
to solve the problem under real-life values for the initial conditions. Numerical
reults and some implementation details are discussed in Section 4.

2 Stability of the model

As mentioned in the introduction, assuming to work with real-life values for the
initial conditions, the model (3) can be quite difficult to solve. Indeed, if we
consider the Jacobian of the system

J =





−βy −βx 0
βy βx− γ 0
0 γ 0



 , (4)

its nonzero eigenvalues are given by

λ± =
1

2
(βx− γ − βy)±

1

2

√

(βx− γ − βy)2 − 4βγy.

Depending on the values assumed by x and y during the process, there is a
negative eigenvalue that may be very large. In particular, the stationary point
of the component y of the solution (see Figure 1 and (3)), it is attained for
βx− γ = 0, where y > y0. In this situation

λ− = −
βy

2
−

1

2

√

β2y2 − 4βγy

In most of papers that considers the numerical solution of this problem, the
initial values and the parameters are taken such that βy ≈ 1 or more generally
very small. In this situation the problem can be solved efficiently by an explicit
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scheme since the eigenvalues remains close to the origin. Using more realistic
(large) values for Ni, we clearly have that around the stationary point

λ− ≈ −βy < −βN2

so that the problem needs to be solved by an implicit scheme.

3 Description of the numerical methods

In this section we present the methods used in the paper, that, depending on the
initial conditions, can be used to solve the epidemic model without restrictions
on the time length. Consider the general initial value problem

Dαy(t) = f(t, y(t)), y(t0) = y0, 0 < α ≤ 1, t0 < t ≤ T. (5)

In a discrete numerical method the time interval [t0, T ] is replaced by a discrete
set of points tj = t0 + jh, h = T−t0

N
, j = 0, 1, ..., N , so that the solution is

approximated by a sequence {yj}j=0,1,...,N such that yj ≈ y(tj).

The exact solution of (5) can be written in terms of a Volterra integral
equation of the second kind with a weakly singular kernel,

y(t) = y(t0) +
1

Γ(α)

∫ t

t0

(t− s)α−1f(s, y(s))ds (6)

so that we can write

y(tk+1) = y(t0) +
1

Γ(α)

k
∑

j=0

tj+1
∫

tj

(tk+1 − s)α−1f(s, y(s))ds

In this way we can construct a numerical method by considering the product
trapezoidal rule in each sub-interval, obtaining the approximation

1

Γ(α)

k
∑

j=0

tj+1
∫

tj

(tk+1 − s)α−1f(s, y(s))ds ≈
hα

Γ(α+ 2)

k+1
∑

j=0

aj,k+1f(tj , y(tj)) (7)

where

aj,k+1 =



















kα+1 − (k − α)(k + 1)α, if j = 0,

(k − j + 2)α+1 + (k − j)α+1 − 2(k − j + 1)α+1, if 1 ≤ j ≤ k,

1, if j = k + 1.

The approximation (7) naturally leads to the implicit formula

yk+1 = y0 +
hα

Γ(α+ 2)





k
∑

j=0

aj,k+1f(tj , yj) + f(tk+1, yk+1)



 , (8)
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that generalizes to the fractional case the standard one-step Adams-Multon
method of order 2. In order to compute yk+1 from (8) we can replace yk+1 by
a predictor approximation yPk+1, and then use a corrector iteration

y
(i)
k+1 = y0 +

hα

Γ(α+ 2)





k
∑

j=0

aj,k+1f(tj , yj) + f(tk+1, y
(i−1)
k+1 )



 , (9)

y
(0)
k+1 : = yPk+1, i = 1, ..., q.

The remaining problem is the determination of the predictor formula that we re-
quire to calculate the value yPk+1. Here, we use the generalized one-step Adams-
Bashforth method (that is, the Fractional Euler method) that consists in replac-
ing the integral on the right-hand side of Equation (6) by the product rectangle
rule

∫ tk+1

t0

(tk+1 − s)α−1f(s, y(s))ds ≈
hα

α

k
∑

j=0

bj,k+1f(tj , y(tj)),

where now

bj,k+1 = (k + 1− j)α − (k − j)α.

Thus, the predictor yPk+1 is determined by the explicit recursion

yPk+1 = y0 +
hα

Γ(α+ 1)

k
∑

j=0

bj,k+1f(tj , yj). (10)

The method (9) has been considered and discussed in [15].
Besides the predictor corrector implementation described by (9) and (10),

in this work we also consider the fully implicit implementation of (8), in which
yk+1 is computed by solving with Newton iteration the nonlinear system

Φ(yk+1)− gk = 0

where

Φ(yk+1) : = yk+1 −
hα

Γ(α+ 2)
f(tk+1, yk+1)

gk : = y0 +
hα

Γ(α+ 2)





k
∑

j=0

aj,k+1f(tj , yj)





and for implementation , we need to work with the Jacobian (4) of the system.
Finally, we recall the most significant results on the error analysis of the

method (8). The first result is based on smoothness assumptions on Dαy; the
second one on smoothness assumptions on the solution y.
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Theorem 1. %%%%% reference %%%%%%Let α > 0 and assume that Dαy ∈
C2[t0, T ] for some suitable T . Then,

max
0≤j≤N

|y(tj)− yj | =

{

O(h2) if α ≥ 1,

O(h1+α) if α < 1.

Theorem 2. %%%%% reference %%%%%%Let 0 < α < 0 and assume that
y ∈ C2[t0, T ] for some suitable T . Then, for 1 ≤ j ≤ N we have

|y(tj)− yj | ≤ C tα−1
j ×

{

h1+α if 0 < α < 1
2 ,

h2−α if 1
2 ≤ α < 1,

where C is a constant independent of j and h.

Thus for all choices of α > 0 the described method gives a convergence order
of at least one if either y or Dαy is at least two times continuous differentiable
on [t0, T ].

4 Numerical results and discussion

In this section we present some numerical experiments for the model (??), us-
ing different values for the initial conditions. We consider relatively long time
intervals and different values of α. In particular we work with α = 1, 0.99, 0.95
represented respectively by a solid, dashed and solid line in each picture. We
always take β = 0.01 and γ = 0.02.

In Figure 2, for small initial conditions, we consider the Generalized Euler
Method (GEM) given by

y(tk+1) = y(tk) +
hα

Γ(α+ 1)
f(tk, y(tk)),

that of course is an explicit code. This method has been used in [20] for fractional
order models of HTLV infection, in [21] to study the HIV during the primary
infection and in [22] for the problem of the population dynamics of the human
immunodeficiency type 1 virus (HIV-1). More details on this approach can be
found in [23] In Figure ?? we plot the numerical solution given by the predictor
corrector formula (9)-(10) for higher values of the initial conditions.N1 = 104,
N2 = 103 and N3 = 10. We take h = 0.01 and apply only one corrector it-
eration. For this problem GEM produces unstable solutions.unless we take
h =%%%explain please%%%% Using the same timestep h = 0.01, the predic-
tor corrector formula shows a certain instability at the beginning of the process
when N2 ≥ 104, as shown in Figure 4. This phenomenon seems inependent
of the number of corrector iterations. The fully implicit implementation of (8)
has been used to solve the problem with N1 = 105, N2 = 104 and N3 = 103

(timestep h = 0.01%%%%% correct?? %%%%). The results are reported in
Figure 5.
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Figure 2: Numerical solutions by GEM for N1 = 499, N2 = 10 and N3 = 1
(see [9]). The timestep is %%%%%%%h =%%%%%%%

5 Conclusion

In this paper we discussed numerical methods to obtain the solution of frac-
tional epidemic model (3) over a long time period where HAM [2, 8] is not ef-
fective. Increasing the initial conditions the problem becomes difficult to solve.
In particular, under realistic values of the initial conditions N1, N2 ≥ 104 with
β = 0.01, γ = 0.02, only the fully implicit implementation of formula (8) is able
to provide accurate solution with a reasonable choice of the timestep.
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[12] M. Merdan, A. Gökdoǧan, A.T. Yildirim, On the numerical solution of
the model for HIV infection of CD4+T-cells, Comput. Math. Appl., 62(1),
(2011), 118-123.

8



0 20 40 60 80 100 120 140 160 180 200
−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

4

x(t)

y(t)

z(t)

Figure 4: Numerical solutions by the predictor corrector formula (9)-(10) with
initial conditions N1 = 104, N2 = 104, N3 = 102, and timestep h = 0.01.
The method is implemented with %%%%% ??? %%%% number of corrector
iterations.

[13] A.M.A. El-Sayed, S.Z. Rida, A.A.M. Arafa, On the solutions of time-
fractional bacterial chemotaxis in a diffusion gradient chamber, Int. J.

Nonlinear Sci., 7(4), (2009), 485-492.

[14] I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for frac-
tional IVPs, Commun. Nonlinear Sci. Numer. Simul., 14(3), (2009), 674-
684.

[15] K. Diethelm and A. D. Freed, The FracPECE subroutine for the numeri-
cal solution of differential equations of fractional order, in: S. Heinzel, T.
Plesser (eds.), Forschung und wissenschaftliches Rechnen 1998, (1999a),
57-71.

[16] K. Diethelm and A. D. Freed, On the solution of nonlinear fractional
differential equations used in the modeling of viscoplasticity, in F. Keil,
W. Mackens, H. Voß and W. J.(eds), Scientific Computing in Chemical

Engineering II: Computational Fluid Dynamics, Reaction Engineering, and

Molecular Properties (Springer, Heidelberg), (1999b), 217-224.

[17] K. Diethelm and N. J. Ford, Numerical solution of the Bagley-Torvik
equation, BIT, 42(3), (2002), 490-507.

[18] K. Diethelm, N. J. Ford, and A. D. Freed, Detailed error analysis for a
fractional Adams method, Numer. Algorithms, 36(1), (2004), 31-52.

9



0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

x 10
4

z(t)

x(t)

y(t)

Figure 5: Numerical solutions by (8) with Newton iteration for x(t), y(t), z(t)
versus time such that N1 = 105, N2 = 104 and N3 = 103.

[19] K. Diethelm, N. J. Ford, and A. D. Freed, A predictor-corrector approach
for the numerical solution of fractional differential equations, Nonlinear

Dynamics, 29(1-4), (2002), 3-22.

[20] A.A.M. Arafa, S.Z. Rida, M. Khalil, Fractional order model of human
T-cell lymphotropic virus I (HTLV-I) infection of CD4+T-cells, Adv. Stud.
Biol., 3(7), (2011), 347-353.

[21] A.A.M. Arafa, S.Z. Rida, M. Khalil, Fractional modeling dynamics of HIV
and CD4+T-cells during primary infection , Nonlinear Biomed. Phys., 6(1),
(2012), 1-7.

[22] A.A.M. Arafa, S.Z. Rida, M. Khalil, The effect of anti-viral drug treatment
of human immunodeficiency virus type 1 (HIV-1) described by a fractional
order model, Appl. Math. Modelling, 37(4), (2013), 2189-2196.

[23] Z. Odibat, S. Moamni, An algorithm for the numerical solution of differ-
ential equations of fractional order, J. Appl. Math and Informatics., 26(1
- 2), (2008), 15-27.

[24] Ch. Lubich, Discretized fractional calculus, SIAM J. Math. Anal., 17(3),
(1986), 704-719.

[25] E. Hairer, C. Lubich, and M. Schlichte. Fast numerical solution of weakly
singular Volterra integral equations, J. Comput. Appl. Math., 23(1), (1988),
87-98.

10


