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Abstract. In this paper we investigate some practical aspects concerning the use of the Restricted-Denominator (RD) rational
Arnoldi method for the computation of the core functions of exponential integrators for parabolic problems. We derive a
useful a-posteriori bound that exploits the fast convergence of the Arnoldi method for compact operators. Some numerical
experiments arising from the discretization of sectorial operators are presented.
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INTRODUCTION

For the solution of large stiff problems of the type

u′(t) = f (y(t)) = Lu(t)+N(u(t)), (1)

where L ∈ RM×M arises from the discretization of unbounded sectorial operators and N is a nonlinear function, in
recent years much work has been done on the construction of exponential integrators that might represent a promising
alternative to classical solvers (see e.g. [8] for a comprehensive survey). As well known the computation of the matrix
exponential or related matrix functions is at the core of this kind of integrators. Under the hypothesis that such matrix
functions are exactly evaluated, the linear stability can be trivially achieved for both Runge-Kutta and multistep based
exponential integrators and hence highly accurate and stable integrators can be constructed.

An exponential integrator based on the variation-of-constants formula requires at each time step the evaluation of a
certain number (depending on the accuracy) marix functions of the type φk(hL)v, where

φ0(hλ ) = exp(hλ ), (2)

φk+1(hλ ) =
φk(hλ )− 1

k!
hλ

, for k = 0,1,2, ... ,

being h the time step. Among the existing techniques for the computation of matrix functions (we quote here the
recent book of Higham [7] for a survey), in this context the Restricted-Denominator (RD) Rational Arnoldi algorithm
introduced independently in [15] and [10] for the computation of the matrix exponential seems to be a reliable
approach. It is based on the use of the so called RD rational forms

Ri, j(λ ) =
qi(λ )

(1−δλ ) j , δ ∈ R,

where qi is a polynomial of degree ≤ i. While in the matrix case, the use of these approximants requires the solution
of linear systems with the matrix (I − δL), as shown in [12] in the context of the solution of (1) when L is sectorial
so typically sparse and well structured this linear algebra drawback can be almost completely overtaken organizing
suitably the step-size control strategy and exploiting the properties of the RD Arnoldi method concerning the choice
of the parameter δ . In other words the number of linear systems to be solved can be drastically reduced with respect
to the total number of computations of matrix functions required by the integrator. Therefore the mesh independence
property of the method, that leads to a very fast convergence with respect to a standard polynomial approach (see again
[10]), can be fully exploited for the construction of competitive integrators.

A problem still open is that inside the integrator the rational Arnoldi algorithm (responsible for most of the
computational cost) has to be supported by a robust and sharp error estimator. In the self-adjoint case the problem



has been treated in [11] where the author presents effective a-posteriori error estimates, even in absence of information
on the location of the spectrum of L. Anyway, in the general case, when (1) arises for instance from the discretization
of parabolic problems with advection terms and/or non-zero boundary conditions, the numerical range of L, that we
denote by F(L), may not reduce to a line segment. In this sense the basic aim of this paper is to fill this gap providing
error estimates for the non-symmetric case using as few as possible information about the location of F(L). It is
necessary to keep in mind that a competitive code for (1) should also be able to update L (interpreted as the Jacobian
of f , [14], [2]) so that F(L) may be not fixed during the integration, and so it is important to reduce as much as possible
any pre-processing technique to estimate F(L). In particular assuming that F(L) ⊆ C− we shall provide a-posteriori
error estimates for the RD Arnoldi process using only information about the angle of the sector containing F(L), angle
that is typically independent of the sharpness of the discretization and hence computable working in small dimension.

THE RD RATIONAL ARNOLDI METHOD

In what follows we denote by ∥·∥ the Euclidean vector norm and its induced matrix norm. As already mentioned, the
notation F(L) indicates the numerical range of L, that is,

F(L) :=
{

xHLx
xHx

,x ∈ CM\{0}
}
.

The notation Πm indicates the space of the algebraic polynomials of degree ≤ m.
Given 0 ≤ θ < π

2 , let
Sθ = {λ : |arg(−λ )| ≤ θ} ⊂ C− (3)

be the unbounded sector of the left half complex plane, symmetric with respect to the real axis with vertex in 0 and
semiangle θ . Moreover, let Γθ be the boundary of Sθ . Throughout the paper we assume that F(L) ⊂ int(Sθ ), the
interior of Sθ . Accordingly, L is a so-called sectorial operator.

Given a vector v ∈ RM , with ∥v∥= 1, consider the problem of computing

y(k) = φk(hL)v, (4)

where φk is defined by (2). The RD rational approach seeks for approximations to φk(hλ ) of the type

Rm−1,m−1(λ ) =
pk,m−1(λ )

(1−δλ )m−1 , pk,m−1(λ ) ∈ Πm−1, m ≥ 1,

where δ > 0 is a suitable parameter. Turning to the matrix case, y(k) is approximated by elements of the Krylov
subspaces

Km(Z,v) = span
{

v,Zv,Z2v, ...,Zm−1v
}
, m ≥ 1,

with respect to v and Z = (I −δL)−1. In this sense the idea is to use a polynomial method to compute y(k) = fk(Z)v,
where

fk(z) := φk

(
h
δ

(
1− 1

z

))
is singular at 0.

For the construction of the subspaces Km(Z,v) we employ the classical Arnoldi method. As is well known it
generates an orthonormal sequence

{
v j
}

j≥1, with v1 = v, such that Km(Z,v) = span{v1,v2, ...,vm}. Moreover, for
every m,

ZVm =VmHm +hm+1,mvm+1eH
m , (5)

where Vm = [v1,v2, ...,vm], Hm is an upper Hessenberg matrix with entries hi, j = vH
i Zv j and e j is the j-th vector of the

canonical basis of Rm.
The m-th RD-rational Arnoldi approximation to y(k) is defined as (see [9])

y(k)m =Vm fk(Hm)e1. (6)



It can be seen that
y(k)m = pk,m−1(Z)v, (7)

where pk,m−1 ∈ Πm−1 interpolates, in the Hermite sense, the function fk(z) in the eigenvalues of Hm (see [13]).
As mentioned in the Introduction, this technique has been introduced independently in [15] and [10]. Anyway, the

idea of using rational Krylov approximations to matrix functions was originally introduced in [5].

ERROR BOUNDS

Before deriving an error bound for the method, we need to locate F(Z). Consider the function χ(λ ) = (1− δλ )−1.
Denoting by D1/2,1/2 the disk centered at 1/2 with radius 1/2, let

Gθ = {z : z = χ(λ ),λ ∈ Sθ} ⊆ D1/2,1/2. (8)

Its boundary, Σθ , is made by two circular arcs meeting with angle 2θ at 0 and 1. Regarding the field of values of Z,
F(Z), we can state the following result that will be used by Theorem 2.

Proposition 1 If F(L)⊂ int(Sθ ) then F(Z)⊂ int(Gθ ).

Going back to the RD Arnoldi method, the corresponding error

Ek,m := y(k)− y(k)m

can be expressed and bounded in many ways (we quote here the recent papers [1] and [4] for a background on the
error estimates for both polynomial and rational Arnoldi approximation to matrix functions). In particular, exploiting
the interpolatory nature of the standard Arnoldi method, we notice, as pointed out also in [6], that the error can be
expressed in the form

Ek,m = gk,m(Z)qm(Z)v, (9)

where qm(z) := det(zI −Hm) and (cf. (7))

gk,m(z) :=
fk(z)− pk,m−1(z)

det(zI −Hm)
. (10)

In order to provide a-posteriori error bounds we need to introduce the generalized Laguerre polynomials, defined by

L(α)
n (z) =

n

∑
j=0

(−1) j
(

n+α
n− j

)
z j

j!
.

We can state the following main result that makes use of the relation (see [10])

∥qm(Z)v∥=
m

∏
j=1

h j+1, j.

Theorem 2 Assume that F(L)⊂ Sθ , with θ < π
3 , and let τ := h/δ . Setting c j(θ) :=

(
1+

√
2(1− cos(θ)

) j
we have

∥∥Ek,m
∥∥ ≤ K

eτ(cosθ− 1
2 )−m−k−1

τm+k

(
2(m+ k+1)
2cosθ −1

)m+k+1

Ck,m(τ,θ)
m

∏
i=1

hi+1,i, (11)

≤ K
eτ cosθ−m−k−1

τm+k

(
2(m+ k+1)
2cosθ −1

)m+k+1

C′
k,m(θ)

m

∏
i=1

hi+1,i, (12)

where

Ck,m(τ,θ) : =
(m−1)!
(m+ k)!

m−1

∑
j=0

∣∣∣L(k)
m−1− j(τ)

∣∣∣c j(θ), (13)

C′
k,m(θ) : =

(m−1)!
(m+ k)! ∑m−1

j=0

(
m+ k− j−1

k

)
c j(θ), (14)

and 2 ≤ K ≤ 11.08 [3]. In the symmetric case we can take K = 1.



The reason for which we consider two bounds in Theorem 2 is that the second one (12) allows us to define suitably
the parameter τ (and then δ ) while the first one (11) should be used whenever τ has been defined. Indeed, assuming
∏m

i=1 hi+1,i independent of δ and then of τ by (12), looking for the minimum of eτ cosθ τ−(m+k) we easily find that the
optimal value for τ is given by

τ = (m+ k)/cosθ . (15)

A COMPUTED EXAMPLE

In order to show the quality of the bound (11) let us consider the operator

Lu =−u′′+ cu′, c ≥ 0, (16)

discretized with central differences in [0,1] with uniform mesh h = 1/(M + 1), and Dirichelet boundary conditions.
We consider the computation of the functions φk(hL)v, with v = (1, ...,1)T/

√
M, and k = 0,1,2, for h = 0.5. We take

τ = 8/cosθ for all the experiments. The results for M = 1000 are displayed in Figure 1.
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FIGURE 1. Error (-) and error bound (11) (+), in logarithmic scale, for k = 0,1,2, h = 0.5, L arising from (16) with c = 2,4.
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