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Abstract. In this paper we investigate some practical aspects concerning the use of the
Restricted-Denominator (RD) rational Arnoldi method for the computation of the core functions
of exponential integrators for parabolic problems. We derive some useful a-posteriori bounds to-
gether with some hints for a suitable implementation inside the integrators. Numerical experiments
arising from the discretization of sectorial operators are presented.
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1. Introduction. For the solution of large stiff problems of the type

u′(t) = f(y(t)) = Lu(t) +N(u(t)), (1.1)

where L ∈ RM×M arises from the discretization of unbounded sectorial operators
and N is a nonlinear function, in recent years much work has been done on the
construction of exponential integrators that might represent a promising alternative
to classical solvers (see e.g. [20] or [15] for a comprehensive survey). As well known
the computation of the matrix exponential or related functions of matrices is at the
core of this kind of integrators. The main idea is to damp the stiffness of the problem
(assumed to be contained in L) on these computations so that the integrator can be
explicit.

Under the hypothesis that the functions of matrices involved are exactly evalu-
ated, the linear stability can be trivially achieved for both Runge-Kutta and multistep
based exponential integrators and hence highly accurate and stable integrators can
be constructed. On the other hand, the main problem with this class of integrators is
just the efficient computation of such functions of matrices, so that, very few reliable
codes have been written (we remember the Rosenbrock type exponential integrators
presented in [4], [14], [26]). For this reason many authors are still doubtful about the
potential of exponential integrators with respect to classical implicit solvers even for
semilinear problem of type (1.1).

An exponential integrator requires at each time step the evaluation of a certain
number (depending on the accuracy) of functions of matrices of the type φk(hL)v,
where

φ0(hλ) = exp(hλ), (1.2)

φk+1(hλ) =
φk(hλ)− 1

k!

hλ
, for k = 0, 1, 2, ... ,

being h the time step. Actually this represents the general situation for the Expo-
nential Time Differencing methods, that is, the methods based on the variation-of-
constants formula; for Lawson’s type method (also called Integrating Factor meth-
ods) only the matrix exponential is involved. We refer again to [20] and the reference
therein for a background.
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Among the existing techniques for the computation of functions of matrices (we
quote here the recent book of Higham [12] for a survey), in this context the Restricted-
Denominator (RD) Rational Arnoldi algorithm introduced independently in [33] and
[22] for the computation of the matrix exponential seems to be an reliable approach.
It is based on the use of the so called RD rational forms, studied in [25] for the
exponential function,

Ri,j(λ) =
qi(λ)

(1− δλ)j
, δ ∈ R,

where qi is a polynomial of degree ≤ i. We refer again to [22] for the basic references
about the properties and the use of such rational forms. While in the matrix case,
the use of these approximants requires the solution of linear systems with the matrix
(I − δL), as shown in [26] in the context of the solution of (1.1) when L is sectorial
so typically sparse and well structured this linear algebra drawback can be almost
completely overtaken organizing suitably the step-size control strategy and exploiting
the properties of the RD Arnoldi method concerning the choice of the parameter δ.
In other words the number of linear systems to be solved can be drastically reduced
with respect to the total number of computations of functions of matrices required by
the integrator. Therefore the mesh independence property of the method, that leads
to a very fast convergence with respect to a standard polynomial approach (see again
[22]), can be fully exploited for the construction of competitive integrators.

A problem still open is that inside the integrator the rational Arnoldi algorithm
(responsible for most of the computational cost) have to be supported by a robust
and sharp error estimator. In the self-adjoint case the problem has been treated in
[23] where the author presents effective a-posteriori error estimates, even in absence of
information on the location of the spectrum of L. Anyway, in the general case, when
(1.1) arises for instance from the discretization of parabolic problems with advection
terms and/or non-zero boundary conditions the numerical range of L, that we denote
by F (L), may not reduce to a line segment. In this sense the basic aim of this paper
is to fill this gap providing error estimates for the non-symmetric case using as few
as possible information about the location of F (L). It is necessary to keep in mind
that a competitive code for (1.1) should also be able to update L (interpreted as
the Jacobian of f , [31], [4]) so that F (L) is may be not fixed during the integration,
and so it is important to reduce as much as possible any pre-processing technique to
estimate F (L). In particular assuming that F (L) ⊆ C−we shall provide a-posteriori
error estimates for the RD Arnoldi process using only information about the angle
of the sector containing F (L), angle that is typically independent of the sharpness of
the discretization and hence computable working in small dimension.

The paper is organized as follows. In Section 2 we present the basic idea of the RD
rational Arnoldi method and in Section 3 we derive some first general error bounds
based on the standard approaches. In Section 4, exploiting the relation between the
derivatives of the function e1/z and the Laguerre polynomials extended to the complex
plane, we derive some a-posteriori error bounds. The problem of defining reliable a-
priori bounds is investigated in Section 5. Section 6 is devoted to the analysis of
the generalized residual as error estimator, that can be used to obtain information
about the choice of the parameter δ for the rational approximation. In Section 7 we
present some numerical examples arising from the discretization of a one-dimensional
advection-diffusion model. In Section 8 we provide some hints about the use of the
RD rational Arnoldi method inside an exponential integrator with the aim of reducing
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as much as possible the number of implicit computations of (I − δL)−1. Finally, in
Section 9 we furnish a deeper analysis concerning the fast rate of convergence of
the method, that will provide further information about the optimal choice of the
parameter δ.

2. The RD rational Arnoldi method. In what follows we denote by ∥·∥ the
Euclidean vector norm and its induced matrix norm. As already mentioned, the
notation F (L) indicates the numerical range of L, that is,

F (L) :=

{
xHLx

xHx
, x ∈ CM\ {0}

}
,

while the spectrum of L is denoted by σ(L). The notation Πm indicates the space of
the algebraic polynomials of degree ≤ m.

Given 0 ≤ θ < π
2 , let

Sθ = {λ : |arg(−λ)| ≤ θ} ⊂ C− (2.1)

be the unbounded sector of the left half complex plane, symmetric with respect to the
real axis with vertex in 0 and semiangle θ. Let moreover Γθ be the boundary of Sθ.
Throughout the paper we assume that F (L) ⊂ int(Sθ), the interior of Sθ. Accordingly,
L is a so-called sectorial operator (see e.g. [16] Chap. V, for a background).

Given a vector v ∈ RM , with ∥v∥ = 1, consider the problem of computing

y(k) = φk(hL)v, (2.2)

where φk is defined by (1.2). The RD rational approach seeks for approximations to
φk(hλ) of the type

Rm−1,m−1(λ) =
pk,m−1(λ)

(1− δλ)m−1
, pk,m−1(λ) ∈ Πm−1, m ≥ 1,

where δ > 0 is a suitable parameter. Turning to the matrix case, y(k) is approximated
by elements of the Krylov subspaces

Km(Z, v) = span
{
v, Zv, Z2v, ..., Zm−1v

}
, m ≥ 1,

with respect to v and the matrix Z defined by the transform

Z = (I − δL)−1.

In this sense the idea is to use a polynomial method to compute y(k) = fk(Z)v, where

fk(z) := φk

(
h

δ

(
1− 1

z

))
is singular at 0.

For the construction of the subspaces Km(Z, v) we employ the classical Arnoldi
method. As is well known it generates an orthonormal sequence {vj}j≥1, with v1 = v,

such that Km(Z, v) = span {v1, v2, ..., vm}. Moreover, for every m,

ZVm = VmHm + hm+1,mvm+1e
H
m, (2.3)
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where Vm = [v1, v2, ..., vm], Hm is upper Hessenberg matrix with entries hi,j = vHi Zvj
and ej is the j-th vector of the canonical basis of Rm.

The m-th RD-rational Arnoldi approximation to y(k) is defined as (see [17])

y(k)m = Vmfk(Hm)e1. (2.4)

It can be seen that

y(k)m = pk,m−1(Z)v, (2.5)

where pk,m−1 ∈ Πm−1 interpolates, in the Hermite sense, the function fk(z) in the
eigenvalues of Hm (see [28]).

As mentioned in the Introduction this technique has been introduced indepen-
dently in [33] and [22]. Anyway, the idea of using rational Krylov approximations to
matrix functions was originally introduced in [8]. More recently this approach has
been extended to the case of multiple poles and is commonly referred to as RKS
(Rational Krylov Subspace) approximation (see [18], [27], [3]).

3. General error bounds. Before stating a general error bound for the method,
we need to locate F (Z). Consider the function χ(λ) = (1 − δλ)−1. Denoting by
D1/2,1/2 the disk centered in 1/2 with radius 1/2, let

Gθ = {z : z = χ(λ), λ ∈ Sθ} ⊆ D1/2,1/2. (3.1)

Its boundary, Σθ, is made by two circular arcs meeting with angle 2θ at 0 and 1.
Regarding the field of values of Z, F (Z), we can state the following result that will
be used frequently throughout the paper.

Proposition 3.1. If F (L) ⊂ int(Sθ) then F (Z) ⊂ int(Gθ).
Proof. Obviously σ(Z) = χ(σ(L)), so F (Z) cannot lie entirely outside Gθ. Now

assume that there exists λ ∈ Γθ such that χ(λ) ∈ F (Z), that is, F (Z) ∩ Σθ ̸= ∅.
Hence, there exists y ∈ CM , ∥y∥ = 1, such that

yH (I − δL)
−1
y =

1

1− δλ
. (3.2)

Defining x := (I − δL)
−1
y we easily obtain

xH
(
I − δLT

)
x =

1

1− δλ
,

and hence

1− δ
xHLTx

xHx
=

1

(1− δλ) ∥x∥2
.

By (3.2) we have

∥x∥ |1− δλ| ≥ 1. (3.3)

Now let us define µ := xHLT x
xHx

∈ F (L). We have

∥x∥2 = (1− δλ)
−1

(1− δµ)
−1
, (3.4)
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and hence

Im
(
(1− δλ)

−1
(1− δµ)

−1
)
= 0,

that implies

Im
(
(1− δλ)

−1
)

Re
(
(1− δλ)

−1
) = −

Im
(
(1− δµ)

−1
)

Re
(
(1− δµ)

−1
) . (3.5)

Now since (1− δµ)
−1 ∈ int(Gθ) and (1− δλ)

−1 ∈ Σθ, by (3.5) it must be Re
(
(1− δλ)

−1
)
>

Re
(
(1− δµ)

−1
)
and

∣∣∣Im(
(1− δλ)

−1
)∣∣∣ > ∣∣∣Im(

(1− δµ)
−1

)∣∣∣ so that

|1− δµ|−1
< |1− δλ|−1

.

Using this relation, by (3.4) we finally have

∥x∥2 |1− δλ|2 < 1,

that contradicts (3.3). Since the field of values is connected the proof is complete.
Remark 3.2. In order to provide information about the geometry of F (Z), it

is worth referring to [35] Theorem 5.2 in which the author proves that if L is an
invertible matrix then

lim
s→∞

(
1

F ((L− sI)−1)
+ s

)
= F (L).

Taking δ = 1/s, we have that for small values of δ

F ((I − δL)−1) ≈ 1

1− δF (L)
.

Going back to our method, the corresponding error Ek,m := y(k) − y
(k)
m can

be expressed and bounded in many ways (we quote here the recent papers [3] and
[7] for a background on the error estimates for both polynomial and rational Arnoldi
approximation to matrix functions). The following proposition states a general result.

Proposition 3.3. Let G ⊆ D1/2,1/2 be a compact such that F (Z) ⊂ int(G) and
whose boundary Σ is a rectifiable Jordan curve. For every pm−1 ∈ Πm−1

∥Ek,m∥ ≤ 1

2π

∫
Σ

|fk(z)− pm−1(z)|
dist(z, F (Z))

∥∥∥v − (zI − Z)Vm (zI −Hm)
−1
e1

∥∥∥ |dz| . (3.6)

Proof. Using the properties of the Arnoldi algorithm we know that for every
pm−1 ∈ Πm−1,

Vmpm−1(Hm)e1 = pm−1(Z)v.

Hence from this identity it follows that, for m ≥ 1

Ek,m = fk(Z)v − pm−1(Z)v − Vm(fk(Hm)− pm−1(Hm))e1. (3.7)
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Now since F (Hm) ⊆ F (Z) we can write (3.7) in the Dunford-Taylor integral form

Ek,m =
1

2πi

∫
Σ

(fk(z)− pm−1(z))
[
(zI − Z)

−1
v − Vm (zI −Hm)

−1
e1

]
dz.

Collecting (zI − Z)
−1

and using (see [30])∥∥∥(zI − Z)
−1

∥∥∥ ≤ 1

dist(z, F (Z))
,

we prove (3.6).
Now since

v − (zI − Z)Vm (zI −Hm)
−1
e1 =

qm(Z)v

qm(z)
,

where

qm(z) = det(zI −Hm),

(see [21]), any bound for ∥qm(Z)v∥ / |qm(z)| and any choice for G and pm−1 leads to
a bound for ∥Ek,m∥. This technique has been used for instance in [22] and [13]. In
particular in [22] the authors use the relation

∥qm(Z)v∥ =
m∏
j=1

hj+1,j , (3.8)

and the inequality

|qm(z)| ≥ dist(z, F (Z))m. (3.9)

Going back to our situation, the main problem is that if we simply assume that
F (L) ⊂ Sθ (in other words F (L) arbitrarily large) we have that dist(z, F (Z)) → 0
as z → 0 (Reλ → −∞) because we have to consider the singularity of fk at 0.
Therefore using a lower bound like (3.9) (but the situation remains true even for
other approaches (cf. [13])) terms of the type fk(z)/z

m+1 would appear in (3.6). In
the exponential case (k = 0) this is not a problem because f0(z)/z

m+1 → 0 for z → 0,
but for k > 0 the situation changes completely since

fk(z)

zm+1
≈ δ

h(k − 1)!

1

zm

for z → 0.
Because of the difficulties just explained, our approach for deriving error bounds

is not based on the use of the Cauchy integral formula. Exploiting the interpolatory
nature of the standard Arnoldi method, we notice, as pointed out also in [9], that the
error can be expressed in the form

Ek,m = gk,m(Z)qm(Z)v, (3.10)

where (cf. (2.5))

gk,m(z) :=
fk(z)− pk,m−1(z)

det(zI −Hm)
. (3.11)
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In [9] this relationship is used as the basis for the construction of restarted methods
for the computation of matrix functions.

We can state the following basic result that will be used throughout the paper
and that allows to overcome the difficulties of working with formula (3.6).

Proposition 3.4. Let F (L) ⊂ Sθ and let τ := h/δ. Then

∥Ek,m∥ ≤ K
1

τk(m+ k)!
max
z∈Gθ

∣∣∣∣ dm+k

dzm+k
f0(z)z

k

∣∣∣∣∏m

i=1
hi+1,i, (3.12)

where 2 ≤ K ≤ 11.08. In the symmetric case we can take K = 1.
Proof. By [5] we know that

∥gk,m(Z)∥ ≤ K max
z∈F (Z)

|gk,m(z)| ,

and hence by (3.8) and (3.10)

∥Ek,m∥ ≤ K max
z∈F (Z)

|gk,m(z)|
∏m

i=1
hi+1,i.

Now, by induction one proves that for k ≥ 1

fk(z) =
f0(z)z

k − sk−1(z)z

τk(z − 1)k
, (3.13)

where s0(z) = 1 and

sk(z) = sk−1(z)z +
τk(z − 1)k

k!
∈ Πk for k ≥ 1.

Putting (3.13) in (3.11) we obtain

gk,m(z) =
f0(z)z

k − sk−1(z)z − τk(z − 1)kpk,m−1(z)

τk(z − 1)k det(zI −Hm)
.

Now, the polynomial τk(z − 1)kpk,m−1(z) ∈
∏

m+k−1 interpolates in the Hermite

sense the function f0(z)z
k − sk−1(z)z in the eigenvalues of Hm and in z = 1. Hence-

forth gk,m(z) is a divided difference that can be bounded using the Hermite-Genocchi
formula (see e.g. [6]), so that

|gk,m(z)| ≤ 1

τk(m+ k)!
max

ξ∈co({z,σ(Hm),1})

∣∣∣∣ dm+k

dξm+k
f0(ξ)ξ

k

∣∣∣∣ ,
where co({z, σ(Hm), 1} denotes the convex hull of the point set given by z, σ(Hm)
and 1. Since σ(Hm) ⊂ F (Z), and F (Z) ⊂ Gθ by Proposition 3.1, the result follows.

4. A posteriori error estimates. By (3.12), in order to provide a-posteriori
error estimates we just need to study the derivatives of the function f0(z)z

k. We need
to introduce the generalized Laguerre polynomials, defined by

L(α)
n (z) =

n∑
j=0

(−1)j
(
n+ α

n− j

)
zj

j!
.
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We can state the following result.
Lemma 4.1. Let τ = h

δ . For m ≥ 1

1

τk(m+ k)!

dm+k

dzm+k
f0(z)z

k =
(−1)m+1τ

zm+k+1
f0(z)

(m− 1)!

(m+ k)!
L
(k+1)
m−1 (

τ

z
). (4.1)

Proof. First of all remember that f0(z) = eτe−τ/z. Defining ω = z/τ and using
Rodrigues’ formula for Laguerre polynomials (see [1] p.101) we obtain

dm+k

dzm+k
exp(−τ

z
)zk =

1

τm
dm+k

dωm+k
exp

(
−ω−1

) (
ω−1

)−k
,

=
1

τm
(−1)m+k(m+ k)! exp(−ω−1)ω−mL

(−1−k)
m+k (ω−1).

The result arises from the relation (see [19] p.240)

L
(−1−k)
m+k (

τ

z
) = (−1)k+1(

τ

z
)k+1 (m− 1)!

(m+ k)!
L
(k+1)
m−1 (

τ

z
).

Before stating the main result we need to remember the following properties of
the generalized Laguerre polynomials, that can be found in [1] pp. 785-786.

L1

L(α+β+1)
n (z1 + z2) =

n∑
j=0

L
(α)
j (z1)L

(β)
n−j(z2).

L2

L(α)
n (z1z2) =

n∑
j=0

(
n+ α

j

)
L
(α)
j (z1)z

j
2(1− z2)

n−j .

L3

exp(
−x
2

)
∣∣∣L(α)

n (x)
∣∣∣ ≤ Γ(n+ α+ 1)

n!Γ(α+ 1)
, for x ≥ 0.

Proposition 4.2. Given r ≥ 0, let z =
(
1 + δreiθ

)−1 ∈ Σθ. Let moreover

cj(θ) :=
(
1 +

√
2(1− cos θ)

)j

. (4.2)

Then ∣∣∣L(k+1)
m−1 (

τ

z
)
∣∣∣ ≤ e

hr
2

m−1∑
j=0

∣∣∣L(k)
m−1−j(τ)

∣∣∣ cj(θ), (4.3)

≤ e
τ+hr

2

∑m−1

j=0

(
m+ k − j − 1

k

)
cj(θ). (4.4)

Proof. For z =
(
1 + δreiθ

)−1

τ

z
= τ + hreiθ, r ≥ 0.
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Using L1 with α = k, β = 0, z1 = τ and z2 = hreiθ, and then L2 with z1 = hr and
z2 = eiθ, we have

∣∣∣L(k+1)
m−1 (

τ

z
)
∣∣∣ =

∣∣∣∣∣∣
m−1∑
j=0

L
(k)
m−j−1(τ)L

(0)
j (hreiθ)

∣∣∣∣∣∣ , (4.5)

≤
m−1∑
j=0

∣∣∣L(k)
m−j−1(τ)

∣∣∣ j∑
s=0

∣∣∣L(0)
s (hr)

∣∣∣ ∣∣∣∣(js
)
eisθ(1− eiθ)j−s

∣∣∣∣ .
Since

j∑
s=0

∣∣∣∣(js
)
eisθ(1− eiθ)j−s

∣∣∣∣ = cj(θ),

formulas (4.3) and (4.4) are obtained applying L3 to L
(0)
s (hr) and then to L

(k)
m−j−1(τ).

Theorem 4.3. Assume that F (L) ⊂ Sθ, with θ <
π
3 . Then

∥Ek,m∥ ≤ K
eτ(cos θ−

1
2 )−m−k−1

τm+k

(
2(m+ k + 1)

2 cos θ − 1

)m+k+1

Ck,m(τ, θ)

m∏
i=1

hi+1,i,(4.6)

≤ K
eτ cos θ−m−k−1

τm+k

(
2(m+ k + 1)

2 cos θ − 1

)m+k+1

C ′
k,m(θ)

m∏
i=1

hi+1,i, (4.7)

where

Ck,m(τ, θ) : =
(m− 1)!

(m+ k)!

m−1∑
j=0

∣∣∣L(k)
m−1−j(τ)

∣∣∣ cj(θ), (4.8)

C ′
k,m(θ) : =

(m− 1)!

(m+ k)!

∑m−1

j=0

(
m+ k − j − 1

k

)
cj(θ), (4.9)

and K defined as in Proposition 3.4.
Proof. For z ∈ Σθ

1

z
= 1 + δreiθ, r ≥ 0,

and

f0(z) = eτ−
τ
z = e−hreiθ .

Hence, using (3.12), (4.1) and (4.3) we obtain

∥Ek,m∥ ≤ Kmax
r≥0

∣∣∣e−hr(cos θ− 1
2 )
(
1 + δreiθ

)m+k+1
∣∣∣ τ

× (m− 1)!

(m+ k)!

m−1∑
j=0

∣∣∣L(k)
m−1−j(τ)

∣∣∣ cj(θ) m∏
i=1

hi+1,i. (4.10)

Since for θ < π/3

e−hr(cos θ− 1
2 ) (1 + δr)

m+k+1 ≤ eτ(cos θ−
1
2 )−m−k−1

τm+k+1

(
2(m+ k + 1)

2 cos θ − 1

)m+k+1

,
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(looking for the maximum with respect to r), we immediately obtain (4.6). Using
again (3.12) and (4.1) but now with (4.4) we arrive at the coarser bound (4.7).

Remark 4.4. While formulas (4.6) and (4.7) theoretically hold for θ < π
3 since

hm+1,m = 0 for m ≤M , it is necessary to point out that for θ ≈ π
3 we may observe a

rapid growth of the term (
1

2 cos θ − 1

)m+k+1 m∏
i=1

hi+1,i,

depending of course on the problem, so that the bounds may be useless. This situation
is caused by the bound (4.3) that leads the quantity 2 cos θ − 1 at the denominator.
Working in inexact arithmetic the situation is even more difficult because of the loss
of orthogonality of the vectors vj of the Arnoldi algorithm and hence the accumulation
of errors on the entries hi+1,i. For these reasons, in practice, formulas (4.6) and (4.7)
should be used only for θ not much close to π

3 .

Remark 4.5. For the exponential case (k = 0) we have

C ′
0,m(θ) =

1

m

∑m−1

j=0
cj(θ),

and hence by (4.7)

∥E0,m∥ ≤ K
eτ cos θ−m−1

mτm

(
2(m+ 1)

2 cos θ − 1

)m+1 ∑m−1

j=0
cj(θ)

m∏
i=1

hi+1,i. (4.11)

Remark 4.6. In the self-adjoint case θ = 0 we have cj(θ) = 1 and formula (4.7)
simplifies to

∥Ek,m∥ ≤ K
eτ−m−k−1

τm+k

(2(m+ k + 1))
m+k+1

(k + 1)!

m∏
i=1

hi+1,i.

The reason for which we consider two bounds in Theorem 4.3 is that the second
one (4.7) allows us to define suitably the parameter τ (and then δ) while the first
one (4.6) should be used whenever τ has been defined. Indeed, assuming

∏m
i=1 hi+1,i

independent of δ and then of τ (actually this is not true as we explain in Section 9)
by (4.7), looking for the minimum of eτ cos θτ−(m+k) we easily find that the optimal
value for τ is given by

τ =
m+ k

cos θ
. (4.12)

The following result considers the bound (4.7) at the iteration m that defines τ in
(4.12).

Corollary 4.7. Assume that F (L) ⊂ Sθ, with θ <
π
3 . Taking τ = m+k

cos θ we have

∥Ek,m∥ ≤ K

(
2 cos θ

2 cos θ − 1

)m+k+1 (
1 +

√
2(1− cos θ)

)m 1

k!

m∏
i=1

hi+1,i. (4.13)
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Proof. By the definitions (4.2) and (4.9), it is rather easy to show that

C ′
k,m(θ) =

(m− 1)!

(m+ k)!

∑m−1

j=0

(
m+ k − j − 1

k

)
cj(θ),

≤ 1

k!(m+ k)

(
m− 1

m+ k − 1

)m

cm(θ). (4.14)

Substituting (4.14) in (4.7) we obtain the result.
The above corollary is quite important since it allows to understand what happens

at an iteration number that is expected to be close to the convergence. In particular,
the bound (4.13) clearly shows the dependence on the angle θ and the difficult of
working with θ ≈ π

3 , since in this case(
2 cos θ

2 cos θ − 1

)m+k+1 (
1 +

√
2(1− cos θ)

)m

≈ 2m[√
3(π3 − θ)

]m+k+1
.

In practice, in order to determine θ and use the a-posteriori bounds provided
by Theorem 4.3 one may compute the boundary of F (L) using the standard codes
available in literature (as for instance the Matlab code fv.m by Higham [11]). It is
important to observe that θ is generally independent of the discretization so that one
can work in smaller dimension.

While the hypothesis F (L) ⊂ Sθ of Theorem 4.3 is extremely general, the underly-
ing assumption is that L represents an arbitrary sharp discretization of an unbounded
operator. On the other side, if it is known that F (L) is contained in a bounded sector
then Proposition 3.3 can be used to derive sharper error estimates. In general we
may refer again to [3] and the references therein for a background on the most used
techniques based on the use of the integral representation of the error.

Anyway, here we want also to show how to adapt our approach in presence of
more information on F (L). Let D0,R be the disk centered at 0 with radius hR, and
assume that F (L) ⊂ Sθ ∩D0,hR. Using again (3.12) and (4.1), we arrive at the bound

∥Ek,m∥ ≤ K max
0≤s≤hR

∣∣∣∣e−s cos θ
(
1 +

s

τ

)m+k+1

L
(k+1)
m−1 (τ + seiθ)

∣∣∣∣ τ
× (m− 1)!

(m+ k)!

m∏
i=1

hi+1,i. (4.15)

In order to define a suitable value for τ , we just need to bound the Laguerre poly-
nomials as in (4.4), so that the optimal value is obtained looking for the minimum
of

τ
(
1 +

s

τ

)m+k+1

e
τ
2 .

A good approximation for this minimum is given by

τ =
√
2hR(m+ k + 1), (4.16)

that is obtained considering the bound(
1 +

s

τ

)m+k+1

≤ exp

(
(m+ k + 1)

hR

τ

)
.
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Using this value of τ we can derive practical error bounds seeking for the maximum

of the function
∣∣∣e−s cos θ

(
1 + s

τ

)m+k+1
L
(0)
j (seiθ)

∣∣∣ (cf. (4.5)) in the interval [0, hR].

5. A-priori error bounds. Formula (4.12) obviously requires to know the num-
ber of iterations that are necessary to achieve a certain accuracy. In this sense we
need to bound in some way

∏m
i=1 hi+1,i. By (3.8) and since

∥qm(Z)v∥ ≤ ∥pm(Z)v∥

for each monic polynomial pm of exact degree m (see [32] p. 269), a bound for∏m
i=1 hi+1,i can be stated using Faber polynomials as explained in [2], that leads to∏m

i=1
hi+1,i = ∥qm(Z)v∥ ≤ 2γ(G)m, (5.1)

where γ(G) is the logarithmic capacity of a compact G containing F (Z) and where
fk is analytic.

Now consider the function

ρ(θ) :=
(
1 +

√
2(1− cos θ)

) cos θ

4 cos θ − 2

π

π − θ
. (5.2)

Since 1/2 ≤ ρ(θ) < 1 for 0 ≤ θ < θ∗, where θ∗ = 0.48124, we can state the following
result.

Proposition 5.1. Assume that F (L) ⊂ Sθ, with θ < θ∗. Then for τ = (m +
k)/ cos θ

∥Ek,m∥ ≤ 11Kρ(θ)m. (5.3)

Proof. Since F (Z) ⊂ Gθ by Proposition 3.1, let us consider the compact subset
G = Gθ. The associated conformal mapping

ψ : C\ {w : |w| ≤ 1} → C\Gθ,

is given by

ψ(w) =
(w + 1)2−ν

(w + 1)2−ν − (w − 1)2−ν
,

=
1

2(2− ν)
w +

1

2
+

1

6

(1− ν) (3− ν)

2− ν

1

w
+O

(
1

w2

)
, (5.4)

where ν = 2θ/π. The coefficient of the leading term of the Laurent expansion (5.4) is
the logarithmic capacity, so that by (5.1) we have∏m

i=1
hi+1,i ≤ 2

(
1

2(2− ν)

)m

. (5.5)

Inserting this bound in (4.7) we easily obtain for θ < π
3

∥Ek,m∥ ≤ K
eτ cos θ−m−k−1

τm+k

(
m+ k + 1

2 cos θ − 1

)m+k+1

2−m+k+2

(
π

π − θ

)m

C ′
k,m(θ),

≤ K
m+ k + 1

cos θ

(
cos θ

2 cos θ − 1

)m+k+1

2−m+k+2

(
π

π − θ

)m

C ′
k,m(θ),
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where the second inequality arises from the choice τ = (m+ k)/ cos θ.
Now, using the bound (4.14)

C ′
k,m(θ) ≤ 1

k!(m+ k)

(
m− 1

m+ k − 1

)m

cm(θ),

we have

∥Ek,m∥ ≤ K
e−k

k! cos θ

(
cos θ

2 cos θ − 1

)k+1

2k+3 [ρ(θ)]
m
. (5.6)

Since for each k ≥ 0

e−k

k! cos θ

(
cos θ

2 cos θ − 1

)k+1

2k+3 ≤ 8

cos θ∗

(
cos θ∗

2 cos θ∗ − 1

)
= 10.351

the proof is complete.
Remark 5.2. We point out the bound (5.3) only holds for the value of m that

defines τ . Whenever the right-hand side of (5.3) is less than the prescribed accuracy
the corresponding m will be used to define τ (δ) and then the matrix Z.

Remark 5.3. Proposition 5.1 shows the mesh-independence of the method for
θ < θ∗ since the bound (5.3) is independent of the discretization of the underlying
sectorial operator. By (5.6) and (5.2), in the self-adjoint case (θ = 0) the bound (5.3)
reads

∥Ek,m∥ ≤ 8

k!

(
2

e

)k (
1

2

)m

.

It is worth noting that by (3.7) for every pm−1 ∈ Πm−1 we have that

∥Ek,m∥ ≤ 2Kmax
z∈G

|fk(z)− pm−1(z)| ,

where we assume that G ⊂ D1/2,1/2 is compact, connected, with associated conformal
mapping ϕ, and such that F (Z) ⊂ G. Therefore, in principle, one could try to
derive a-priori error bounds choosing suitably the polynomial sequence {pm−1}m≥1.
Anyway, the classical results in complex polynomial approximation state that even
taking {pm−1}m≥1 as a sequence of polynomials that asymptotically behaves as the
sequence of polynomial of best uniform approximation of fk on G (see e.g [29] for a
theoretical background and examples) we have[

max
z∈G

|fk(z)− pm−1(z)|
]1/m

→ 1

R
as m→ ∞,

where R is such that ϕ(−R) = 0, since fk is singular at 0 (maximal convergence prop-
erty, see e.g [34] Chapter IV). The main problem is that assuming L to be unbounded,
0 ∈ G and consequently R = 1.

For this reasons, in our opinion the only reasonable approach to derive a-priori
error bounds, is to define {pm−1}m≥1 as a sequence of polynomials interpolating fk
at point belonging to G, and then to use the Hermite-Genocchi formula to bound the
divided differences. Using this formula and taking for instance pm−1 as the sequence
of interpolants at the zeros of Faber polynomials we just obtain the error bound given
in Proposition 5.1 (see [21]).
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6. The generalized residual. By the integral representation of function of
matrices and (2.4), we know that the error can be written as

Ek,m =
1

2πi

∫
Σθ

fk(z)[(zI − Z)−1v − Vm(zI −Hm)−1e1]dz. (6.1)

In order to monitor the approximations during the computation we can consider the
so-called generalized residual [14], defined as

Rk,m =
1

2πi

∫
Γ

fk(z)rm(z)dz, (6.2)

which is obtained from (6.1) by replacing the error

(zI − Z)−1v − Vm(zI −Hm)−1e1

with the corresponding residual

rm(z) = v − (zI − Z)Vm(zI −Hm)−1e1.

Using the fundamental relation (2.3) we have immediately

rm(z) = hm+1,m(eHm(zI −Hm)−1e1)vm+1,

and inserting this relation in (6.2) we obtain

Rk,m = hm+1,m(eHmfk(Hm)e1)vm+1,

so that we may assume

Ek,m ≈ ∥Rk,m∥ = hm+1,m

∣∣eHmfk(Hm)e1
∣∣ . (6.3)

In order to show the reliability of this approximation let us consider the operator

Lu = −u′′ + cu′, c ≥ 0, (6.4)

discretized with central differences in [0, 1] with uniform mesh h = 1/(M + 1), and
Dirichelet boundary conditions. For our examples, we consider the computation of
φk(hL)v for k = 1, 2, with v = (1, ..., 1)T /

√
M , comparing the exact error and the

generalized residual. We take M = 1000, h = 0.1, and we consider the cases of c = 2
and c = 4, whose corresponding sector semiangles are respectively θ = 0.201 and
θ = 0.425. We define τ = 15/ cos θ. The results, collected in Figure 6.1, shows the
accuracy of the approximation (6.3).

It is necessary to point out that the use of (6.3) has the basic disadvantage that
it requires the computation of fk(Hm), m = 1, 2, ..., and this is a computational
drawback whenever a great amount of matrix functions evaluations are required to
integrate a certain problem, even if m can be considered much smaller than M .
Moreover, it frequently happens (as in our experiments) that the generalized residual
tends to underestimate the error during the first iterations, and this can be particularly
dangerous when computing φk+1(hL)v with ∥v∥ ≪ 1, as for instance in the case of the
computation of the internal stages of an exponential Runge-Kutta method, in which
∥v∥ = O(h).
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On the other side, exploiting the mesh independence of the method the generalized
residual can be successfully used to estimate the optimal value for the parameter τ ,
that is τopt = (m+ k) / cos θ. In other words, using a coarser discretization of the
operator we look for the value of m such that using the corresponding τopt we obtain a
certain tolerance in exactly m iterations. For the experiments reported in Figure 6.1
we considered the discretization of (6.4) with only M = 50 internal points, observing
in both cases that ∥Rk,m∥ ≤ 1e − 12 for m ≥ 13. For this reason we have chosen
τ = 15/ cos θ.

0 5 10 15
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0
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error
generalized residual

error
generalized residual

Fig. 6.1. Comparison between the exact error and the generalized residual for problem (6.4)
with h = 0.1. In both experiments τ = 15/ cos θ.

7. Numerical experiments for the a-posteriori error bound. For our nu-
merical experiments we consider again the operator (6.4), discretized as in previous
section. We consider the computation of the functions φk(hL)v, with v as before and
k = 0, 1, 2, for h = 0.5 (Figure 7.1) and h = 0.05 (Figure 7.2). In all examples we
do not consider the symmetric case corresponding to c = 0 (already investigated in
[23]), but only the cases c = 2 and c = 4. As before, for the choice of τ we examined
the behavior of the method for the coarser discretization of the same operator with
only M = 50 interior points, thus exploiting the mesh independence of the method.
The analysis suggested to take τ = 8/ cos θ for all experiments with h = 0.5 and
τ = 15/ cos θ for those with h = 0.05, thus independently of the function and c, using
the tolerance 1e−12. Inside the Arnoldi iterations the vectors Zvj , j ≥ 1 (cf. Section
2), are computed via the LU factorization of I − δL. The error bound is given by
(4.6).

Comparing Figure 7.1 with Figure 7.2 we can observe that the method tends to
become slower reducing h. The reason is that for small values of h, the rate of the
decay of the singular values of Z becomes slower and this reduces the rate of the decay
of

∏m
i=1 hi+1,i. A deeper analysis of this behavior will be presented in Section 9.

8. Non-optimal choice of τ . Employing the RD Arnoldi method inside an
exponential integrator requires some considerations. First of all, in our opinion the
method can be used only if the implicit computation of Z can be obtained with a
sparse factorization technique. The use of an inner-outer iteration can be too much
expensive in this context. Indeed, the basic point is that organizing suitably the code
one can heavily reduce the number of factorizations of I − δL (see e.g [26]), because
the method seems to be really robust with respect to the choice of τ . For this reason
we want here to show what happens taking τ even quite far from the optimal one.

For simplicity (the situation is representative of what happens in general) let us
assume to work with exponential function and θ = 0. We assume moreover that
the corresponding bound (4.11) (in which cj(θ) = 1, j ≥ 0) is equal to a prescribed
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Fig. 7.1. Error and error bound (4.6) for k = 0, 1, 2, h = 0.5, L arising from (6.4) with c = 2
and c = 4.

tolerance for a certain m with the theoretical optimal choice τopt = m. We seek for
the interval Im,n = [τ1, τ2] such that for τ ∈ Im,n the number of iterations necessary
to achieve the same tolerance is at most n (≥ m). Using (4.11) and the approximation
hm+1,m ≈ 1/4 (m > 1) that is obtained forcing the equal sign in the a-priori bound
(5.5), in Figure 8.1 we can observe the result for n = m + 1,m + 2. For each m
the corresponding extremal points τ1 and τ2 of the intervals Im,m+1 and Im,m+2 are
plotted. These points are obtained solving with respect to τ the equation (cf. (4.11))

eτ−n−1

τn
(2(n+ 1))n+1

∏n

i=1
hi+1,i =

e−1

mm
(2(m+ 1))m+1

∏m

i=1
hi+1,i,

for n = m+ 1,m+ 2.
We point out that the results are even a bit conservative with respect to what

happens in practice, and this is due to the approximation hm+1,m ≈ 1/4. Indeed
larger intervals would be obtained taking hm+1,m < 1/4 as it occurs in practice.

In order prove the effectiveness of the above considerations let us consider again
the operator (6.4) with the usual discretization. We consider the case c = 2, k = 1
for h = 0.1. To define τ we consider again the discretization with M = 50 interior
points observing the generalized residual. This leads us to define τ = (m + k)/ cos θ
with m = 14. In Figure 8.2 we consider the behavior of the method for τ , τ/2 and
2τ .

The robustness of the method with respect to the choice of τ is maybe the most
important aspect concerning its use inside an exponential integrator. We want to give
here some practical suggestions assuming to use a sparse factorization technique to
solve the linear systems with I − δL, that, computationally, has to be considered the
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Fig. 7.2. Error and error bound (4.6) for k = 0, 1, 2, h = 0.05, L arising from (6.4) with c = 2
and c = 4.

heaviest part of the method.

1. Working in much smaller dimension compute θ and use the generalized resid-
ual to estimate the initial τopt.

2. For nonlinear problems, interpreting L as the Jacobian of the system ([4],
[31]), it is necessary to introduce some strategies in order to reduce as much
as possible the number of updates of L during the integration, since each
update would also require to update the factorization. As for exponential
W-method (see [14], [26]), we suggest, whenever it is possible, to work with a
time-lagged Jacobian and hence to introduce the necessary order conditions
in order to preserve the theoretical order.

3. Using a quasi-constant step-size strategy (without Jacobian update) allows
to keep the factorization of I − δL constant for a certain number of steps.
Whenever it is necessary to update the stepsize hold → hnew without changing
the Jacobian, if we want to keep the previous factorization of I − δoldL we
just need to consider the ratio τ = hnew/δold. If (indicatively) it is bigger
than 2τopt or smaller than τopt/2 (cf. Figure 8.1 and 8.2), where τopt arises
from a previous analysis of the generalized residual, then we need to update
the factorization (cf. again [26]), otherwise we can keep the previous one. In
this phase, however, one can even considers other strategies to define suitably
the window of admissible values of τ around τopt, taking into account of the
local accuracy required by the integrator, the norm of v, etc.
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Fig. 8.1. Boundary of the region Im,m+1 and Im,m+2.

9. The superlinear decay of
∏m

i=1 hi+1,i. Looking carefully at Figure 8.2 we
notice that while the analysis in smaller dimension suggested to take τ = 15/ cos θ for
reaching the desired tolerance in exactly 14 iterations the method is unexpectedly a
bit faster taking τ1 = τ/2 (second picture). The analysis was correct because in larger
dimension the method actually achieves the tolerance in 14 iterations (first picture).
In order to understand the reason of this behavior, we need to remember that the
definition of τopt = (m + k)/ cos θ given at the end of Section 4 was based on the
assumption that

∏m
i=1 hi+1,i is independent of δ, but this is not true. In what follows

we try to provide a more accurate analysis studying the decay of
∏m

i=1 hi+1,i.
We denote by σj , j ≥ 1, the singular values of Z. Moreover we denote by λj ,

j ≥ 1 the eigenvalues of Z and assume that |λj | ≥ |λj+1| for j ≥ 1. We have the
following result (cf. [24] Theorem 5.8.10).

Theorem 9.1. Assume that 1 /∈ σ(Z) and∑
j≥1

σp
j <∞ for a certain 0 < p ≤ 1. (9.1)

Let pm(z) =
∏m

i=1(z − λi). Then

∥pm(Z)∥ ≤
(ηep
m

)m/p

, (9.2)

where

η ≤ 1 + p

p

∑
j≥1

σp
j .

As already shown in Section 4∏m

i=1
hi+1,i ≤ ∥pm(Z)v∥

for each monic polynomial pm of exact degree m (see [32] p. 269), so that Theorem
9.1 reveals that the rate of decay of

∏m
i=1 hi+1,i is superlinear and depends on the
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Fig. 8.2. Error and error bound (4.6) for k = 1, h = 0.1 and L arising from (6.4) with c = 2.
Method applied with τ = 15/ cos θ, τ/2 and 2τ .

p-summability of the singular values of Z. We remark moreover that an almost equal
bound has been obtained in [10] studying the convergence of the smallest Ritz value
of the Lanczos process for self-adjoint compact operators.

In practice, the use of (9.2) requires the knowledge of p and a bound for η, that
is, information about the singular values of the operator Z. As a model problem
we consider again the operator L defined by (6.4) with c = 0, whose eigenvalues are

(jπ)
2
, j ≥ 1, so that the eigenvalues of Z are given by λj = 1/(1 + δ (jπ)

2
). In this

case (9.1) holds for 1/2 < p ≤ 1 so that Z can be referred to as a trace class operator
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(see again [24]). Hence, taking for instance p = 1 we have

∑
i≥1

σp
i ≤ 1√

δ

1

2
−

arctan
(√

δπ
)

π

 ,

=
1√
δπ

arctan

(
1√
δπ

)
,

≤ 1

2
√
δ
, (9.3)

and so ∏m

i=1
hi+1,i ≤ ∥pm(Z)v∥ ≤

(
e√
δm

)m

. (9.4)

The bound (9.4) reveals that the rate of decay depends on the choice of δ and then
on h. For large values of δ, say δ ≥ 1, the bound (9.3) can be heavily improved
exploiting the properties of the arctan function and the convergence is extremely fast.
The following proposition states a general superlinear bound that can be used when L
is an elliptic differential operator of the second order, so with singular values growing
like j2. The proof is straightforward since we just require to bound

∑
j≥1 σ

p
j , and

apply (9.2) with p = 1.
Proposition 9.2. Let L be an elliptic differential operator of the second order.

Then there exists a constant C such that∏m

i=1
hi+1,i ≤

(
C√
δm

)m

. (9.5)

This proposition can easily be generalized to operator of order s ≥ 1, exploiting
[24] Corollary 5.8.12 in which the author extends Theorem 9.1 for p > 1. Anyway,
this is beyond the purpose of this section.

From a practical point of view, formula (9.5) is almost useless since too much in-
formation on L would be required. On the other side, it is fundamental to understand
the dependence on δ. Setting as usual τ = h/δ and putting the corresponding bound
(9.5) in Theorem 4.3 (formula (4.7)), we easily find that the theoretical optimal value
for τ is obtained seeking for the minimum of

eτ cos θ−m−k−1

τm+k

(
C
√
τ√

hm

)m

with respect to τ , that is,

τopt =
m+ 2k

2 cos θ
.

This new value, less than (m+ k) / cos θ, explains our considerations about Figure
8.2 given at the beginning of this section.

We need to point out that since the choice of τopt is independent of C and h,
formula (9.5) is quite coarse for small values of h and not able to catch the fast decay
of

∏m
i=1 hi+1,i. In any case, if an estimate of C is available an a-priori bound for the

RD Arnoldi method can be obtained taking∏m

i=1
hi+1,i ≤ min

{(
C
√
τ√

hm

)m

, 2

(
1

2(2− ν)

)m}
,
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(cf. (5.5)). Consequently we argue that

m+ 2k

2 cos θ
≤ τopt ≤

m+ k

cos θ
,

with τopt close to (m+ 2k) / (2 cos θ) for h large and to (m+ k) / cos θ for h small.

10. Conclusions. In this paper we have tried to provide all the necessary in-
formation to employ the RD Arnoldi method as a tool for solving parabolic problems
with exponential integrators. The little number of codes available in literature, and
consequently, the little number of comparisons with classical solvers is a source of
skepticism about the practical usefulness of this kind of integrators. Indeed, with
respect to the most powerful classical methods for stiff problems, the computation of
a large number of matrix functions, generally performed with a polynomial method,
is still representing a drawback because of the computational cost. The use of poly-
nomial methods for these computations may even be considered inadequate whenever
we assume to work with an arbitrarily sharp discretization of the operator, since this
would result in a problem of polynomial approximation in arbitrarily large domains.
For these reasons, the use of rational approximations as the one here presented, should
be considered a valid alternative because of the fast rate of convergence and the mesh
independence property, provided that we are able to exploit suitably the robustness
of the method with respect to the choice of the poles, as explained in Section 8 for
our case
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