An interpolatory approximation of the matrix exponential based on Faber polynomials

I. MORET
P. NOVATI
Dipartimento di Scienze Matematiche, Università di Trieste, Piazzale Europa 1, 34127 Tries

February 22, 2010

Abstract

In this paper we introduce a method for the approximation of the matrix exponential obtained by interpolation in zeros of Faber polynomials. In particular we relate this computation to the solution of linear IVPs. Numerical examples arising from practical problems are examined.

1 Introduction

Given a $N \times N$ matrix A and a N-dimensional vector v, we consider the computation of $f(A) v$, where f is a given function. In particular our attention is devoted to the case of the exponential, in relation to the solution of linear IVPs, such as

$$
\begin{aligned}
& y^{\prime}(t)-A y(t)=f(t) v, \quad t \geq 0 \\
& y(0)=0
\end{aligned}
$$

We study here approximations belonging to the Krylov subspaces $K_{m}=\operatorname{span}\{v$, $\left.A v, \ldots, A^{m-1} v\right\}$ associated with A and v, namely of type $p_{m-1}(A) v$, where p_{m-1} is a polynomial of degree at most $m-1$. This approach turns out to be particularly convenient when A is large and sparse. The approximations here proposed have an interpolatory nature in the sense that they follow by interpolating f on suitable sets of points in the complex plane. Nevertheless, the procedure can be carried out without knowing explicitly the interpolation points. Some aspects of the approximation of matrix functions via polynomial interpolation were considered also in [20], [21], [30].

Our approach represents a generalization of methods recently proposed in the literature ([1], [4], [5], [6], [10], [11], [13]) where the Krylov subspaces are constructed by the Arnoldi or Lanczos algorithms and f is interpolated in the socalled Arnoldi or Lanczos-Ritz values associated to A and $v[24]$. As well known the use of these basis-generators may present in general various difficulties due to the growing computational costs and required storage and, in the Lanczos' case, to instability and possible breakdowns. Here, on the contrary, the interpolation
points are the zeros of suitable polynomials which are defined beforehand using some information on the matrix A.

In particular, we are here interested to study the approximation of $\exp (t A) v$, for $t>0$, by interpolating on the zeros of Faber polynomials associated to a certain compact subset Ω of the complex plane which contains the spectrum of $A, \sigma(A)$. The convergence follows from the well known fact that the zeros of Faber polynomials are uniformly distributed on $\Omega[30]$. The construction of Ω makes use of a preliminary phase where the spectral properties of A need to be investigated. For this reason, in the context of the solution of algebraic linear systems, such kind of complex approximation techniques are often called hybrid methods. Another used terminology is Chebyshev-like methods. They have been studied by several authors (see for instance [7], [9], [16], [17], [27]) who gave various interesting motivations for this approach (cf. also [19] and [18]).

The present paper is organized as follows. In Sect. 2 the general interpolatory procedure is illustrated. Its application to the matrix exponential is discussed in Sect.3, where we also relate the approximation of the matrix exponential to the solution of linear IVPs. This allows us to give a restarted version of the method. In Sect. 4 we introduce Faber polynomials and we consider the interpolation on their roots. In Sect. 5 we point out some computational details. Finally Sect. 6 contains some numerical tests involving matrices arising from the semidiscretization of partial differential equations of parabolic type.

2 Interpolatory approximations

We start with some general considerations. Let the $N \times N$ real matrix A be given and let $\left\{v_{1}, v_{2}, \ldots, v_{j}, \ldots\right\}$ be an ordered system of vectors in R^{N} such that for any index $j \geq 1$:

$$
\begin{equation*}
A v_{j}=\sum_{i=1}^{j+1} h_{i, j} v_{i} \tag{1}
\end{equation*}
$$

Then, setting $h_{i, j}=0$, for $i>j+1$, for any given m we consider the $m \times$ m real upper Hessenberg matrix H_{m} having entries $h_{i, j}$ for $i, j=1,2, \ldots m$. Accordingly we have

$$
\begin{equation*}
A V_{m}=V_{m} H_{m}+h_{m+1, m} v_{m+1} e_{m}^{T} \tag{2}
\end{equation*}
$$

where V_{m} is the $N \times m$ matrix $V_{m}=\left[v_{1}, v_{2}, \ldots, v_{m}\right]$. Here and below e_{j} is the j-th vector of the canonical basis of R^{m}.

From now on let v be a N-dimensional real vector such that $v=\beta v_{1}$, for some scalar β. Having to compute $y=f(A) v$, where f is a given function, we consider the approximation

$$
\begin{equation*}
y_{m}=V_{m} f\left(H_{m}\right) \beta e_{1} . \tag{3}
\end{equation*}
$$

Here below we point out the interpolatory nature of this approximation.

The following results easily follow by taking into account the Hessenberg structure of H_{m}.

Proposition 1 For $k=0,1,2, . ., m-2$,

$$
e_{m}^{T} H_{m}^{k} e_{1}=0
$$

and

$$
e_{m}^{T} H_{m}^{m-1} e_{1}=\prod_{j=1}^{m-1} h_{j+1, j}
$$

Moreover, the following result concerning Hessenberg matrices is well know (see [22]).

Proposition 2 Each eigenvalue of H_{m} has geometric multiplicity equal to 1 and H_{m} is nonderogatory, that is, the minimal polynomial of H_{m} is its characteristic polynomial.

Using Lemma 3.2 in [24] and the two above Propositions, one easily prove the following result which extends Lemma 3.1 and Theorem 3.3 in [24].

Proposition 3 Let $D \subset \mathbf{C}$ be an open set and let f be a analytic in D. Assume that the spectra of A and of H_{m} are contained in D. Let p_{m-1} be the polynomial which interpolates f, in the Hermite sense, in the eigenvalues of H_{m}, repeated according to their multiplicity. Then

$$
f\left(H_{m}\right)=p_{m-1}\left(H_{m}\right),
$$

and

$$
V_{m} f\left(H_{m}\right) \beta e_{1}=p_{m-1}(A) v
$$

In the sequel || || denotes the euclidean vector norm. The same notation is used for the corresponding induced matrix norm. Moreover $\|\| \Omega$ denotes the supremum-norm on a suitable set Ω.

Assuming that $D \subseteq \Omega$ and that A is diagonalizable, i.e., $X A X^{-1}$ is diagonal, by Proposition 3 for (3) we have the bound

$$
\left\|y-y_{m}\right\|=\left\|\left(f(A)-p_{m-1}(A)\right) v\right\| \leq \operatorname{cond}_{2}(X)\left\|f(z)-p_{m-1}(z)\right\|_{\Omega}\|v\| .
$$

Estimates of $\left\|f(z)-p_{m-1}(z)\right\|_{\Omega}$ could be obtained by interpolation theory.
Clearly we demand that $\lim _{m \rightarrow \infty}\left\|f(z)-p_{m-1}(z)\right\|_{\Omega}=0$.
Let $W(A)$ denote the field of values (numerical range) of A, i.e.

$$
\begin{equation*}
W(A):=\left\{\frac{x^{H} A x}{x^{t} x}, x \in \mathbf{C} /\{0\} .\right\} \tag{4}
\end{equation*}
$$

Let Γ be the boundary curve of a piecewise smooth bounded region G where f is analytic and assume that $W(A) \subset G$. In order to obtain error estimates for (3), one can also use the matrix version of the Cauchy Integral Theorem, i.e.,

$$
f(A)-p_{m-1}(A)=\frac{1}{2 \pi i} \int_{\Gamma}\left(f(z)-p_{m-1}(z)\right)(z I-A)^{-1} d z
$$

and apply the following result from ([26], Th.4.1):
Proposition 4 Under the above assumptions

$$
\left\|(z I-A)^{-1}\right\| \leq 1 / \operatorname{dist}(z, W(A))
$$

Other estimates based on the so called ϵ-pseudospectrum of A [32] can also be used (see [11]).

In various cases, $f(A) v$ represents the solution of a particular equation and we can take into consideration, as a measure of the approximation, the corresponding residual.

Example 5 For instance let us assume that for a complex z the matrix $(z I-A)$ is nonsingular and let us approximate $y=(z I-A)^{-1} v$ by $y_{m}=\beta V_{m}(z I-$ $\left.H_{m}\right)^{-1} e_{1}$, provided that $\left(z I-H_{m}\right)$ is nonsingular too. Clearly there is a monic polynomial π_{m-1} of degree $m-1$ such that

$$
-\left(z I-H_{m}\right)^{-1}=\frac{\pi_{m-1}\left(z I-H_{m}\right)}{\operatorname{Det}\left(H_{m}-z I\right)}
$$

Hence, by Proposition 1, we easily obtain

$$
\begin{equation*}
-e_{m}^{T}\left(z I-H_{m}\right)^{-1} e_{1}=\frac{\prod_{j=1}^{m-1} h_{j+1, j}}{\operatorname{Det}\left(z I-H_{m}\right)} \tag{5}
\end{equation*}
$$

Then the residual vector is given by
$v-(z I-A) y_{m}=-\beta h_{m+1, m}\left(e_{m}^{T}\left(z I-H_{m}\right)^{-1} e_{1}\right) v_{m+1}=\left(\frac{\beta \prod_{j=1}^{m} h_{j+1, j}}{\operatorname{Det}\left(z I-H_{m}\right)}\right) v_{m+1}$.

In this paper we consider the interpolation on the zeros of a family of polynomials generated through a recursion like (1). Namely, let $\left\{q_{j}(z)\right\}_{j=0}^{\infty}, q_{0}(z) \neq 0$, where q_{j}, for $j=0,1, \ldots$, has degree j, be a sequence of polynomials satisfying

$$
\begin{equation*}
z q_{j-1}(z)=\sum_{i=1}^{j+1} h_{i, j} q_{i-1}(z), \text { for } j \geq 1 \tag{6}
\end{equation*}
$$

where the $h_{i, j}$, for $i, j=1,2, \ldots$, are given real parameters with $h_{j+1, j} \neq 0$. Accordingly, in (1) one can set $v_{j}=q_{j-1}(A) v$, defining a method of type (3). Clearly, for every m, we have

$$
\begin{equation*}
\left[z q_{0}(z), z q_{1}(z), . ., z q_{m-1}(z)\right]=\left[q_{0}(z), q_{1}(z), . ., q_{m-1}(z)\right] H_{m}+h_{m+1, m} q_{m}(z) e_{m}^{T} \tag{7}
\end{equation*}
$$

Proposition 6 Let $\pi(z)$ be the characteristic polynomial of H_{m}, then $q_{m}(z)=$ $C \pi(z)$, for some constant C.

Proof. From (7) we easily realize that $q_{m}\left(H_{m}\right)=0$. Since, by Proposition $2, \pi(z)$ divides any other annihilating polynomial of H_{m}, then the conclusion follows.

By this Proposition, in the corresponding method (3) the polynomial p_{m-1} interpolates f in the zeros of q_{m}.

In Sect. 4 we discuss the case where the polynomials q_{j} are chosen as the ordinary Faber polynomials associated to Ω.

3 The exponential case

In this section we deal with the approximation of the matrix exponential relating it to the solution of systems of differential equations.

Let us consider $y(t)=\exp (t A) v$, for some $t \geq 0$, which, referring to the previous notation, we approximate by

$$
\begin{equation*}
y_{m}(t)=\beta V_{m} \exp \left(t H_{m}\right) e_{1} \tag{8}
\end{equation*}
$$

Since $y(t)$ solves the initial value problem

$$
\begin{align*}
& y^{\prime}(t)-A y(t)=0, \quad t \geq 0 \tag{9}\\
& y(0)=v
\end{align*}
$$

and $u(t):=\beta \exp \left(t H_{m}\right) e_{1}$ solves

$$
\begin{align*}
& u^{\prime}(t)-H_{m} u(t)=0, \quad t \geq 0 \\
& u(0)=\beta e_{1} \tag{10}
\end{align*}
$$

we can consider the residual of system (9) at y_{m}, that is

$$
\begin{equation*}
r_{m}(t)=A y_{m}(t)-y_{m}^{\prime}(t)=A V_{m} u(t)-V_{m} u^{\prime}(t) \tag{11}
\end{equation*}
$$

Accordingly, using (2) and (10) we get

$$
\begin{equation*}
r_{m}(t)=\alpha_{m}(t) v_{m+1} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{m}(t)=h_{m+1, m}\left(e_{m}^{T} \exp \left(t H_{m}\right) e_{1}\right) \tag{13}
\end{equation*}
$$

Proposition 7 We have

$$
\alpha_{m}(t)=(1+O(t)) \frac{t^{m-1}\left(\prod_{j=1}^{m} h_{j+1, j}\right)}{(m-1)!}
$$

with the upper bound

$$
\begin{equation*}
\left|\alpha_{m}(t)\right| \leq\left\|H_{m}\right\|^{m-1} \max _{0 \leq s \leq t} \exp \left(\mu_{2} s\right) \frac{t^{m-1}}{(m-1)!} \tag{14}
\end{equation*}
$$

where μ_{2} denotes the 2-logarithmic-norm of H_{m} ([3] p. 19).
Proof. In order to estimate $e_{m}^{T} u(t)$, we recall (cf.[15]) that there are entire functions $\chi_{m-1}(t), j=0, \ldots, m-1$, such that

$$
\exp \left(t H_{m}\right)=\sum_{k=0}^{m-1} \chi_{m-1}(t) H_{m}^{k}
$$

Then, using Proposition 1, we get

$$
e_{m}^{T} \exp \left(t H_{m}\right) e_{1}=\left(\prod_{j=1}^{m-1} h_{j+1, j}\right) \chi_{m-1}(t)
$$

Accordingly,

$$
\alpha_{m}(t)=\left(\prod_{j=1}^{m} h_{j+1, j}\right) \chi_{m-1}(t)
$$

Then, by Proposition 1, observing that, for $k=0, \ldots, m-2$, the derivatives of χ_{m-1} are such that $\chi_{m-1}^{(k)}(0)=0$ and $\chi_{m-1}^{(m-1)}(0)=1$, we have

$$
\chi_{m-1}(t)=(1+O(t)) \frac{t^{m-1}}{(m-1)!}
$$

Inequality (14) follows easily by expansion of $e_{m}^{T} \exp \left(t H_{m}\right) e_{1}$.
When, for a suitable m, the approximation $y_{m}(t)$ has been computed, the procedure can be restarted, considering now the IVP

$$
\begin{align*}
& \left(y-y_{m}\right)^{\prime}(t)-A\left(y-y_{m}\right)(t)=r_{m}(t) \tag{15}\\
& \left(y-y_{m}\right)(0)=0
\end{align*}
$$

Thus, here below, in the light of (15) and (12), we extend our attention to IVPs of the form

$$
\begin{align*}
& y^{\prime}(t)-A y(t)=f(t) v, \quad t \geq 0 \\
& y(0)=0 \tag{16}
\end{align*}
$$

where $f(t)$ is a scalar function. The solution of this problem is

$$
y(t)=\int_{0}^{t} f(s) \exp ((t-s) A) v d s
$$

and we consider the approximation given by

$$
\begin{equation*}
y_{m}(t)=\beta V_{m} \int_{0}^{t} f(s) \exp \left((t-s) H_{m}\right) e_{1} d s \tag{17}
\end{equation*}
$$

Namely, $y_{m}(t)=V_{m} w(t)$ where now $w(t)$ solves

$$
\begin{aligned}
& w^{\prime}(t)-H_{m} w(t)=\beta f(t) e_{1}, \quad t>0 \\
& w(0)=0
\end{aligned}
$$

This approach generalizes that of [1] where Arnoldi bases are used. It can also be viewed as a reduced basis method in the sense of [23].

Proceeding as before, we consider the residual of system (16) at $y_{m}(t)$, here denoted by $r_{m}^{*}(t)$, which is

$$
r_{m}^{*}(t)=f(t) v-y_{m}^{\prime}(t)+A y_{m}(t)=h_{m+1, m}\left(e_{m}^{T} w(t)\right) v_{m+1}
$$

Since $e_{m}^{T} w(t)=\int_{0}^{t} f(s) e_{m}^{T} \exp \left((t-s) H_{m}\right) e_{1} d s$, referring to Proposition 7, we have

$$
r_{m}^{*}(t)=\left(\int_{0}^{t} \alpha_{m}(t-s) f(s) d s\right) v_{m+1}
$$

Accordingly, a restart of the procedure leads again to a problem of type (16). Here below we consider this restarted version of the method (for m fixed), when we choose $v_{j}=q_{j-1}(A) v$, being $\left\{q_{j-1}\right\}_{j=1}^{\infty}$ a sequence of polynomials satisfying (6).

For a fixed m, the restarted method produces a sequence of residuals $\left\{r_{m}^{*}(t)^{(k)}\right\}$, $k=0,1,2, \ldots$, where $r_{m}^{*}(t)^{(0)}:=r_{m}(t)$ and

$$
r_{m}^{*}(t)^{(1)}=\alpha_{m}^{*}(t)^{(1)} q_{m}(A) v,
$$

with

$$
\alpha_{m}^{*}(t)^{(1)}=\int_{0}^{t} \alpha_{m}(t-s) f(s) d s
$$

and, for $k>1, r_{m}^{*}(t)^{(k)}$ is the residual at the approximated solution of

$$
\begin{aligned}
& z^{\prime}(t)-A z(t)=r_{m}^{*}(t)^{(k-1)}, \quad t \geq 0 \\
& z(0)=0
\end{aligned}
$$

namely,

$$
r_{m}^{*}(t)^{(k)}=\alpha_{m}^{*}(t)^{(k)}\left(q_{m}(A)\right)^{k} v
$$

where

$$
\begin{equation*}
\alpha_{m}^{*}(t)^{(k)}=\int_{0}^{t} \alpha_{m}(t-s) \alpha_{m}^{*}(s)^{(k-1)} d s \tag{18}
\end{equation*}
$$

The following result shows the convergence of the restarted procedure.
Proposition 8 Let us set

$$
\alpha_{t}=\max _{0 \leq s \leq t}|\alpha(s)| .
$$

Let m be any fixed positive integer, then

$$
\begin{equation*}
\left.\left|r_{m}^{*}(t)^{(k)}\right| \leq\left(\frac{\left(t \alpha_{t}\right)^{k}}{k!}\right) \max _{0 \leq s \leq t} \right\rvert\, f(s)\| \|\left(q_{m}(A)\right)^{k} v \| . \tag{19}
\end{equation*}
$$

Proof. We proceed by induction. Clearly (19) holds for $k=1$. Then, using (18) we easily obtain the result.

4 Faber polynomials

Though Faber polynomials can be associated to more general sets [14], [25], here we consider a compact set Ω in \mathbf{C}, bounded by a Jordan curve Γ. We denote by γ the logarithmic capacity of Ω.

Then (cf. [25]) we can consider the conformal surjection

$$
\begin{equation*}
\psi: \overline{\mathbf{C}} \backslash\{w:|w| \leq 1\} \rightarrow \overline{\mathbf{C}} \backslash \Omega, \quad \psi(\infty)=\infty, \quad \psi^{\prime}(\infty)=\gamma \tag{20}
\end{equation*}
$$

which has a Laurent expansion of the type

$$
\begin{equation*}
\psi(w)=\gamma w+c_{0}+c_{1} w^{-1}+c_{2} w^{-2}+\ldots \tag{21}
\end{equation*}
$$

Since the boundary of Ω is assumed to be a Jordan curve, it is known that ψ has a continuous extension to $\{w \in \mathbf{C}:|w| \geq 1\}$. Let us set

$$
\psi_{0}(w):=\psi(w)-\gamma w
$$

Then, from ([14], §2) we have that

$$
\begin{equation*}
\left|\psi_{0}^{\prime}(w)\right| \leq \gamma /|w|^{2}, \quad|w|>1 \tag{22}
\end{equation*}
$$

Now let $\phi: \overline{\mathbf{C}} \backslash \Omega \rightarrow \overline{\mathbf{C}} \backslash\{w:|w| \leq 1\}$ be the inverse mapping of ψ. The j-th (ordinary) Faber polynomial associated to Ω is defined as the polynomial part of the Laurent expansion at ∞ of $[\phi(z)]^{j}(c f .[25], \S 2)$

$$
[\phi(z)]^{j}=z^{j}+\sum_{k=-\infty}^{j-1} \beta_{j, k} z^{k}, \quad j \geq 0
$$

that is,

$$
F_{j}(z):=z^{j}+\sum_{k=0}^{j-1} \beta_{j, k} z^{k}, \quad j \geq 0
$$

For any $R \geq 1$, let Γ_{R} be the equipotential curve

$$
\Gamma_{R}:=\{z:|\phi(z)|=R\}
$$

in $\overline{\mathbf{C}} \backslash \Omega$. We denote by Ω_{R} the compact set whose boundary is Γ_{R}. For our purposes we require that Ω (or some Ω_{R}) will contain the spectrum of A. Then, since we consider a real matrix A, from now on we assume that Ω is symmetric with respect to the real axis and convex. The same will be true for each compact Ω_{R} with $R \geq 1$ (cf.[27]).

Under our assumptions on Ω, the following further properties hold (cf.[27]):
$\mathrm{f} 1)$ all the coefficients c_{j} are real,
f2) for $m \geq 0,\left|F_{m}(z)\right| \leq 2$, for $z \in \Omega$,
f3) for $m \geq 0,\left(|w|^{m}-1\right)<\left|F_{m}(\psi(w))\right|<2|w|^{m}$, for $|w|>1$.
Moreover, Faber polynomials can be defined recursively (cf.[2]) by

$$
\begin{gather*}
F_{0}(z)=1, \quad \gamma F_{1}(z)=\left(z-c_{0}\right), \text { and, for } m \geq 2, \\
\gamma F_{m}(z)=\left(z-c_{0}\right) F_{m-1}(z)-\left(c_{1} F_{m-2}(z)+\ldots+m c_{m-1} F_{0}(z)\right), \tag{23}
\end{gather*}
$$

where the coefficients c_{0}, c_{1}, \ldots are those of the expansion (21).
As well known, Faber polynomials can also be expressed by their generating function, that is we have

$$
\begin{equation*}
\frac{w \psi^{\prime}(w)}{\psi(w)-z}=1+\sum_{j=1}^{\infty} F_{j}(z) w^{-j}, \quad z \in \Omega_{r}, r \geq 1,|w|>r \tag{24}
\end{equation*}
$$

According to (23), taking the Faber polynomials as the polynomials q_{j} in (6) and setting in (1)

$$
\begin{equation*}
v_{j}=F_{j-1}(A) v, \quad \text { for } j \geq 1 \tag{25}
\end{equation*}
$$

the entries of H_{m}, are given by:

$$
\begin{align*}
& h_{j, j}=c_{0}, h_{j+1, j}=\gamma, h_{1, j}=j c_{j-1} \text { for every } j \tag{26}\\
& \text { and for } i \geq 2, h_{i, j}=c_{j-1}, \text { for } 3 \leq j \leq i-1
\end{align*}
$$

Moreover, by (23), it is $\beta=1$.
As well known, in the particular case that Ω coincides with the closure of the internal part of an ellipse or with an interval in the complex plane, Faber polynomials reduce to scaled and translated Chebyshev polynomials. We refer to [7] and [27] for a detailed description of these cases.

As consequence of the well known fact that the zeros of Faber polynomials are uniformly distributed on $\Omega([30])$, we have:

Proposition 9 (cf.[30])Assume that R^{*} is the largest number such that $f(z)$ is analytic inside a boundary curve $\Gamma_{R^{*}}$. Let $p_{m-1}(z)$ be the interpolating polynomials in the zeros of $F_{m}(z)$, considering the respective multiplicities, then

$$
\limsup _{m \rightarrow \infty}\left\|f(z)-p_{m-1}(z)\right\|_{\Omega}^{1 / m}=1 / R^{*}
$$

This is known as maximal convergence property for the sequence $\left\{p_{m-1}\right\}_{m=1}^{\infty}$.
Let us return to consider the exponential case and in particular the residual (12), namely

$$
\begin{equation*}
r_{m}(t)=\alpha_{m}(t) F_{m}(A) v \tag{27}
\end{equation*}
$$

For the particular choice here made, it is often possible to get more precise estimates of $\alpha_{m}(t)$ and of $r_{m}(t)$.

Theorem 10 Let Ω be symmetric with respect to the real axis and convex, for every $R>1$,

$$
\begin{equation*}
\left|\alpha_{m}(t)\right| \leq \frac{2(\exp (t \psi(R)) R \gamma}{\left(R^{m}-1\right)} \tag{28}
\end{equation*}
$$

Proof. We recall that, for every $R>1$,

$$
e_{m}^{T} \exp \left(t H_{m}\right) e_{1}=\frac{1}{2 \pi i} \int_{\Gamma_{R}} \exp (t z) e_{m}^{T}\left(z I-H_{m}\right)^{-1} e_{1} d z
$$

hence, using (5), from 13 we get

$$
\alpha_{m}(t)=\left(-\prod_{j=1}^{m} h_{j+1, j}\right) \frac{1}{2 \pi i} \int_{\Gamma_{R}}\left(\exp (t z) / \operatorname{det}\left(z I-H_{m}\right)\right) d z
$$

Then, by (26), we get

$$
\alpha_{m}(t)=-\gamma^{m} \frac{1}{2 \pi i} \int_{\Gamma_{R}}\left(\exp (t z) / \operatorname{det}\left(z I-H_{m}\right)\right) d z
$$

and, since $\operatorname{det}\left(z I-H_{m}\right)=\gamma^{m} F_{m}(z)$ (cf. (23) and Proposition 6),

$$
\alpha_{m}(t)=\frac{-1}{2 \pi i} \int_{\Gamma_{R}}\left(\exp (t z) / F_{m}(z)\right) d z
$$

that is

$$
\begin{equation*}
\left|\alpha_{m}(t)\right| \leq \frac{1}{2 \pi} \int_{|w|=R} \frac{\mid\left(\exp (t \psi(w)) \psi^{\prime}(w) \mid\right.}{\mid\left(F_{m}(\psi(w)) \mid\right.} d w \tag{29}
\end{equation*}
$$

Then, observing that

$$
|\exp (t \psi(w))| \leq \exp (t \psi(R)), \quad \text { for }|w|=R
$$

by f3) and by our assumptions on Ω, from (29) we obtain

$$
\begin{equation*}
\left|\alpha_{m}(t)\right| \leq \frac{R \exp (t \psi(R)) \max _{|w|=R}\left|\psi^{\prime}(w)\right|}{\left(R^{m}-1\right)} \tag{30}
\end{equation*}
$$

The bound (28) follows from (30) recalling that, by (21) and (22),

$$
\left|\psi^{\prime}(w)\right|<2 \gamma, \text { for }|w|>1
$$

Here below we consider some cases often discussed in the literature (see e.g. [5], [11], [13]). For these cases, owing to the simple form of the mapping ψ, the previous general bound can be easily specialized. It's interesting to observe that the estimates are similar to those given for Krylov-Arnoldi approximations.

Proposition 11 Let A be symmetric and negative semi-definite with eigenvalues in the interval $\Omega=[-4 \gamma, 0], \gamma>0$. Then

$$
\begin{gather*}
\left|\alpha_{m}(t)\right| \leq \frac{8 t \gamma^{2}}{(m-1)} \exp \left(-\frac{1}{8} \frac{(m-1)^{2}}{\gamma t}\right)\|v\|_{2}, \quad 2 \leq m-1 \leq 2 \gamma t \tag{31}\\
\left|\alpha_{m}(t)\right| \leq 4 \gamma \exp \left(\frac{(t \gamma)^{2}}{m-1}-2 t \gamma\right)\left(\frac{e t \gamma}{m-1}\right)^{m-1}\|v\|_{2}, \quad m-1 \geq 2 \gamma t \tag{32}
\end{gather*}
$$

Proof. From (30) we get immediately

$$
\begin{equation*}
\left|\alpha_{m}(t)\right| \leq \frac{2 \gamma(\exp (t \psi(R))}{R^{m-1}(1-1 / R)} \tag{33}
\end{equation*}
$$

In our case (cf.[7]), $\psi(w)=\gamma\left(w-2+w^{-1}\right)$. Then, if $m-1 \geq 2 \gamma t$, setting $R=(m-1) / \gamma t$ in (33), we easily get (32). Moreover, by (33), since $(1 / R) \leq$ $\exp (-(1-1 / R))$, we also get

$$
\begin{equation*}
\left|\alpha_{m}(t)\right| \leq \frac{2 \gamma \exp [t \psi(R)-(m-1)(1-1 / R)]}{(1-1 / R)} \tag{34}
\end{equation*}
$$

Hence, if $m-1<2 \gamma t$, we set $R=4 \gamma t /(4 \gamma t-m+1)$. Since $\psi(R)=\gamma(R-1)^{2} / R$ and $1<R \leq 2$, we have

$$
\begin{equation*}
\psi(R) \leq 2 \gamma(R-1)^{2} / R^{2} \tag{35}
\end{equation*}
$$

In this way, using the relation $(1-1 / R)=(m-1) / 4 \gamma t$ and inserting (35) in (34), we obtain (31) after simple computation.

Proposition 12 Let A be a matrix with eigenvalues contained in the interval $\Omega=[\alpha \gamma-2 \gamma i, \alpha \gamma+2 \gamma i], \gamma>0$. Then

$$
\left|\alpha_{m}(t)\right| \leq 4 \gamma \exp \left(\alpha \gamma t-\frac{(\gamma t)^{2}}{m-1}\right)\left(\frac{e t \gamma}{m-1}\right)^{m-1}, \quad m-1 \geq 2 \gamma t
$$

Proof. Now, the conformal mapping associated to Ω is $\psi(w)=\gamma\left(w+\alpha-w^{-1}\right)$. The thesis follows straightfully from (33), setting therein $R=(m-1) / \gamma t$.

Proposition 13 Assume that $\Omega:=\{z:|z+a| \leq a, a>0\}$. Then

$$
\begin{equation*}
\alpha_{m}(t)=-\exp (-t a) \frac{t^{m-1} a^{m}}{(m-1)!} \tag{36}
\end{equation*}
$$

Proof. In this case the Faber polynomials are given by $F_{j}(z)=\left(\frac{z}{a}+1\right)^{j}$ (cf.[25], p.133) and one easily realizes that the interpolatory approximation coincides with the truncated Taylor expansion of $\exp (z)$ around $(-a)$. Any matrix H_{m} has entries

$$
h_{j, j}=-a, h_{j+1, j}=a, h_{i, j}=0 \text { otherwise. }
$$

Since

$$
e_{m}^{T} \exp \left(t H_{m}\right) e_{1}=\frac{1}{2 \pi i} \int_{\Gamma} \exp (t z) e_{m}^{T}\left(z I-H_{m}\right)^{-1} e_{1} d z
$$

by proposition 1 , we obtain

$$
\alpha_{m}(t)=\frac{-a^{m}}{2 \pi i} \int_{\Gamma} \frac{\exp (t z)}{(z+a)^{m}} d z
$$

Hence, by the residue theory we get (36).
If A is diagonalizable, i.e., $X A X^{-1}$ is diagonal, using f 3) we get the bound

$$
\left\|F_{m}(A)\right\| \leq \operatorname{cond}_{2}(X)\left\|F_{m}(\lambda)\right\|_{\Omega_{r}} \leq 2 \operatorname{cond}_{2}(X) r^{m}, \text { for } r \geq 1
$$

provided that $\sigma(A) \subseteq \Omega_{r}$. Other estimates are proposed here below.
Proposition 14 Let Ω be as in Proposition 13 and assume that $W(A) \subseteq$ $\{z:|z+a| \leq r a, r \geq 1\}$ (see (4)). Then

$$
\begin{equation*}
\left\|F_{m}(A)\right\| \leq \frac{r^{m}(m+1)^{m+1}}{m^{m}} \tag{37}
\end{equation*}
$$

Proof. For every $R>r$,

$$
F_{m}(A)=\frac{1}{2 \pi i} \int_{|z+a|=R a} F_{m}(z)(z I-A)^{-1} d z
$$

Using Proposition 4 we obtain

$$
\left\|F_{m}(A)\right\| \leq \frac{R^{m+1}}{(R-r)}
$$

and, taking $R=r(m+1) / m$, we get the bound (37).
An estimate of $\left\|F_{m}(A)\right\|$ for a general compact Ω, can be obtained as follows.

Proposition 15 Assume that $W(A) \subset \Omega_{r}$, for some $r \geq 1$. Then,

$$
\begin{equation*}
\left\|F_{m}(A)\right\| \leq 2 r^{m}(2 m+1)\left(\frac{m+1}{m}\right)^{m} \tag{38}
\end{equation*}
$$

Proof. Since

$$
F_{m}(A)=\frac{1}{2 \pi i} \int_{\Gamma_{R}} F_{m}(z)(z I-A)^{-1} d z, \quad R>r
$$

we get

$$
\left.\left\|F_{m}(A)\right\| \leq \frac{1}{2 \pi} \int_{|w|=R} \right\rvert\,\left(F_{m}(\psi(w))| | \psi^{\prime}(w) \mid\left\|(\psi(w) I-A)^{-1}\right\| d w\right.
$$

Hence, by Proposition 4, we obtain

$$
\begin{equation*}
\left\|F_{m}(A)\right\| \leq \frac{1}{2 \pi} \int_{|w|=R} \left\lvert\,\left(\left.F_{m}(\psi(w))| | \frac{\psi^{\prime}(w)}{\psi(w)-u} \right\rvert\, d w\right.\right. \tag{39}
\end{equation*}
$$

with $u \in \Omega_{r}$. Using (24), by f2) and f3), after simple computation one gets

$$
R \left\lvert\,\left(F _ { m } (\psi (w)) | | \frac { \psi ^ { \prime } (w) } { \psi (w) - u } \left|\leq \frac{2 R^{m}(R+r)}{(R-r)}, u \in \Omega_{r},|w|=R\right.\right.\right.
$$

Then, setting $R=r(m+1) / m$, from (39) we obtain (38).

5 Some computational considerations

As mentioned before hybrid methods need a preliminary phase where estimates of the eigenvalues are achieved, in order to construct in a suitable way the set Ω containing $\sigma(A)$ (actually, in the case of the exponential, since it is analytic everywhere condition $\sigma(A) \subseteq \Omega$ is not essential for the convergence). To do this, in the general case, one of the several techniques proposed in the literature can be adopted. Among the others, we refer to the ones discussed in [27], [19] and [18]. Clearly the obtained information can be re-used every time we want to apply an hybrid method to the same matrix. Nevertheless, there are also some important cases, when A represents the discretization of a differential operator, where information on the spectrum are a priori available. See for instance Example 1 below. Actually this situation is not limited to simple cases (cf. also[16]), but an analytic study can give a priori eigenvalues estimates also for more general operators. Results upon this point will appear in a forthcoming paper.

After having defined the set Ω, we have to determine the Laurent expansion of ψ. We can proceed using the scheme proposed in [27], based on the resolution of the parameters problem relative to the Schwarz- Christoffel transformation
associated to the mapping ψ, for which we refer to [31]. In order to solve this problem numerically, we employ the software SC Matlab Toolbox, written by T.A.Driscoll at M.I.T. in 1995. Obviously, in addition to the capacity γ, only a finite number of coefficients of this expansion can be determined numerically, and so, fixing a priori this number, say p, instead of ψ we obtain the finite expansion of an approximated conformal mapping. So, formula (23) is a recurrence with a fixed finite number $p+1$ of terms, and H_{m} is an Hessenberg matrix with upper bandwidth p. In the particular case that we compute the only first two coefficients of the Laurent expansion of ψ, that is c_{0} and c_{1}, we work with scaled and translated Chebyshev polynomials (cf. [27]).

6 Numerical experiments

In order to illustrate the behavior of the method, we make a comparison with the Krylov method based on the Arnoldi algorithm (see e.g.[24]) on two examples arising from the semi-discretization, by the method of line (MOL), of partial differential equations of parabolic type. Obviously, when the restarted version is used, the comparison is made with the corresponding restarted version of the Krylov-Arnoldi method.

In all figures, the behavior of $\log _{10}\left\|r_{m}(t)\right\|_{2}$ with respect to the number of scalar products (taking into account of the sparsity pattern of A) is shown; $r_{m}(t)$ is clearly the m-th residual of the corresponding IVP at the time t. A continuous and a dotted line have been respectively used for Faber and Krylov method.

Thus, consider the following partial differential equation

$$
\left\{\begin{array}{l}
\frac{\partial u(x, t)}{\partial t}=L u(x, t) \quad x \in E, \quad t \geq 0 \\
u(x, 0)=u_{0} \quad x \in E \\
u(x, t)=\sigma(x) \quad x \in \partial E, \quad t>0
\end{array}\right.
$$

in which L is a second-order partial differential operator and E is an open bounded connected set. Semidiscretizing with respect to spatial variables using finite differences, a system of ordinary differential equations is achieved

$$
\left\{\begin{array}{l}
y^{\prime}(t)=A y(t) \tag{40}\\
y(0)=v
\end{array}\right.
$$

where w is a vector and A is a square matrix independent of t.
Example 16 In this first example let us consider the differential operator

$$
L=\Delta-\tau_{1} \frac{\partial}{\partial x}-\tau_{2} \frac{\partial}{\partial y}, \quad \tau_{1}, \tau_{2} \in \mathbf{R}
$$

Discretizing L on the cube $(0,1) \times(0,1) \times(0,1)$ with central differences on a uniform meshgrid of $(n+2) \times(n+2) \times(n+2)$ points with meshsize $h=$
$1 /(n+1)$ along each direction, a nonsymmetric matrix A of order $N=n^{3}$ with particular block structure is obtained. It can be represented in the following way,

$$
A:=\frac{1}{h^{2}}\left\{I_{n} \otimes\left(I_{n} \otimes C_{1}\right)+\left[B \otimes I_{n}+I_{n} \otimes C_{2}\right] \otimes I_{n}\right\}
$$

where I_{n} is the n-order matrix identity and

$$
B:=\left[\begin{array}{cccc}
-2 & 1 & & \\
1 & -2 & 1 & \\
& 1 & \ddots & \ddots \\
& & \ddots & \ddots
\end{array}\right], \quad C_{i}:=\left[\begin{array}{cccc}
-2 & 1-\mu_{i} & & \\
1+\mu_{i} & -2 & 1-\mu_{i} & \\
& 1+\mu_{i} & \ddots & \ddots \\
& & \ddots & \ddots
\end{array}\right]
$$

for $i=1,2$, where $\mu_{i}:=\tau_{i}(h / 2)$. It's important to observe that in this case all the eigenvalues of A are explicitly known and $\sigma(A)$ is exactly contained in the rectangle

$$
\begin{aligned}
R\left(h, \mu_{1}, \mu_{2}\right): & =\frac{1}{h^{2}}\left[-6-2 \cos \left(\frac{\pi}{n+1}\right) \operatorname{Re} \delta,-6+2 \cos \left(\frac{\pi}{n+1}\right) \operatorname{Re} \delta\right] \times(41) \\
& {\left[-2 i \cos \left(\frac{\pi}{n+1}\right) \operatorname{Im} \delta, 2 i \cos \left(\frac{\pi}{n+1}\right) \operatorname{Im} \delta\right] }
\end{aligned}
$$

where $\delta:=\sqrt{1-\mu_{1}^{2}}+\sqrt{1-\mu_{2}^{2}}+1$.
In particular, defining $n=15(N=3375)$, with $\mu_{1}=3, \mu_{2}=4, t=h^{2}$ and $v:=(1,1, \ldots, 1)^{T}$, by (41) the convex hull of $\sigma(t A)$ is the rectangle

$$
\Omega:=\frac{1}{256} R\left(\frac{1}{16}, 3,4\right) \approx[-7.9616,-4.0384] \times[-13.1453 i, 13.1453 i]
$$

Computing $p=6$ Laurent coefficients of ψ, in Figs.1,2,3,4 we observe the residual curves with restart $m=10,15,20$ and without restart respectively.

Fig.1, $\mu_{1}=3, \mu_{2}=4, m=10$

Fig. $2, \mu_{1}=3, \mu_{2}=4, m=15$

Fig. $3, \mu_{1}=3, \mu_{2}=4, m=20$

Fig. $4, \mu_{1}=3, \mu_{2}=4$,
Now, for the same problem with $\mu_{1}=\mu_{2}=10$, the convex hull of $\sigma(t A)$ is the rectangle

$$
\Omega:=\frac{1}{256} R\left(\frac{1}{16}, 10,10\right) \approx[-7.9616,-4.0384] \times[-39.0348 i, 39.0348 i]
$$

As before with $p=6$ computed Laurent coefficients of ψ, in Figs. 5, 6,7 we observe the residual curves with restart $m=15,25$ and without restart respectively.

Fig.5, $\mu_{1}=10, \mu_{2}=10, m=15$

Fig.6, $\mu_{1}=10, \mu_{2}=10, m=25$

Fig.7, $\mu_{1}=10, \mu_{2}=10$
Example 17 In this second example we consider the differential operator

$$
\begin{equation*}
L=\Delta-\eta\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}\right)-\beta, \quad \gamma, \beta \in \mathbf{R} \tag{42}
\end{equation*}
$$

Discretizing as in Example 1 on the cube $(0,1) \times(0,1) \times(0,1)$ with uniform meshsize $h=1 /(n+1)$ along each direction, a nonsymmetric matrix A of order $N=n^{3}$ is obtained. Also in this case A is sparse with a particular block structure and can be represented by means of Kronecker products.

Let's set $n=16(N=4096), v:=(1,1, \ldots, 1)^{T}$, and define the parameters $\mu:=\eta(h / 2)$ and $\alpha:=\beta h^{2}, t:=h^{2}$, setting in our experiments $\mu=8$ and $\alpha=-2$. Following [27], by Arnoldi method we get a certain set $\left\{\lambda_{i}\right\}_{i=1, \ldots, s}$ of estimates of the spectrum and then we define the compact Ω as the polygon obtained joining the marginal points of this set. The cost of the computation of the p-truncated expansion of ψ is proportional to the number s of points that constitute the vertices of the polygon Ω, that is, the marginal points of $\left\{\lambda_{i}\right\}_{i=1, . ., s}$. In the experiments below we take $s=14$, computing again $p=6$ Laurent coefficients of ψ. In Figs. $8,9,10$ the residual curves with restart $m=$ $15,25,35$ respectively are shown.

Fig. $8, \mu=8, \alpha=-2, m=15$

Fig.9, $\mu=8, \alpha=-2, m=25$

Fig.10, $\mu=8, \alpha=-2, m=35$
It's important to observe that in these last three figures the residual curve of Faber method is shifted on the right. This is due to the cost of the preliminary phase.

References

[1] E.Celledoni and I. Moret, A Krylov projection method for systems of ODEs, App. Num. Math. 24 (1997) 365-378.
[2] J.H. Curtiss, Faber polynomials and Faber series, Amer. Math. Monthly 78 (1971) 577-596.
[3] K. Dekker, J.G. Verwer, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations (North Holland, Amsterdam 1984).
[4] V. Druskin, A.Greenbaum and L. Knizherman, Using nonorthogonal Lanczos vectors in the computation of matrix functions, to appear on SIAM J. Sc. Comput.
[5] V. Druskin and L. Knizherman, Krylov subspace approximations of eigenpairs and matrix functions in exact and computer arithmetic, Nu mer.Lin.Alg.Appl. 2 (1995) 205-217.
[6] V. Druskin and L. Knizherman, Extended Krylov subspaces: approximation of the matrix square root and related functions, to appear on SIMAX.
[7] M. Eiermann, On semiiterative methods generated by Faber polynomials, Numer. Math. 56 (1989) 139-156 .
[8] M. Eiermann and W. Niethammer, On the construction of semiiterative methods, SIAM J. Numer. Anal. 20 (1983), 1153-1160.
[9] M. Eiermann, W. Niethammer and R. S. Varga, A study of semiiterative methods for nonsymmetric systems of linear Equations. Numer.Math. 47 (1985) 505-533.
[10] E. Gallopoulos and Y. Saad, Efficient solution of parabolic equations by Krylov approximation methods, SIAM Sci. Stat. Comput. 13 1236-1264.
[11] M. Hochbruck and C. Lubich, On Krylov subspace approximation to the matrix exponential operator, SIAM J. Numer. Anal.,
[12] M. Hochbruck, C. Lubich and H. Selhofer, Exponential integrators for large systems of differential equations, Univ. Tubingen and Stuttgard, Report Nr. 31 (1985).
[13] L. Knizherman, Calculation of functions of unsymmetric matrices using Arnoldi's method, U.S.S.R. Comput. Maths. Math. Phys. 31 No. 1, 1-9, (1991) (English Edition by Pergamon Press).
[14] T. Kovari and C. Pomerenke, On Faber polynomials and Faber expansions, Marth. Z. 99 (1967) 193-206.
[15] P. Lancaster and M. Tismenetsky, The Theory of Matrices (Academic Press, New York 1985).
[16] T. A. Manteuffel, The Tchebychev iteration for nonsymmetric linear systems. Numer.Math. 28 (1977) 307-327.
[17] T. A. Manteuffel, Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iteration. Numer.Math. 31 (1978) 183-208.
[18] T. A. Manteuffel and G. Starke G. (1996): On hybrid iterative methods for nonsymmetric systems of linear equations. Numer.Math. 73,489-506.
[19] N.M. Nachtigal, L. Reichel and L. N. Trefethen, A hybrid GMRES algorithm for nonsymmetric linear systems, SIAM J. Matrix Anal. Appl. 13 (1992), 796-825.
[20] P. Novati, Metodi polinomiali per l' approssimazione di funzioni di matrici. Quad. Mat. n. 410 (1997) Dip. Sc. Mat. Univ. Trieste.
[21] P. Novati, A method based on Fejèr points for the computation of functions of nonsymmetric matrices. Quad. Mat. n. 440 (1998) Dip. Sc. Mat. Univ. Trieste.
[22] B. N. Parlett B.N., Global convergence of the basic QR algorithm on Hessenberg matrices, Math. Comp. 22 (1968) 803-817.
[23] T. A. Porsching and M. Lin Lee, The reduced basis method for initial value problems, SIAM J. Numer. Anal. 24 (1987) 1277-1287.
[24] Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 29 (1992) 209-228.
[25] V. I. Smirnov and N. A. Lebedev, Functions of a Complex VariableConstructive Theory (Iliffe Books, London, 1968).
[26] M. N. Spijker, Numerical ranges and stability estimates, Appl. Numer. Math. 13 (1993) 241-249,
[27] G. Starke and R. S. Varga, A hybrid Arnoldi-Faber iterative method for nonsymmetric systems of linear equations, Numer. Math. 64 (1993) 213240.
[28] H. Tal-Ezer, Spectral methods in time for hyperbolic problems, SIAM J. Numer. Anal 23 (1986) 11-26
[29] H. Tal-Ezer H, Spectral methods in time for parabolic problems, SIAM J. Numer. Anal 26 (1989) 1-11
[30] H. Tal-Ezer, High degree polynomial interpolation in Newton form, SIAM J. Sci. Stat. Comput. 12 (1991) 648-667.
[31] L. N. Trefethen, Numerical computation of the Schwarz-Christoffel transformation, SIAM J. Sci. Stat. Comput. 1(1980), 82-102.
[32] L. N. Trefethen, Pseudospectra of matrices, in D.F. Griffiths and G. A. Watson, eds, Numerical Analysis (Longman, Harlow, OK, 1992)

