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Abstract

In this paper we introduce a method for the approximation of the ma-
trix exponential obtained by interpolation in zeros of Faber polynomials.
In particular we relate this computation to the solution of linear IVPs.
Numerical examples arising from practical problems are examined.

1 Introduction

Given a N �N matrix A and a N -dimensional vector v, we consider the com-
putation of f(A)v, where f is a given function. In particular our attention is
devoted to the case of the exponential, in relation to the solution of linear IVPs,
such as

y0(t)�Ay(t) = f(t)v; t � 0;
y(0) = 0:

We study here approximations belonging to the Krylov subspacesKm = spanfv;
Av; ...; Am�1vg associated with A and v, namely of type pm�1 (A) v; where
pm�1 is a polynomial of degree at most m � 1: This approach turns out to
be particularly convenient when A is large and sparse. The approximations
here proposed have an interpolatory nature in the sense that they follow by
interpolating f on suitable sets of points in the complex plane. Nevertheless,
the procedure can be carried out without knowing explicitly the interpolation
points. Some aspects of the approximation of matrix functions via polynomial
interpolation were considered also in [20], [21], [30].
Our approach represents a generalization of methods recently proposed in

the literature ([1], [4], [5], [6], [10], [11], [13]) where the Krylov subspaces are
constructed by the Arnoldi or Lanczos algorithms and f is interpolated in the so-
called Arnoldi or Lanczos-Ritz values associated to A and v [24]. As well known
the use of these basis-generators may present in general various di¢ culties due to
the growing computational costs and required storage and, in the Lanczos�case,
to instability and possible breakdowns. Here, on the contrary, the interpolation
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points are the zeros of suitable polynomials which are de�ned beforehand using
some information on the matrix A.
In particular, we are here interested to study the approximation of exp(tA)v,

for t > 0, by interpolating on the zeros of Faber polynomials associated to a
certain compact subset 
 of the complex plane which contains the spectrum
of A, � (A). The convergence follows from the well known fact that the zeros
of Faber polynomials are uniformly distributed on 
 [30]. The construction of

 makes use of a preliminary phase where the spectral properties of A need
to be investigated. For this reason, in the context of the solution of algebraic
linear systems, such kind of complex approximation techniques are often called
hybrid methods. Another used terminology is Chebyshev-like methods. They
have been studied by several authors (see for instance [7], [9], [16], [17], [27])
who gave various interesting motivations for this approach (cf. also [19] and
[18]).
The present paper is organized as follows. In Sect.2 the general interpolatory

procedure is illustrated. Its application to the matrix exponential is discussed
in Sect.3, where we also relate the approximation of the matrix exponential
to the solution of linear IVPs. This allows us to give a restarted version of
the method. In Sect.4 we introduce Faber polynomials and we consider the
interpolation on their roots. In Sect.5 we point out some computational details.
Finally Sect.6 contains some numerical tests involving matrices arising from the
semidiscretization of partial di¤erential equations of parabolic type.

2 Interpolatory approximations

We start with some general considerations. Let the N � N real matrix A be
given and let fv1; v2; :::; vj ; :::g be an ordered system of vectors in RN such that
for any index j � 1:

Avj =

j+1X
i=1

hi;jvi: (1)

Then, setting hi;j = 0; for i > j + 1, for any given m we consider the m �
m real upper Hessenberg matrix Hm having entries hi;j for i; j = 1; 2; ::::m.
Accordingly we have

AVm = VmHm + hm+1;mvm+1e
T
m; (2)

where Vm is the N � m matrix Vm=[v1; v2; :::; vm]. Here and below ej is the
j-th vector of the canonical basis of Rm:
From now on let v be a N -dimensional real vector such that v = �v1; for

some scalar �. Having to compute y = f(A)v, where f is a given function, we
consider the approximation

ym = Vmf(Hm)�e1: (3)

Here below we point out the interpolatory nature of this approximation.
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The following results easily follow by taking into account the Hessenberg
structure of Hm:

Proposition 1 For k = 0; 1; 2; ::;m� 2,

eTmH
k
me1 = 0

and

eTmH
m�1
m e1 =

m�1Y
j=1

hj+1;j :

�

Moreover, the following result concerning Hessenberg matrices is well know
(see [22]).

Proposition 2 Each eigenvalue of Hm has geometric multiplicity equal to 1
and Hm is nonderogatory, that is, the minimal polynomial of Hm is its charac-
teristic polynomial.

Using Lemma 3.2 in [24] and the two above Propositions, one easily prove
the following result which extends Lemma 3.1 and Theorem 3.3 in [24].

Proposition 3 Let D � C be an open set and let f be a analytic in D. Assume
that the spectra of A and of Hm are contained in D: Let pm�1 be the polynomial
which interpolates f ,in the Hermite sense, in the eigenvalues of Hm; repeated
according to their multiplicity. Then

f(Hm) = pm�1(Hm);

and
Vmf(Hm)�e1 = pm�1(A)v:

�

In the sequel k k denotes the euclidean vector norm. The same notation is
used for the corresponding induced matrix norm. Moreover k k
 denotes the
supremum-norm on a suitable set 
:
Assuming that D � 
 and that A is diagonalizable, i.e., XAX�1 is diagonal,

by Proposition 3 for (3) we have the bound

ky � ymk = k(f(A)� pm�1 (A))vk � cond2 (X) kf(z)� pm�1 (z)k
 kvk :

Estimates of kf(z)� pm�1 (z)k
 could be obtained by interpolation theory.
Clearly we demand that lim

m!1
kf(z)� pm�1 (z)k
 = 0:

Let W (A) denote the �eld of values (numerical range) of A; i.e.
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W (A) :=

�
xHAx

xtx
; x 2 C= f0g :

�
(4)

Let � be the boundary curve of a piecewise smooth bounded region G where f
is analytic and assume that W (A) � G: In order to obtain error estimates for
(3), one can also use the matrix version of the Cauchy Integral Theorem, i.e.,

f(A)� pm�1 (A) =
1

2�i

Z
�

(f(z)� pm�1 (z))(zI �A)�1dz;

and apply the following result from ([26], Th.4.1):

Proposition 4 Under the above assumptions

jj(zI �A)�1jj � 1=dist(z;W (A)):

�

Other estimates based on the so called �-pseudospectrum of A [32] can also
be used (see [11]).
In various cases, f(A)v represents the solution of a particular equation and

we can take into consideration, as a measure of the approximation, the corre-
sponding residual.

Example 5 For instance let us assume that for a complex z the matrix (zI�A)
is nonsingular and let us approximate y = (zI � A)�1v by ym = �Vm(zI �
Hm)

�1e1, provided that (zI �Hm) is nonsingular too. Clearly there is a monic
polynomial �m�1 of degree m� 1 such that

�(zI �Hm)
�1 =

�m�1(zI �Hm)

Det(Hm � zI)
:

Hence, by Proposition 1, we easily obtain

�eTm(zI �Hm)
�1e1 =

Qm�1
j=1 hj+1;j

Det(zI �Hm)
: (5)

Then the residual vector is given by

v� (zI �A)ym = ��hm+1;m(eTm(zI �Hm)
�1e1)vm+1 = (

�
Qm
j=1 hj+1;j

Det(zI �Hm)
)vm+1:

�

In this paper we consider the interpolation on the zeros of a family of polyno-
mials generated through a recursion like (1). Namely, let fqj(z)g1j=0, q0(z) 6= 0,
where qj , for j = 0; 1; :::, has degree j, be a sequence of polynomials satisfying
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zqj�1(z) =

j+1X
i=1

hi;jqi�1(z); for j � 1; (6)

where the hi;j ; for i; j = 1; 2; :::; are given real parameters with hj+1;j 6= 0:
Accordingly, in (1) one can set vj = qj�1(A)v, de�ning a method of type (3).
Clearly, for every m, we have

[zq0(z); zq1(z); ::; zqm�1(z)] = [q0(z); q1(z); ::; qm�1(z)]Hm + hm+1;mqm(z)e
T
m:
(7)

Proposition 6 Let �(z) be the characteristic polynomial of Hm; then qm(z) =
C�(z); for some constant C.

Proof. From (7) we easily realize that qm(Hm) = 0. Since, by Proposition
2, �(z) divides any other annihilating polynomial of Hm, then the conclusion
follows. �
By this Proposition, in the corresponding method (3) the polynomial pm�1

interpolates f in the zeros of qm.
In Sect. 4 we discuss the case where the polynomials qj are chosen as the

ordinary Faber polynomials associated to 
:

3 The exponential case

In this section we deal with the approximation of the matrix exponential relating
it to the solution of systems of di¤erential equations.
Let us consider y(t) = exp(tA)v, for some t � 0; which, referring to the

previous notation, we approximate by

ym(t) = �Vm exp(tHm)e1: (8)

Since y(t) solves the initial value problem

y0(t)�Ay(t) = 0; t � 0
y(0) = v;

(9)

and u(t) := � exp(tHm)e1 solves

u0(t)�Hmu(t) = 0; t � 0
u(0) = �e1;

(10)

we can consider the residual of system (9) at ym, that is

rm(t) = Aym(t)� y0m(t) = AVmu(t)� Vmu0(t): (11)

Accordingly, using (2) and (10) we get

rm(t) = �m(t)vm+1: (12)
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where

�m(t) = hm+1;m(e
T
m exp(tHm)e1): (13)

Proposition 7 We have

�m(t) = (1 +O(t))
tm�1(

Qm
j=1 hj+1;j)

(m� 1)! :

with the upper bound

j�m(t)j � jjHmjjm�1 max
0�s�t

exp(�2s)
tm�1

(m� 1)! (14)

where �2 denotes the 2-logarithmic-norm of Hm ([3] p. 19).

Proof. In order to estimate eTmu(t), we recall (cf.[15]) that there are entire
functions �m�1(t); j = 0; :::;m� 1; such that

exp(tHm) =
m�1X
k=0

�m�1(t)H
k
m:

Then, using Proposition 1, we get

eTm exp(tHm)e1 = (
m�1Y
j=1

hj+1;j)�m�1(t):

Accordingly,

�m(t) = (
mY
j=1

hj+1;j)�m�1(t):

Then, by Proposition 1, observing that, for k = 0; :::;m� 2; the derivatives
of �m�1 are such that �

(k)
m�1(0) = 0 and �

(m�1)
m�1 (0) = 1; we have

�m�1(t) = (1 +O(t))
tm�1

(m� 1)! :

Inequality (14) follows easily by expansion of eTm exp(tHm)e1. �:
When, for a suitable m, the approximation ym(t) has been computed, the

procedure can be restarted, considering now the IVP

(y � ym)0 (t)�A (y � ym) (t) = rm(t);
(y � ym) (0) = 0:

(15)

Thus, here below, in the light of (15) and (12), we extend our attention to
IVPs of the form
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y0(t)�Ay(t) = f(t)v; t � 0
y(0) = 0;

(16)

where f(t) is a scalar function. The solution of this problem is

y(t) =

Z t

0

f(s) exp((t� s)A)vds;

and we consider the approximation given by

ym(t) = �Vm

Z t

0

f(s) exp((t� s)Hm)e1ds: (17)

Namely, ym(t) = Vmw(t) where now w(t) solves

w0(t)�Hmw(t) = �f(t)e1; t > 0
w(0) = 0:

This approach generalizes that of [1] where Arnoldi bases are used. It can also
be viewed as a reduced basis method in the sense of [23].
Proceeding as before, we consider the residual of system (16) at ym(t), here

denoted by r�m(t), which is

r�m(t) = f(t)v � y0m(t) +Aym(t) = hm+1;m(e
T
mw(t))vm+1:

Since eTmw(t) =
R t
0
f(s)eTm exp((t � s)Hm)e1ds, referring to Proposition 7, we

have

r�m(t) =

�Z t

0

�m(t� s)f(s)ds
�
vm+1:

Accordingly, a restart of the procedure leads again to a problem of type (16).
Here below we consider this restarted version of the method (for m �xed), when
we choose vj = qj�1(A)v, being fqj�1g1j=1 a sequence of polynomials satisfying
(6).
For a �xedm, the restarted method produces a sequence of residuals

�
r�m(t)

(k)
	
,

k = 0; 1; 2; :::, where r�m(t)
(0) := rm(t) and

r�m(t)
(1) = ��m(t)

(1) qm(A)v;

with

��m(t)
(1) =

Z t

0

�m(t� s)f(s)ds

and, for k > 1, r�m(t)
(k) is the residual at the approximated solution of

z0(t)�Az(t) = r�m(t)
(k�1); t � 0

z(0) = 0;
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namely,

r�m(t)
(k) = ��m(t)

(k) (qm(A))
kv:

where

��m(t)
(k) =

Z t

0

�m(t� s)��m(s)(k�1)ds (18)

The following result shows the convergence of the restarted procedure.

Proposition 8 Let us set

�t = max
0�s�t

j�(s)j:

Let m be any �xed positive integer, then

jr�m(t)(k)j � (
(t�t)

k

k!
) max
0�s�t

jf(s)jjj(qm(A))kvjj: (19)

Proof. We proceed by induction. Clearly (19) holds for k = 1. Then, using
(18) we easily obtain the result. �

4 Faber polynomials

Though Faber polynomials can be associated to more general sets [14], [25], here
we consider a compact set 
 in C; bounded by a Jordan curve �. We denote
by  the logarithmic capacity of 
.
Then (cf. [25]) we can consider the conformal surjection

 : C n fw : jwj � 1g ! C n 
;  (1) =1;  0 (1) = ; (20)

which has a Laurent expansion of the type

 (w) = w + c0 + c1w
�1 + c2w

�2 + :::: (21)

Since the boundary of 
 is assumed to be a Jordan curve, it is known that  
has a continuous extension to fw 2 C : jwj � 1g. Let us set

 0 (w) :=  (w)� w:

Then, from ([14], §2) we have that�� 00 (w)�� � = jwj2 ; jwj > 1: (22)

Now let � : C n 
 ! C n fw : jwj � 1g be the inverse mapping of  . The j-th
(ordinary) Faber polynomial associated to 
 is de�ned as the polynomial part
of the Laurent expansion at 1 of [� (z)]j (cf. [25], §2)

[� (z)]
j
= zj +

j�1X
k=�1

�j;kz
k; j � 0;
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that is,

Fj (z) := zj +

j�1X
k=0

�j;kz
k; j � 0:

For any R � 1; let �R be the equipotential curve

�R := fz : j� (z)j = Rg

in C n 
. We denote by 
R the compact set whose boundary is �R. For our
purposes we require that 
 (or some 
R ) will contain the spectrum of A. Then,
since we consider a real matrix A; from now on we assume that 
 is symmetric
with respect to the real axis and convex. The same will be true for each compact

R with R � 1 (cf.[27]).
Under our assumptions on 
, the following further properties hold (cf.[27]):
f1) all the coe¢ cients cj are real,
f2) for m � 0; jFm(z)j � 2; for z 2 
,
f3) for m � 0; (jwjm � 1) < jFm( (w))j < 2 jwjm, for jwj > 1.
Moreover, Faber polynomials can be de�ned recursively (cf.[2]) by

F0 (z) = 1; F1 (z) = (z � c0); and, for m � 2,
Fm (z) = (z � c0)Fm�1 (z)� (c1Fm�2 (z) + :::+mcm�1F0 (z));

(23)

where the coe¢ cients c0; c1;... are those of the expansion (21).
As well known, Faber polynomials can also be expressed by their generating

function, that is we have

w 
0
(w)

 (w)� z = 1 +
1X
j=1

Fj (z)w
�j ; z 2 
r; r � 1; jwj > r: (24)

According to (23), taking the Faber polynomials as the polynomials qj in (6)
and setting in (1)

vj = Fj�1(A)v; for j � 1; (25)

the entries of Hm, are given by:

hj;j = c0; hj+1;j = ; h1;j = jcj�1 for every j,
and for i � 2; hi;j = cj�1, for 3 � j � i� 1: (26)

Moreover, by (23), it is � = 1:
As well known, in the particular case that 
 coincides with the closure of

the internal part of an ellipse or with an interval in the complex plane, Faber
polynomials reduce to scaled and translated Chebyshev polynomials. We refer
to [7] and [27] for a detailed description of these cases.
As consequence of the well known fact that the zeros of Faber polynomials

are uniformly distributed on 
 ([30]), we have:
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Proposition 9 (cf.[30])Assume that R� is the largest number such that f(z) is
analytic inside a boundary curve �R� : Let pm�1 (z) be the interpolating polyno-
mials in the zeros of Fm (z), considering the respective multiplicities, then

lim sup
m!1

kf(z)� pm�1 (z)k1=m
 = 1=R�:

�:

This is known asmaximal convergence property for the sequence fpm�1g1m=1.
Let us return to consider the exponential case and in particular the residual

(12), namely
rm(t) = �m(t)Fm(A)v: (27)

For the particular choice here made, it is often possible to get more precise
estimates of �m(t) and of rm(t):

Theorem 10 Let 
 be symmetric with respect to the real axis and convex, for
every R > 1;

j�m(t)j �
2(exp(t (R))R

(Rm � 1) : (28)

Proof. We recall that, for every R > 1;

eTm exp(tHm)e1 =
1

2�i

Z
�R

exp(tz)eTm(zI �Hm)
�1e1dz;

hence, using (5), from 13 we get

�m(t) =

0@� mY
j=1

hj+1;j

1A 1

2�i

Z
�R

(exp(tz)=det(zI �Hm))dz:

Then, by (26), we get

�m(t) = �m
1

2�i

Z
�R

(exp(tz)=det(zI �Hm))dz;

and, since det(zI �Hm) = mFm(z) (cf. (23) and Proposition 6),

�m(t) =
�1
2�i

Z
�R

(exp(tz)=Fm(z))dz;

that is

j�m(t)j �
1

2�

Z
jwj=R

��(exp(t (w)) 0(w)��
j(Fm( (w))j

dw: (29)

Then, observing that

j exp(t (w))j � exp(t (R)); for jwj = R;
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by f3) and by our assumptions on 
, from (29) we obtain

j�m(t)j �
R exp(t (R))maxjwj=R

�� 0(w)��
(Rm � 1) : (30)

The bound (28) follows from (30) recalling that, by (21) and (22),�� 0(w)�� < 2; for jwj > 1:

�
Here below we consider some cases often discussed in the literature (see e.g.

[5], [11], [13]). For these cases, owing to the simple form of the mapping  ; the
previous general bound can be easily specialized. It�s interesting to observe that
the estimates are similar to those given for Krylov-Arnoldi approximations.

Proposition 11 Let A be symmetric and negative semi-de�nite with eigenval-
ues in the interval 
 = [�4; 0],  > 0. Then

j�m(t)j �
8t2

(m� 1) exp
 
�1
8

(m� 1)2

t

!
kvk2 ; 2 � m� 1 � 2t; (31)

j�m(t)j � 4 exp
�
(t)2

m� 1 � 2t
��

et

m� 1

�m�1
kvk2 ; m� 1 � 2t: (32)

Proof. From (30) we get immediately

j�m(t)j �
2(exp(t (R))

Rm�1(1� 1=R) : (33)

In our case (cf.[7]),  (w) = (w � 2 + w�1). Then, if m � 1 � 2t; setting
R = (m � 1)=t in (33), we easily get (32). Moreover, by (33), since (1=R) �
exp(�(1� 1=R)), we also get

j�m(t)j �
2 exp [t (R)� (m� 1)(1� 1=R)]

(1� 1=R) : (34)

Hence, if m�1 < 2t; we set R = 4t=(4t�m+1): Since  (R) = (R�1)2=R
and 1 < R � 2; we have

 (R) � 2(R� 1)2=R2: (35)

In this way, using the relation (1 � 1=R) = (m � 1)=4t and inserting (35) in
(34), we obtain (31) after simple computation. �

Proposition 12 Let A be a matrix with eigenvalues contained in the interval

 = [� � 2i; � + 2i],  > 0. Then

j�m(t)j � 4 exp
�
�t� (t)2

m� 1

��
et

m� 1

�m�1
; m� 1 � 2t:
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Proof. Now, the conformal mapping associated to 
 is  (w) = (w+��w�1).
The thesis follows straightfully from (33), setting therein R = (m� 1)=t: �

Proposition 13 Assume that 
 := fz :j z + a j� a; a > 0g : Then

�m(t) = � exp(�ta)
tm�1am

(m� 1)! : (36)

Proof. In this case the Faber polynomials are given by Fj(z) =
�
z
a + 1

�j
(cf.[25],

p.133) and one easily realizes that the interpolatory approximation coincides
with the truncated Taylor expansion of exp(z) around (�a). Any matrix Hm

has entries
hj;j = �a; hj+1;j = a; hi;j = 0 otherwise:

Since

eTm exp(tHm)e1 =
1

2�i

Z
�

exp(tz)eTm(zI �Hm)
�1e1dz;

by proposition 1, we obtain

�m(t) =
�am
2�i

Z
�

exp(tz)

(z + a)m
dz:

Hence, by the residue theory we get (36). �
If A is diagonalizable, i.e., XAX�1 is diagonal, using f3) we get the bound

jjFm(A)jj � cond2 (X) kFm(�)k
r � 2cond2 (X) r
m; for r � 1;

provided that � (A) � 
r. Other estimates are proposed here below.

Proposition 14 Let 
 be as in Proposition 13 and assume that W (A) �
fz :j z + a j� ra; r � 1g (see (4)). Then

jjFm(A)jj �
rm(m+ 1)m+1

mm
: (37)

Proof. For every R > r,

Fm(A) =
1

2�i

Z
jz+aj=Ra

Fm(z)(zI �A)�1dz:

Using Proposition 4 we obtain

jjFm(A)jj �
Rm+1

(R� r) ;

and, taking R = r(m+ 1)=m; we get the bound (37). �
An estimate of jjFm(A)jj for a general compact 
, can be obtained as follows.
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Proposition 15 Assume that W (A) � 
r; for some r � 1: Then,

jjFm(A)jj � 2rm(2m+ 1)
�
m+ 1

m

�m
: (38)

Proof. Since

Fm(A) =
1

2�i

Z
�R

Fm(z)(zI �A)�1dz; R > r;

we get

jjFm(A)jj �
1

2�

Z
jwj=R

j(Fm( (w))j
�� 0(w)�� jj( (w)I �A)�1jjdw:

Hence,by Proposition 4, we obtain

jjFm(A)jj �
1

2�

Z
jwj=R

j(Fm( (w))j
�����  

0
(w)

 (w)� u

����� dw; (39)

with u 2 
r: Using (24), by f2) and f3), after simple computation one gets

R j(Fm( (w))j
�����  

0
(w)

 (w)� u

����� � 2Rm(R+ r)

(R� r) ; u 2 
r; jwj = R:

Then, setting R = r(m+ 1)=m; from (39) we obtain (38). �

5 Some computational considerations

As mentioned before hybrid methods need a preliminary phase where estimates
of the eigenvalues are achieved, in order to construct in a suitable way the set

 containing � (A) (actually, in the case of the exponential, since it is analytic
everywhere condition � (A) � 
 is not essential for the convergence). To do
this, in the general case, one of the several techniques proposed in the literature
can be adopted. Among the others, we refer to the ones discussed in [27], [19]
and [18]. Clearly the obtained information can be re-used every time we want to
apply an hybrid method to the same matrix. Nevertheless, there are also some
important cases, when A represents the discretization of a di¤erential operator,
where information on the spectrum are a priori available . See for instance
Example 1 below. Actually this situation is not limited to simple cases (cf.
also[16]), but an analytic study can give a priori eigenvalues estimates also for
more general operators. Results upon this point will appear in a forthcoming
paper.
After having de�ned the set 
, we have to determine the Laurent expansion

of  . We can proceed using the scheme proposed in [27], based on the resolution
of the parameters problem relative to the Schwarz- Christo¤el transformation
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associated to the mapping  , for which we refer to [31]. In order to solve this
problem numerically, we employ the software SC Matlab Toolbox, written by
T.A.Driscoll at M.I.T. in 1995. Obviously, in addition to the capacity , only
a �nite number of coe¢ cients of this expansion can be determined numerically,
and so, �xing a priori this number, say p, instead of  we obtain the �nite
expansion of an approximated conformal mapping. So, formula (23) is a recur-
rence with a �xed �nite number p+1 of terms, and Hm is an Hessenberg matrix
with upper bandwidth p. In the particular case that we compute the only �rst
two coe¢ cients of the Laurent expansion of  , that is c0 and c1, we work with
scaled and translated Chebyshev polynomials (cf. [27]).

6 Numerical experiments

In order to illustrate the behavior of the method, we make a comparison with the
Krylov method based on the Arnoldi algorithm (see e.g.[24]) on two examples
arising from the semi-discretization, by the method of line (MOL), of partial
di¤erential equations of parabolic type. Obviously, when the restarted version
is used, the comparison is made with the corresponding restarted version of the
Krylov-Arnoldi method.
In all �gures, the behavior of log10 krm(t)k2 with respect to the number of

scalar products (taking into account of the sparsity pattern of A) is shown;
rm(t) is clearly the m-th residual of the corresponding IVP at the time t. A
continuous and a dotted line have been respectively used for Faber and Krylov
method.
Thus, consider the following partial di¤erential equation8<:

@u(x;t)
@t = Lu (x; t) x 2 E; t � 0;

u (x; 0) = u0 x 2 E;
u (x; t) = � (x) x 2 @E; t > 0;

in which L is a second-order partial di¤erential operator and E is an open
bounded connected set. Semidiscretizing with respect to spatial variables using
�nite di¤erences, a system of ordinary di¤erential equations is achieved�

y0 (t) = Ay (t) ;
y (0) = v;

(40)

where w is a vector and A is a square matrix independent of t.

Example 16 In this �rst example let us consider the di¤erential operator

L = �� �1
@

@x
� �2

@

@y
; �1; �2 2 R:

Discretizing L on the cube (0; 1) � (0; 1) � (0; 1) with central di¤erences on
a uniform meshgrid of (n+ 2) � (n+ 2) � (n+ 2) points with meshsize h =
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1= (n+ 1) along each direction, a nonsymmetric matrix A of order N = n3 with
particular block structure is obtained. It can be represented in the following way,

A :=
1

h2
fIn 
 (In 
 C1) + [B 
 In + In 
 C2]
 Ing ;

where In is the n-order matrix identity and

B :=

266664
�2 1
1 �2 1

1
. . .

. . .
. . .

. . .

377775 , Ci :=

266664
�2 1� �i
1 + �i �2 1� �i

1 + �i
. . .

. . .
. . .

. . .

377775 ;
for i = 1; 2; where �i := � i (h=2). It�s important to observe that in this case all
the eigenvalues of A are explicitly known and �(A) is exactly contained in the
rectangle

R(h; �1; �2) : =
1

h2
[�6� 2 cos( �

n+ 1
)Re �;�6 + 2 cos( �

n+ 1
)Re �]�(41)

[�2i cos( �

n+ 1
) Im �; 2i cos(

�

n+ 1
) Im �]:

where � :=
p
1� �21 +

p
1� �22 + 1.

In particular, de�ning n = 15 (N = 3375), with �1 = 3, �2 = 4, t = h2 and
v := (1; 1; :::; 1)

T , by (41) the convex hull of �(tA) is the rectangle


 :=
1

256
R(

1

16
; 3; 4) � [�7:9616;�4:0384]� [�13:1453i; 13:1453i]:

Computing p = 6 Laurent coe¢ cients of  , in Figs.1,2,3,4 we observe the resid-
ual curves with restart m = 10; 15; 20 and without restart respectively.
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Fig.1, �1 = 3; �2 = 4; m = 10

15



0 100 200 300 400 500 600 700 800
8

6

4

2

0

2

4

scalar produc ts

lo
g1

0(
no

rm
2(

re
sid

ua
l))

Fig.2, �1 = 3; �2 = 4; m = 15
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Fig.3, �1 = 3; �2 = 4; m = 20
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Fig.4, �1 = 3; �2 = 4;

Now, for the same problem with �1 = �2 = 10, the convex hull of �(tA) is
the rectangle


 :=
1

256
R(

1

16
; 10; 10) � [�7:9616;�4:0384]� [�39:0348i; 39:0348i]:

As before with p = 6 computed Laurent coe¢ cients of  , in Figs. 5,6,7 we
observe the residual curves with restart m = 15; 25 and without restart respec-
tively.
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Fig.5, �1 = 10; �2 = 10; m = 15
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Fig.6, �1 = 10; �2 = 10; m = 25
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Fig.7, �1 = 10; �2 = 10

Example 17 In this second example we consider the di¤erential operator

L = �� �
�
x
@

@x
+ y

@

@y
+ z

@

@z

�
� �; ; � 2 R: (42)

Discretizing as in Example 1 on the cube (0; 1) � (0; 1) � (0; 1) with uniform
meshsize h = 1= (n+ 1) along each direction, a nonsymmetric matrix A of order
N = n3 is obtained. Also in this case A is sparse with a particular block structure
and can be represented by means of Kronecker products.
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Let�s set n = 16 (N = 4096), v := (1; 1; :::; 1)
T , and de�ne the parameters

� := � (h=2) and � := �h2, t := h2, setting in our experiments � = 8 and
� = �2. Following [27], by Arnoldi method we get a certain set f�igi=1;::;s of
estimates of the spectrum and then we de�ne the compact 
 as the polygon
obtained joining the marginal points of this set. The cost of the computation
of the p-truncated expansion of  is proportional to the number s of points
that constitute the vertices of the polygon 
, that is, the marginal points of
f�igi=1;::;s. In the experiments below we take s = 14; computing again p = 6
Laurent coe¢ cients of  . In Figs. 8,9,10 the residual curves with restart m =
15; 25; 35 respectively are shown.
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Fig.8, � = 8; � = �2; m = 15
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Fig.9, � = 8; � = �2; m = 25

0 500 1000 1500 2000 2500
8

6

4

2

0

2

4

lo
g1

0(
no

rm
2(

re
sid

ua
l))

s calar produc ts

Fig.10, � = 8; � = �2; m = 35

It�s important to observe that in these last three �gures the residual curve of
Faber method is shifted on the right. This is due to the cost of the preliminary
phase.
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