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Solving linear initial value problems by Faber polynomials
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SUMMARY

In this paper we use the theory of Faber polynomials for solving N -dimensional linear initial value
problems. In particular, we use Faber polynomials to approximate the evolution operator creating the
so-called exponential integrators. We also provide a consistence and convergence analysis. Some tests
where we compare our methods with some Krylov exponential integrators are �nally shown. Copyright
? 2002 John Wiley & Sons, Ltd.

1. INTRODUCTION

Given a matrix A∈RN×N and a continuous function g : [0; T ]→RN , we consider the linear
initial value problem (IVP)

y′(t)=−Ay(t) + g(t); t∈[0; T ]
y(0)=y0

(1)

For the remainder of the discussion we assume A to be time independent. As well known,
in this situation the solution of (1) is given by

y(t)= exp(−tA)y0 +
∫ t

0
exp((s− t)A)g(s) ds (2)

Solving (1) with a classical method involves at each step an attempt to approximate the
exponential function. In particular with explicit schemes the approximation is of polynomial
type, whereas implicit schemes involve a rational approximation. The drawback we want to
overcome regards the fact that, generally, these approximations do not take into account the
location in the complex plane of the spectrum of A, that we denote by �(A). This consti-
tutes a drawback regarding especially explicit methods, because if �(A) is contained in a
region of the complex plane where the approximation of the exponential function is not good,
the method may lead to poor results, in the sense that generally a drastic reduction of the
time step is required, especially in sti� cases. On the other hand, rational approximations
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arising from the use of implicit schemes generally allow to attain acceptable approximations
of the matrix exponential but they require the solution of one or more linear systems at each
step, that constitutes a computational disadvantage, at least unless optimal preconditioners are
available.
To overcome these problems, in recent years some authors have proposed one-step integra-

tion techniques based on the direct computation of the matrix exponential operator at each
step using Krylov subspace methods [1–6], that generally cost less than the solution of a
linear system. Such methods are usually called Krylov exponential integrators (see Reference
[4]). The computation is based on the projection of the matrix exponential onto the Krylov
subspaces using the Arnoldi or Lanczos algorithms. Concerning the rate of convergence, these
methods show a very appreciable behaviour (see e.g. Reference [2]) but they also present the
typical disadvantages of the projective schemes, that is, the construction of the projection
subspaces. In particular, using the classical Arnoldi algorithm to build the Krylov subspaces
there is the well-known problem of the growth of the computational cost (see References
[1, 6]). On the other hand, using the Lanczos algorithm there is the possibility of breakdown,
with consequent failure of the method, and in general there are stability problems due to the
fact that oblique projections instead of orthogonal ones are used.
Like Krylov exponential integrators, the methods for (1) we are going to introduce are one-

step methods based on the computation of the matrix exponential operator, but this evaluation
is performed by means of truncating Faber series de�ned on a certain compact subset �
of the complex plane containing (or, more generally, approximating) �(A) (see References
[7, 8]). As pointed out in the works just mentioned this technique is quite e�cient both by
convergence and computational point of views, because of the properties of approximations of
Faber polynomials and by the fact that there exists a recursion they satisfy (see e.g. References
[9–12]). We call Faber exponential integrators such kind of procedures. A similar approach,
based on Chebyshev polynomials and series, that is of particular interest when A is symmetric
or skew-symmetric, has recently been used in References [13–15].
The standard approaches for the solution of (1) by means of the direct computation of the

matrix exponential operator are based on the use of a quadrature formula for the integral in
(2). In this way, more than one matrix exponential usually must be computed at each time
step. Therefore, it is fundamental to employ an e�cient but not too expensive method for
matrix functions. In this sense, the aim of this paper is to show the e�ectiveness of the Faber
approximation technique as a tool for (1).
In order to clarify the notation used throughout the paper, unless otherwise speci�ed the

vector norm is always the Euclidean norm, and the matrix norm is always the spectral norm.
Moreover, for a complex valued function h :K⊆C→C, we de�ne ‖h‖K : supz∈K |h(z)|.
The paper is structured as follows: In Section 2 we give an outline about the theory of

Faber polynomials and series. In Section 3 we consider the computation of the matrix ex-
ponential and of the matrix function (I − exp(−A))A−1 (the last one can arise when solving
(1) with constant forcing term) by truncated Faber series. An error analysis of this kind of
approximation is furnished in Section 4. In Section 5 we describe the common approaches
used for the solution of (1) with a polynomial type method. Section 6 is devoted to the
properties of consistency and convergence of Faber integrators. In Section 7 we provide
some further numerical issues about Faber coe�cients, introduced in Section 2. Finally, in
Section 8 we test our method on problems arising from the discretization of a parabolic
equation.
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2. BACKGROUND ON FABER POLYNOMIALS AND SERIES

Let

M := {�⊂C : � is compact; �C\� is simply connected
and � contains more than one point}

Given �∈M, by the Riemann Mapping Theorem we can consider the conformal surjection

 : �C\{w : |w|6�}→ �C\�;  (∞)=∞;  ′(∞)=1 (3)

where the constant � is the capacity of �. Let � : �C\�→ �C\{w : |w|6�} be the inverse map-
ping of  .
The jth Faber polynomial is de�ned as the polynomial part of the Laurent expansion at ∞

of [�(z)]j (cf. [12], Section 2)

[�(z)]j= zj +
j−1∑

k=−∞
�j; kzk ; j¿0

that is

Fj(z) := zj +
j−1∑
k=0

�j; kzk ; j¿0:

As well known, in the particular case that � coincides with the closure of the internal part
of an ellipse or with a bounded interval in the complex plane, Faber polynomials reduce to
scaled and translated Chebyshev polynomials. We refer to References [16, 17] for a detailed
description of these cases.
Let � be the boundary of � and, for R¿�, let �(R) be the equipotential curve

�(R) := {z : |�(z)|=R}

Moreover, let us denote by �(R) the closure of the interior of �(R), and by
◦
�(R) its internal

part. For R= � we de�ne �(�) :=� and �(�) :=�. Let f be a function analytic on �: By
Reference [12] (Theorem 1, p. 167), f can be uniquely expanded into a series of Faber
polynomials

f(z)=
∞∑
j=0

aj(f)Fj(z); z∈� (4)

where the coe�cients aj(f) are called Faber coe�cients with respect to f and the compact
�; they are de�ned as

aj(f) :=
1
2�i

∫
|w|=R

f( (w))
wj+1 dw; j¿0; �¡R (5)

Now consider the sequence of polynomials {qm−1(z)}m¿1 obtained by truncating the series
(4), that is

qm−1(z) :=
m−1∑
j=0

aj(f)Fj(z) (6)
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Given a general square matrix B∈CN×N and a vector u∈CN , under the hypothesis that
�(B)⊂�, it is known that the sequence

ym := qm−1(B)u (7)

converges to f(B)u (see Reference [7]). Moreover, by the properties of Faber polynomials,
it is known that the sequence {qm−1(z)}m¿1 approximates asymptotically f on � as well as
the sequence of best uniform approximation polynomials. In this sense the method (7) is said
to be asymptotically optimal with respect to f and � (see e.g. Reference [16]). We call (7)
Faber series method (FSM). De�ning

� := max{r : r¿�;f analytic on
◦
�(r)} (8)

we have that a su�cient condition for the convergence of the FSM is �(B)⊂ ◦
�(�), because

qm−1(z) converges to f(z) uniformly in each compact subset contained in
◦
�(�) (cf. References

[7, 8]). Moreover, setting the error

em=ym − f(B)u

if �(B)⊂�(r), with r¡�, by Reference [7] we know that

lim
m→∞ ‖em‖1=m6 r

�
(9)

so that � gives a measure of the rate of convergence of the method.

3. THE COMPUTATION OF exp(−�A)v AND (I − exp(−�A))A−1v

Now suppose to know a certain �∈M with capacity � such that �(A)⊂�. By the conformal
mapping theory, it is well known that if  is the conformal surjection relative to � (cf. (3))
then  has a Laurent expansion of the type

 (w)=w + �0 +
�1
w
+

�2
w2
+ · · · ; |w|¿� (10)

For the sequence {Fm}m¿0 of Faber polynomials with respect to �, the following well-known
recursion holds

F0(z) = 1; F1(z)= z − �0 and for m¿2

Fm(z) = (z − �0)Fm−1(z)− (�1Fm−2(z) (11)

+ · · ·+ �m−1F0(z))− (m− 1)�m−1

Now, consider �rst the computation of the matrix exponential. By Section 2, working with
the function f(z)= exp(−�z); �¿0, the FSM for the computation of exp(−�A)v is based on
the expansion

exp(−�z)=
∞∑
j=0

aj(�)Fj(z); z∈� (12)
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where Fj is the jth Faber polynomial with respect to � and

aj(�) :=
1
2�i

∫
|w|=R

exp(−� (w))
wj+1 dw; j¿0; �¡R (13)

Thus, the FSM has the form

wm(�)=pm−1; �(�A)v where pm−1; �(�z) :=
m−1∑
j=0

aj(�)Fj(z) (14)

In order to understand the notation used, we must point out that pm−1; � is a polynomial whose
coe�cients depend on � in a non-polynomial form, see (13).
Regarding the computation of the approximations wm(�) of (14), the following result can

be easily proved by direct computation using (11) and (14).

Proposition 3.1
For �¿0 the approximations wm(�) can be carried out recursively by

w0(�) = 0; w1(�)= a0(�)v; w2(�)=w1(�) +
a1(�)
a0(�)

(A− �0I)d0; �

wm(�) =wm−1(�) +
am−1(�)
am−2(�)

(A− �0I)dm−2; � − am−1(�)
am−3(�)

�1dm−3; � (15)

− · · · − am−1(�)
a0(�)

(m− 1)�m−2d0; � m¿ 3

where d0; � :=w1(�), dk;� :=wk+1(�)− wk(�); (k¿1).

Concerning the convergence, since the exponential function is analytic on the whole com-
plex plane, � (8) can be chosen arbitrarily large. Hence, the series (14) converges uniformly
on every compact subset of C. As consequence the corresponding method (15) converges no
matter where �(A) is located with respect to �, for each �¿0. Moreover, by (9), the rate of
convergence is superlinear.
Now consider the computation of (I − exp(−�A))A−1v. Since for the above description we

are able to compute the matrix exponential, we can proceed in two phases computing �rst
u=A−1v and then (I − exp(−�A))u. However, this kind of approach requires the solution of
a linear system which, as well known, could present some problems. It is more convenient
to deal directly with the operator ’(�A) := (I − exp(−�A))(�A)−1. In fact, solving a linear
system with a polynomial method involves the approximation of the function 1=z, singular at
0, whereas the function ’ has only a removable singularity in 0 (see Reference [8]). Hence,
�(’) can be chosen arbitrarily large as for the exponential case.
Following what stated for the exponential case, we write

’(�z)=
∞∑
j=0
�aj(�)Fj(z); z∈� (16)
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where

�aj(�)=
1
2�i

∫
|w|=R

1− exp(−� (w))
� (w)wj+1 dw; j¿0; �¡R (17)

Therefore, the FSM for the computation of (I − exp(−�A))A−1v gives

xm(�)= � �pm−1; �(�A)v where �pm−1; �(�z) :=
∞∑
j=0
�aj(�)Fj(z) (18)

The approximations xm(�) can be clearly carried out using the recursion stated in Proposi-
tion 3.1.

4. ERROR ANALYSIS

In this section we want to provide upper bounds for the errors of (14) and (18). Since we
are interested in the general case of A not diagonalizable, we work in terms of the �eld of
values of A, de�ned as

F(A) :=
{
zHAz
zH z

: z∈C={0}
}

Moreover, as extensively explained in Reference [18], in order to analyse convergence of a
matrix iterative process it is suitable to work with the �eld of values of the matrix involved. In
fact, this tool allows to estimate not only the asymptotic performance of the iterative scheme
(such informations can be derived from the spectral properties of the matrix) but it is also
useful to understand the behaviour of the method for a �nite number of iteration.
For the following result see Reference [19, Theorem 4.1].

Lemma 4.1
Let d(z; F(A)) be the distance between a point z and F(A). Then

‖(zI − A)−1‖61=d(z; F(A))
Theorem 4.1
Let � be convex and assume that F(A)⊆�(s); for some �6s. Let moreover f be a function
such that s¡�, with � de�ned by (8). Given a general polynomial method pm−1(A)v ≈ f(A)v
such that limm→∞ ‖pm−1−f‖� =0, for any s¡r¡�, the error em=pm−1(A)v−f(A)v is such
that

‖em‖6‖v‖‖f − pm−1‖�(r) r + s
r − s

(19)

Proof
By the de�nition of em, for any s¡r¡� it is

em=
1
2�i

∫
�(r)
(f(z)− pm−1(z))(zI − A)−1v dz
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Then we get

‖em‖6‖f − pm−1‖�(r)
2�

∫
|w|=r

| ′(w)|‖( (w)I − A)−1v‖ dw

Hence, by Lemma 4.1, we obtain

‖em‖6‖v‖‖f − pm−1‖�(r)
2�

∫
|w|=r

∣∣∣∣  ′(w)
 (w)− u(w)

∣∣∣∣ dw
where u(w)∈�(s): Since∫

|w|=r

∣∣∣∣  ′(w)
 (w)− u(w)

∣∣∣∣ dw= 1r
∫
|w|=r

∣∣∣∣ w ′(w)
 (w)− u(w)

∣∣∣∣ dw
using the relation ([12] p. 16) ∣∣∣∣ w ′(w)

 (w)− u(w)

∣∣∣∣6r + s
r − s

we get the statement.

Now, consider the error of approximation of the FSM. Let �∈M with capacity �; from
now on we always assume that � can be continuously extended to � (this holds for instance
when � is a Jordan curve). Let V (�) be the total boundary rotation of �, de�ned as

V (�) :=
∫ 2�

0
|d	 arg( (�ei	)−  (�ei	0))|; 06	0¡2� (20)

We assume V (�)¡+∞. If � is convex then V (�)=2�.

Remark 4.1
In what follows we often use the quantity V (�(R)), R¿�, instead of V (�). However, it
is known that the hypothesis V (�)¡+∞ implies the inequality V (�(R))¡+∞. Indeed, as
shown in Reference [20], for R¿� su�ciently large, �(R) is convex, and in any case, given
�¡R1¡R2, we have V (�(R2))6V (�(R1))6V (�).

Let f be analytic on �. Let us denote with Fm−1(f) the truncated Faber series (6). We
have the following general result.

Proposition 4.1
Let R¡�, with �= �(f) de�ned by (8). Then, for every �6r¡R,

‖f − Fm−1(f)‖�(r)6V
�
‖f‖�(R) (r=R)

m

1− r=R
(21)

where V =V (�(r)):

Proof
The bound (21) is easily derived using the well-known relations (see e.g. Reference [10])

max
z∈�(r)

|Fj(z)|6V
�

rj; |aj(f)|6‖f‖�(R)
Rj (22)
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Lemma 4.2
If � is symmetric with respect to the real axis, then, given R¿�, for the mapping  
we have

 (−R)¿ (−�)− R+
�2

R
(23)

Proof
Writing

 (−�)=  (−R) +
∫ −�

−R
 ′(t) dt

where the integral path is the real line segment [−R;−�], using the bound

| ′(w)|61 +
(

�
|w|
)2

; |w|¿� (24)

(see Reference [11]), we have

 (−�)−  (−R) = | (−�)−  (−R)|6
∫ −�

−R
| ′(t)| dt

6
∫ −�

−R

(
1 +

(�
t

)2)
dt

= R− �2

R

Now, let

�M :=

{
�∈M : � is symmetric with respect to the

real axis; convex; and � is a Jordan curve

}
(25)

Theorem 4.2
Let �∈ �M. Assume that F(A)⊆�(s); for some s¿�: Then, for the error em(�)=wm(�) −
exp(−�A)v of (14) we have

‖em(�)‖6C exp(�E)
(
s exp(�)

m

)m−1
; m¿4s (26)

where

C=8‖v‖es
(
1 +

1
8s

)
; E=1−  (−�) (27)

Proof
By (19) and (21), for �6s¡r¡R we get (using also V=�=2 because � is convex)

‖em(�)‖62‖v‖ (r=R)m

1− (r=R)
r + s
r − s

max
z∈�(R)

| exp(−�z)| (28)
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If in (28) we put r= s(1 + 1=m), m¿1, we obtain

s¡r62s and
r + s
r − s

=2m+ 1

Moreover we have

( r
R

)m
=
( s
R

)m(
1 +

1
m

)m
6e

( s
R

)m
(29)

Since the exponential function is analytic in the whole complex plane, in (28) we can choose
R arbitrarily large. Hence, we can put R=m, so that, for m¿4s,

1
1− r=R

6
1

1− 2s=R62 (30)

2m+ 16 2m
(
1 +

1
2m

)
62m

(
1 +

1
8s

)
(31)

Substituting (29), (30), (31) in (28) we �nd

‖em‖68‖v‖e
(
1 +

1
8s

)
m
( s
m

)m
max
z∈�(m)

|exp(−�z)|; m¿4s (32)

Moreover, since � is convex, the same is true for each �(m), m¿1 (see Reference [20]).
Hence, by the nature of the exponential function we easily get

max
z∈�(m)

|exp(−�z)|= exp(−� (−m)) (33)

Now, by Lemma 4.2

 (−m)¿ (−�)−m

and thus

exp(−� (−m))6(exp(�))m−1 exp(�(1−  (−�))) (34)

By (32), using (33) and (34) we easily get the thesis.
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Theorem 4.3
Under the hypothesis of the previous theorem, for the error �em(�)= xm(�)−(I−exp(−�A))A−1v
of method (18) we have the bound

‖ �em(�)‖6C� exp(�E)
(
s exp(�)

m

)m−1
; m¿max(4s; �m) (35)

where �m is the smallest integer such that  (− �m)60, C and E are de�ned by (27).

Proof
Since ’ is analytic in the whole complex plane except for a removable singularity in 0, we
can proceed as in the previous proof getting

‖ �em(�)‖6C�
( s
m

)m−1
max
z∈�(m)

∣∣∣∣1− exp(−�z)
�z

∣∣∣∣ ; m¿4s

where C is de�ned by (27). Now, by the nature of the exponential function we get

max
z∈�(m)

∣∣∣∣1− exp(−�z)
�z

∣∣∣∣6 max
z∈�(m)

∣∣∣∣1− exp(−� real(z))
� real(z)

∣∣∣∣
6
1− exp(−� (−m))

� (−m)
(36)

and thus, for each m¿ �m,

1− exp(−� (−m))
� (−m)

6 exp(−� (−m))

Using Lemma 4.2 as before we get the thesis.

5. THE SOLUTION OF THE SYSTEM

Now let us see how to use the methods described in Section 3 in order to solve (1). By (2),
we can express y(t + �) as

y(t + �)= exp(−�A)y(t) +
∫ �

0
exp(−(�− 
)A)g(t + 
) d
 (37)

Formula (37) can be used as the basis for a time-stepping procedure.

5.1. First approach

The standard approach for the numerical implementation of (37) consists of using a general
quadrature formula of the type∫ �

0
exp(−(�− 
)A)g(t + 
) d
 ≈ �

p∑
j=1

�j exp(−(�− 
j)A)g(t + 
j) (38)
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where the 
j and �j are the quadrature nodes and weights, respectively, in [0; �]. Except the
case of the trapezoidal rule, the use of any other higher-order quadrature formula requires the
evaluation of more than one matrix exponential at each step. For this reason, some Krylov
exponential integrators consider g as a constant on the interval of integration or use approxi-
mate projection formulas. This is intended to avoid the construction of more than one Krylov
subspaces sequence (see e.g. Reference [1]).
Using the FSM to compute the matrix exponentials of (38), if yn is an approximation

of y(t), �xed a certain integer m¿1 we consider the following one-step method for the
approximation of y(t + �):

yn+1 :=pm−1; �(�A)yn + �
p∑

j=1
�jpm−1; �−
j((�− 
j)A)g(t + 
j) (39)

where the polynomial pm−1; � is de�ned by (14). We call Faber exponential integrator the
method (39) and we denote it by F[m; k], where k indicates that the error of the quadrature
formula is of the type O(�k).

Remark 5.1
Clearly, depending on the quadrature rule, in order to get an error of the type O(�k), the
function g must be smooth enough. Hence, whenever we refer to the method F[m; k], we
always assume that g satis�es the necessary smoothness properties.

Although formula (39) could appear quite complicated and expensive, we can use the
recursion stated in Proposition 3.1 to carry out it, so that the total computation requires
generally (p+ 1)(m− 1) matrix–vector products at each step. Note that if in (38) the point
� is a quadrature node then (39) requires only p(m− 1) matrix by vector products.

5.2. Second approach

If in the integral term of (37) we consider constant the function g in [t; t + �], i.e. we
approximate g(t + 
) with g(t) for 
∈[0; �], we get

y(t + �) ≈ exp(−�A)y(t) +

(∫ �

0
exp(−(�− 
)A) d


)
g(t)

Hence, from the identity∫ �

0
exp(−(�− 
)A) d
=A−1(I − exp(−�A))= �’(�A) (40)

we can use the relation

y(t + �) ≈ exp(−�A)y(t) + �’(�A)g(t)

as the basis for the following one-step integration scheme

yn+1 :=pm−1; �(�A)yn + � �pm−1; �(�A)g(tn) (41)

where the polynomial �pm−1; � is de�ned by (18). Obviously (41) works well only if g(tn)
approximates well g(t) for t∈[tn; tn+1], so that the time step � does not need to be drastically
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reduced. We call F[m] the method (41). To carry out (41) we can use the recursion of
Proposition 3.1. This allows to achieve yn+1 with 2(m− 1) matrix vector applications at each
step.
In the case of time-constant forcing g(t)= g, by (37) and (40) we get

y(t + �) = exp(−�A)y(t) + A−1(I − exp(−�A))g

= exp(−�A)y(t) + �’(�A)g (42)

so that it is natural to use the method F[m] described by (41), obviously with g(tn)= g for
each n, i.e.

yn+1 :=pm−1; �(�A)yn + � �pm−1; �(�A)g (43)

For the particular case of g=0, the method (43) becomes simply

yn+1 :=pm−1; �(�A)yn (44)

which obviously requires m− 1 matrix by vector applications at each step. It is interesting to
observe that in this case F[m] generalizes the explicit Runge–Kutta method, in the sense that
if  (w)=w then pm−1; � is the truncated Taylor expansion of the exponential function in a
neighbourhood of 0.

6. CONSISTENCY AND CONVERGENCE

Before studying the consistency properties of the two approaches, we must give error bounds
for the approximations of the exponential and the function ’, as �→ 0.

Proposition 6.1
Let �∈ �M. For the FSM, as �→ 0 we have

‖em(�)‖=O(�m); ‖ �em(�)‖=O(�m+1) (45)

Proof
By (28),

‖em(�)‖62‖v‖ exp(−� (−R))
(r=R)m

1− r=R
r + s
r − s

; s¡r¡R¡+∞

De�ning �rst r=2s, we get

r + s
r − s

=3

so that

‖em(�)‖6const exp(−� (−R))
(r=R)m

1− r=R
; r¡R¡+∞
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Since we can choose arbitrarily R¿r, for �¡1 let us de�ne R= r=�. In this way, as �→ 0

−� (−R)=2s+O(�) (46)

so that

‖em(�)‖=O(�m)

that proves the �rst part of (45).
Proceeding as before, by (19), (21) and (36), de�ning r=2s and R= r=�, we �nd

‖ �em(�)‖6const 1− exp(−� (−r=�))
� (−r=�)

�m+1

1− �

Using (46) we get

1− exp(−� (−r=�))
� (−r=�)

=O(1)

that completes the proof.

Every one-step method can be written in the form

yn+1 =yn + ��(tn; yn; �)

and the local discretization error is de�ned as

d(t; �)=
y(t + �)− y(t)

�
−�(t; y(t); �); t∈[0; T ]

We have the following results.

Theorem 6.1
The F[m; k] method is consistent with the problem (1) with consistency order equal to
q= min(m; k)− 1:
Proof
For the F[m; k] method we have

�(tn; yn; �) :=
pm−1; �(�A)− I

�
yn +

p∑
j=1

�jpm−1; �−
j((�− 
j)A)g(tn + 
j) (47)

Thus by (37) we have

d(t; �) =
(exp(−�A)− pm−1(�A))

�
y(t)

+
1
�

∫ �

0
exp(−(�− 
)A)g(t + 
) d
−∑p

j=1 �jpm−1; �−
j((�− 
j)A)g(t + 
j)

= d1(t; �) + d2(t; �) + d3(t; �)
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where

d1(t; �) :=
exp(−�A)− pm−1(�A)

�
y(t)

d2(t; �) :=
1
�

∫ �

0
exp(−(�− 
)A)g(t + 
) d
−

p∑
j=1

�j exp(−(�− 
j)A)g(t + 
j)

d3(t; �) :=
p∑

j=1
�j exp(−(�− 
j)A)g(t + 
j)−

p∑
j=1

�jpm−1; �−
j((�− 
j)A)g(t + 
j)

A bound for d1(t; �) can be obtained using (45), that is

‖d1(t; �)‖6k1�m−1‖y‖C[0; T ] (48)

where ‖y‖C[0; T ] := maxt∈[0;T ] ‖y(t)‖. For d2(t; �), by hypothesis

‖d2(t; �)‖6k2�k−1 (49)

For d3(t; �), proceeding as for d1(t; �), we �nd

‖d3(t; �)‖6
(

p∑
j=1

|�j|
)

k1�m−1‖g‖C[0; T ] (50)

Finally, by (48), (49), (50), it follows:

max
t∈[0;T ]

‖d(t; �)‖6O(�q)

Example 6.1
If we use the Faber iteration with m=5 together with the Simpson rule for (38), which
implies k=5, we obtain a method of order 4 which requires 12 matrix by vector applications
at each step.

Theorem 6.2
The F[m] method is consistent with the problem (1). If g : [0; T ]→RN is of class C1, the
consistency order is equal to 1. If g(t)= g is constant, then the consistency order is m− 1.
Proof
For the F[m] method

�(tn; yn; �) :=
pm−1; �(�A)− I

�
yn + �pm−1; �(�A)g(tn) (51)
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and so by (37) we have

d(t; �) =
exp(−�A)− pm−1(�A)

�
y(t)

+
1
�

∫ �

0
exp(−(�− 
)A)g(t + 
) d
− �pm−1; �(�A)g(t)

= d1(t; �) + d2(t; �) + d3(t; �)

where

d1(t; �) :=
exp(−�A)− pm−1(�A)

�
y(t)

d2(t; �) :=
1
�

∫ �

0
exp(−(�− 
)A)g(t + 
) d
− 1

�

∫ �

0
exp(−(�− 
)A)g(t) d


d3(t; �) :=
1
�

∫ �

0
exp(−(�− 
)A)g(t) d
− �pm−1; �(�A)g(t)

As in previous theorem, a bound for d1(t; �) is given by

‖d1(t; �)‖6k1�m−1‖y‖C[0; T ] (52)

For d2(t; �), applying Lagrange’s theorem to all components of g, we easily get

‖d2(t; �)‖6k3�‖g′‖C[0; T ] (53)

For d3(t; �), using (40) and (45) we �nd

‖d3(t; �)‖ = ‖(’(�A)− �pm−1; �(�A))g(t)‖
6 k4�m−1‖g‖C[0; T ] (54)

Finally, by (52)–(54), it follows that the method is consistent with the problem (1) with
order 1. If in particular g(t)= g, clearly d2(t; �)=0 and so ‖d(t; �)‖6k5�m−1.

Regarding the convergence of the above methods, we can state the following result.

Theorem 6.3
Let m¿2. If the F[m; k] (or F[m]) method is consistent with order q, then it is convergent
with the same order.

Proof
It is su�cient to show that the function �(t; y; �) de�ned by (47) (or (51)) is Lipschitzian
with respect to the variable y. We have

�(t; ya; �)−�(t; yb; �)=
pm−1; �(�A)− I

�
(ya − yb)
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hence, using (45),

‖�(t; ya; �)−�(t; yb; �)‖6 1
�
‖pm−1; �(�A)− I‖‖ya − yb‖

6
1
�
(‖pm−1; �(�A)− e−�A‖+ ‖e−�A − I‖)‖ya − yb‖

6
1
�

(
c�m +

∞∑
j=1

�j‖A‖j
j!

)
‖ya − yb‖

6 (‖A‖+O(�))‖ya − yb‖

Note that we did not distinguish between F[m; k] and F[m], because the proof is the same.

7. SOME NUMERICAL CONSIDERATION

The practical implementation of the recursion (15) requires the evaluation of a certain number
of the Laurent coe�cients {�j}j¿0 of the mapping  relative to a compact subset � containing
�(A). In general, �(A) is not known and it is necessary to estimate it using some eigenvalue
method (see e.g. References [7, 8, 20, 21]). Consequently, � is usually de�ned as the convex
polygonal compact obtained joining the outermost points of the estimate set [20].
For the evaluation of the Laurent coe�cients {�j}j¿0 of  , in our tests we employed the

software SC Matlab Toolbox, written by Driscoll in 1995 (see Reference [22]). We must point
out that especially when � is convex, a small number of computed leading coe�cients of  
usually allows to get a good approximation of �. In Figure 1, we can see some examples of
convex polygonal domains and the approximations obtained computing l (de�ned at the top
of each picture) leading coe�cients of the corresponding  .
In general, always assuming that � is convex, the choice of l=10 usually leads to good

results. Hence, numerically, the mapping  with its (generally in�nite) development is replaced
by an approximation

 ̃ (w)=w + �̃0 +
�̃1
w
+

�̃2
w2
+ · · ·+ �̃l

wl ; |w|¿�̃

with �̃ ≈ �.
The implementation of the recursion (15) requires also the evaluation of the Faber co-

e�cients aj(�), j¿0. After computing  ̃ , the computation of the Faber coe�cients can be
performed using any suitable quadrature formula. Anyway one can also use the following
result.

Proposition 7.1
For j¿1,

aj−1(�) +
j
�
aj(�)=

∑∞
i=1 i�iaj+i(�) (55)
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Proof
Integrating by parts aj(�); j¿1, and by (10), we get

aj(�) =
1
2�i

∫
|w|=R

exp(−� (w))
wj+1 dw; R¿�

=−�
j
1
2�i

∫
|w|=R

exp(−� (w))
wj  ′(w) dw

=−�
j
1
2�i

∫
|w|=R

exp(−� (w))
wj

[
1− �1

w2
− 2�2

w3
− · · ·

]
dw

that proves the thesis.

Clearly, on replacing  by  ̃ , formula (55) has a �nite number l + 2 of terms. It gener-
alizes the well-known recursion for Chebyshev coe�cients that can be expressed in terms of
modi�ed Bessel functions (see e.g. Reference [13]). As for Chebyshev coe�cients, formula
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(55) cannot be used forward, in view of its instability. Once a priori estimate of the required
number m of coe�cients is available (using for instance a priori upper bound for the er-
ror of approximation), after computing am+1(�); am+2(�) : : : ; am+j(�), recursion (55) must be
used backward. We observe that for both F[m; k] and F[m], the mapping  ̃ and the Faber
coe�cients have to be computed only once, at the beginning.
Together with the above numerical consideration, here we want to show an improvement

of the bound (22) for the exponential function, i.e.

|aj(�)|6e
−� (−R)

Rj (56)

Proposition 7.2
Let �∈ �M. For each R¿� we have

|a0(�)|6 e−� (−R)

|aj(�)|6 �
jRj−1 e

−� (−R)
(
1 +

( �
R

)2)
; j¿1 (57)

Proof
For j=0 the thesis follows immediately by (13) and the geometry of �. For j¿1, using
integration by parts we get

aj(�) =
1
2�i

∫
|u|=R

exp(−� (u))
uj+1 du

=−�
j
1
2�i

∫
|u|=R

exp(−� (u))
uj  ′(u) du (58)

Now, using the bound (see Reference [11])

| ′(Rei	)|61 +
( �
R

)2
; R¿�

we get the thesis for j¿1.

De�ning �j(�) and ��j(�), j¿0, as the bounds for |aj(�)| given by (56) and (57), re-
spectively, the following tables show a comparison between these two bounds for �=0:05
and �=0:01, in the case of an ellipse. In particular we consider the ellipse associated with
the conformal mapping  (w)=w + 5 + 2=w, with capacity �=4. For the bounds we choose
R= �.
As we can see, the di�erence between the two estimates appears more evident as � becomes

smaller. The improvement given by (57) is of particular importance when �→ 0, because
in this situation ��0(�)→ 1 and ��j(�)→ 0 for j¿0 (see (57)), as the corresponding exact
values |aj(�)|.
Note that Proposition 7.2 can be used to improve the bounds (21) and (26). However, such

an improvement does not allow to attain qualitatively better results in Section 6.
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j |aj(�)| �j(�) ��j(�)

0 7.8E-1 9.7E-1 9.7E-1
1 3.9E-2 2.4E-1 9.7E-2
2 6.5E-5 6.1E-2 1.2E-2
3 1.1E-9 1.5E-2 2.0E-3
4 ¡1E-14 3.8E-3 3.8E-4
5 ¡1E-14 9.5E-4 7.6E-5
0 9.5E-1 9.9E-1 9.9E-1
1 9.5E-3 2.5E-1 2.0E-2
2 6.3E-7 6.2E-2 2.5E-3
3 8E-14 1.5E-2 4.1E-4
4 ¡1E-14 3.9E-3 7.7E-5
5 ¡1E-14 9.7E-4 1.5E-5

8. NUMERICAL EXPERIMENTS

The problems we consider arise from the semi-discretization of the parabolic equation

@u(x; y; z; t)
@t

=�u(x; y; z; t)− �1
@u(x; y; z; t)

@x
− �2

@u(x; y; z; t)
@y

+ r(x; y; z; t)

x; y; z∈(0; 1); �1; �2∈R
u(x; y; z; t)=0 for (x; y; z) on the boundary

where � is the three-dimensional Laplacian operator, using central di�erences on a uniform
meshgrid of n + 2 points in each direction. The semi-discretization yields usual systems of
ordinary linear di�erential equations of the type

y′(t)=−Ay(t) + g(t); t∈[0; T ]
y(0)=y0

(59)

where A∈RN×N , with N = n3, and g : [0; T ]→RN . De�ning h=1=(n+ 1), and

�n := cos
(

�
n+ 1

)(√
1− �21h

2

4
+

√
1− �22h

2

4
+ 1

)

�(A) is contained in the rectangle (1=h2)Rn, where

Rn := [6− 2Re �n; 6 + 2Re �n]×[−2i Im �n; 2iIm �n]:

In order to provide an estimate for F(A) of this example we use the following result
[23, p. 79].

Theorem 8.1
Given A∈RN×N , let M := 1

2 (A+ AT ), M̃ := 1
2 (A− AT ). Then

F(A)⊆[a; b]× [−ic; ic] (60)
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where a, b, c, are such that F(M)= [a; b], F(M̃)= [−ic; ic]. The rectangle (60) is the smallest
that contains F(A).

In our case, M is the matrix obtained discretizing as before the Laplacian operator, so that

F(M)=
6
h2

[
1− cos �

n+ 1
; 1 + cos

�
n+ 1

]

and for M̃ , we have

F(M̃)=
2(�1 + �2)

h

[
−i cos �

n+ 1
; i cos

�
n+ 1

]

Therefore, once the conformal mapping  relative to (1=h2)Rn has been computed, the smallest
value s such that �(s) ⊇ F(A), can be estimated by solving

 (w)=
6
h2

(
1− cos �

n+ 1

)
+ i

2(�1 + �2)
h

cos
�

n+ 1
(61)

If w̃ is the solution of (61), then s6|w̃|.
In the following numerical examples we make a comparison between the Faber exponential

integrators (39) and (41) built on the compact � := (1=h2)Rn and some Krylov exponential
integrators. In particular we consider the standard Arnoldi exponential integrator, extensively
studied in References [1, 6], implemented with the modi�ed Gram–Schmidt process with-
out reorthogonalization. We also consider the exponential integrator based on the incomplete
Arnoldi process of order P, that we denote with Arnoldi (P). For this method, various nu-
merical experiments on our example reveal that the choice of P=4 is the most convenient
in the sense of the convergence rate with respect to the total amount of work. Finally, we
consider the exponential integrator based on the Lanczos biorthogonalization algorithm, stud-
ied in References [2, 3]. Since all these approaches are of polynomial type like the FSM,
we can make an e�ective comparison simply by choosing, for each problem, corresponding
integrators (cf. Section 5 and Reference [1]). We integrate equations of type (59) between 0
and T , varying the time step �. The degree m of the two methods at each step is chosen so
that the �nal error, i.e. the error at time T (err in the tables below), is almost equal for all
the methods. Our aim is to give particular attention to the computational costs of the methods
relative to similar accuracy results. Computational costs are considered in terms of number of
scalar products (nsp). In this context, we must point out that an application of A costs about
as much as seven scalar products. In order to understand how much work would be required
for problems with a less sparse matrix, we remark that the number of matrix–vector products
is equal to the degree m for the Faber and the Arnoldi based exponential integrators, whereas
it is equal to 2m for the Lanczos-based method.
In all tests Faber methods are built computing only the �rst four leading Laurent coe�cients

of the mapping  relative to (1=h2)Rn, i.e., we approximate  by

 ̃ (w)=w + �̃0 +
�̃1
w
+

�̃2
w2
+

�̃3
w3

so that the corresponding recurrence relation for Faber polynomials involves six terms
(cf. Section 3).
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Table I.

Arnoldi Faber

�1 �2 T � m nsp err m nsp err

50 20 0.05 0.05 50 1605 2.20E-9 70 455 1.57E-9
0.025 40 2168 2.99E-9 36 462 3.34E-9
0.01 18 1449 2.49E-8 18 561 1.85E-9
0.005 12 1572 4.21E-9 11 660 2.84E-9

70 50 0.02 0.02 56 1965 8.51E-9 62 402 6.61E-9
0.01 38 1983 4.62E-9 38 488 6.81E-9
0.005 26 2090 5.78E-9 25 633 6.42E-9
0.002 15 2190 2.69E-9 17 1056 6.28E-9

100 100 0.02 0.02 80 3768 1.30E-9 85 554 1.31E-9
0.01 48 2985 1.44E-9 47 607 1.05E-9
0.005 28 2363 5.91E-9 26 660 4.93E-9
0.002 16 2416 1.14E-9 15 924 1.16E-9

Arnoldi (4) Lanczos

50 20 0.05 0.05 75 789 2.92E-9 65 988 2.36E-9
0.025 38 793 4.18E-9 40 1216 0.24E-9
0.01 20 1030 1.44E-9 25 1900 6.20E-9
0.005 12 1212 2.59E-9 14 2128 1.67E-8

70 50 0.02 0.02 63 661 6.49E-9 60 912 8.49E-9
0.01 38 793 6.94E-9 37 1124 2.98E-9
0.005 24 993 3.86E-9 30 1824 2.38E-9
0.002 14 1424 2.04E-9 16 2432 4.96E-9

100 100 0.02 0.02 83 873 5.41E-9
0.01 48 1005 2.92E-9
0.005 29 1205 4.22E-9 32 1945 1.75E-8
0.002 16 1663 1.44E-9 18 2736 3.33E-9

Remark 8.1
For our test problem, we use a matrix whose spectrum is explicitly known. Anyway, it is
worth noting that we do not use the spectral decomposition of the matrix, but only the convex
hull of its spectrum.

8.1. A non-symmetric model problem

In the �rst test problem we de�ne n=15, i.e. N =3375, h=1=16, g ≡ 0, y0 = (1; 1; : : : ; 1)T

and vary �1, �2. Since g≡ 0, the problem simply consists of computing a certain number of
matrix exponentials. Hence we compare the F[m] method with the corresponding Arnoldi,
Arnoldi (4) and Lanczos schemes.
In Table I we can note that even if, in most of the tests, the number of iterations m of

the Krylov methods is less than the corresponding m of the Faber method, in terms of the
number of scalar products the F[m] method performs surely better. This di�erence of costs is
particularly evident with respect to the Arnoldi method for large (with respect to T ) values
of �, because in this situation, to get a certain accuracy, m has to be chosen su�ciently large.
In fact, as well known, the cost of each Arnoldi step increases with the number of iterations.
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Table II.

Arnoldi Faber

�1 �2 T � m nsp err m nsp err

60 0 0.1 0.1 50 3210 1.11E-9 66 858 1.64E-9
0.05 48 4478 3.07E-9 64 1247 3.48E-9
0.02 40 6504 6.31E-9 46 1782 4.74E-9
0.01 30 7293 1.70E-9 34 2395 2.58E-9
0.005 21 7761 2.11E-9 26 3465 1.12E-9

40 20 0.1 0.1 47 2876 4.84E-9 55 713 5.25E-9
0.05 46 4153 9.50E-9 53 1029 6.01E-9
0.025 44 6402 1.08E-9 50 1617 1.49E-9
0.01 30 7293 1.60E-9 35 2468 0.64E-9
0.005 20 7182 3.19E-9 25 3326 4.03E-9

Arnoldi (4) Lanczos

60 0 0.1 0.1 70 1472 1.11E-9 60 1824 2.57E-9
0.05 68 2144 3.07E-9
0.02 60 3780 6.31E-9
0.01 31 3548 1.70E-9 30 5016 2.43E-8
0.005 22 4771 2.11E-9 21 6073 1.63E-8

40 20 0.1 0.1 57 1196 4.84E-9 55 1672 8.63E-9
0.05 57 1794 9.50E-9
0.025 48 2514 1.08E-9
0.01 31 3548 1.60E-9
0.005 21 4548 3.19E-9 23 7341 5.75E-9

For this reason, especially when m is large, the incomplete version Arnoldi(4) represents an
e�ective schemes. Regarding the Lanczos method, the experiments show that sometimes it
does not allow to attain the accuracy of the other methods. Moreover, the empty lines in the
table below indicates that the Lanczos method is very unstable and does not converge (the
same is valid for the Tables II and III).

8.2. A non-symmetric model problem with forcing term

As before we de�ne n=15, i.e. N =3375, y0 = (1; 1; : : : ; 1)T. In Table II some tests on a
problem (59) with time constant forcing term g=y0, are shown. Regarding the compu-
tational cost, all consideration given for the previous example remains valid also for this
one. In this example we use iteration (43) for all the methods and, in order to optimize
the cost, it is also possible to distinguish between the number of iterations performed to
compute the matrix exponential (m1) and that for the computation of ’(�A) (m2). In any
case, the relationship between the costs of the methods is substantially independent of this
choice.
In Table III we can observe some tests on a problem (59) with the time varying forcing

term g(t)=y0t. Since we use the scheme described by (39) we need a quadrature formula.
The formula chosen (q in Table III) is the Simpson rule built on k points that we indicate
with Sk . Therefore, the weights (�1; �2; �3; : : : ; �k) of (39) are given by (13 ;

4
3 ;
2
3 ; : : : ;

1
3 ).
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Table III.

Arnoldi Faber

�1 �2 T � q m nsp err m nsp err

40 0 0.1 0.1 S9 20 2736 7.29E-3 25 1267 7.32E-3
0.05 S7 25 6370 3.28E-3 30 2488 3.42E-3
0.025 S7 16 6523 2.14E-3 25 4276 2.66E-3
0.02 S7 16 8214 1.25E-3 25 5385 1.61E-3
0.01 S5 20 16758 1.26E-4 25 7761 1.27E-4

Arnoldi (4) Lanczos

40 0 0.1 0.1 S9 26 2156 5.97E-3 20 2432 3.81E-3
0.05 S7 30 4056 5.61E-3 25 4940 5.64E-3
0.025 S7 18 4989 7.14E-3 16 6566 7.22E-2
0.02 S7 17 5922 7.07E-3 16 8268 4.13E-2
0.01 S5 20 10094 7.24E-3 18 13406 7.13E-3

As we can see, the behaviour is similar to that of previous examples. It is not much useful
to give more complicated tests, because all the methods are applied in the same manner and
the only important di�erence is given by the computation of the matrix functions.

9. FINAL REMARKS

In our tests we are supposed to know the exact location of the spectrum of the matrix A,
that is, the rectangle (1=h2)Rn. However, as explained in Section 7, when �(A) is not known
the implementation of the Faber expansion method requires a preliminary work to locate it.
Some authors consider such preliminary phase as a serious drawback of expansion methods
for matrix functions. Anyway, for practical problems like (1), where more than one or a lot of
matrix functions always with the same matrix must be computed, the cost of the preliminary
phase is surely negligible with respect to the total amount of work (see e.g. References [8, 13]).
Moreover, other numerical experiments show that when the function involved is analytic in
the whole complex plane as in (1), even a poor approximation of �(A) leads to acceptable
results.
For these reasons, in the author’s opinion, the Faber expansion method actually constitutes

an e�cient alternative to the Krylov approaches for (1) based on the Arnoldi or Lanczos
algorithms and their variants, especially when the matrix of the problem is large and sparse
as in the case considered for the numerical experiments.
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