
A POLYNOMIAL METHOD BASED ON FEJÈR POINTS FOR THE
COMPUTATION OF FUNCTIONS OF UNSYMMETRIC MATRICES

PAOLO NOVATI�

Abstract. In this paper we consider the problem of the computation of functions of large
unsymmetric matrices by vectors. We study a polynomial method based on interpolation at the
Fejèr points. We provide a detailed error analysis and apply the method to some examples that
occur in practical problems. Finally, numerical experiments are shown.

1. Introduction. Let A be a N � N real nonsymmetric matrix and v a N -
dimensional real vector. We consider the problem of the computation of

y = f(A)v; (1.1)

where f is a given function that we suppose to be analytic in a certain domain of the
complex plane containing the spectrum of A, that we denote with �(A). From the
Cauchy Integral Theorem, f(A) 2 RN�N is given by

f(A) =
1

2�i

Z
�

f(z)(zI �A)�1 dz; (1.2)

where � is the boundary curve of a piecewise smooth bounded region containing �(A)
and where f is analytic.

An example of (1.1) is the solution of linear systems of equations, where f(z) =
1=z or f(z) = 1= (1� z). Moreover, (1.1) can also appear in some di¤erential prob-
lems, such as solving semidiscrete approximations of partial di¤erential equations of
elliptic type, where f(z) = exp(�z1=2), of hyperbolic type, with f(z) = cos(z1=2),
or of parabolic type, with f(z) = exp (z). The case of f(z) = (exp(z) � 1)=z is also
important in the context of systems of linear initial value problems. The case of linear
systems is supported by a seemingly unbounded literature, but also the other cases
have been extensively studied (see for instance [3], [4], [6], [11], [13], [15], [19], [20],
[21], [22]).

In particular, in recent years several people have proposed methods based on the
projection of the operator f (A) onto the Krylov subspaces generated by A and v,
using the Arnoldi or Lanczos algorithms (see [3], [4], [11], [13], [22]). This kind of
technique (for which we shall use the usual abbreviation KPMs, Krylov Projection
Methods) is of polynomial type, that is, the approximations are of the type

ym = pm�1 (A) v � f (A) v; m � 1; (1.3)

where pm�1 2 �m�1, the set of the polynomials of degree at most m� 1. Concerning
the rate of convergence, KPMs generally show a very satisfactory behavior (see [13]),
but they also present the typical disadvantages of the projective schemes, that is,
the construction of the projection subspaces. In detail, using the classical Arnoldi
algorithm to build the Krylov subspaces, there is the well known problem of growth
of computational cost. On the other hand, using the Lanczos algorithm, there is
the possibility of total breakdown with consequent failure of the method, and in
general there are stability problems due to the fact that oblique projections instead
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of orthogonal projections are used (see [11], [22]). Another disadvantage of these
methods is the strict dependence on v, in the sense that the Krylov subspaces are
built with respect to this vector, which is a drawback when computing f (A) v with
di¤erent v, as for instance in the context of di¤erential equations problems [11].

To overcome the drawbacks of KPMs, in this paper we consider a particular
method (1.3) in which the polynomials pm�1 interpolate f at Fejér points, that are
built using some a priori information about �(A). We call Fejèr Points Method (FPM)
such a method. Assuming to know a compact subset 
 � C such that � (A) � 
, the
idea is to de�ne the interpolation points such that the corresponding interpolating
sequence fpm�1gm�1 satis�es

kpm�1 � fk
 ! 0; (1.4)

where k�k
 is the supremum norm on 
. As we shall see, the condition (1.4) is not
always su¢ cient for the convergence of the corresponding polynomial method, i.e.,
(1.4) does not ensure

(pm�1 (A)� f (A)) v ! 0:

A stronger su¢ cient condition is that the sequence fpm�1gm�1 converges maximally
to f on 
 and the choice of Fejér points ensures the realization of this last condition.

The most important features of the FPM are the following:
1. varying m the approximations ym are obtained by means of a three term
recurrence relation;

2. the parameters involved are independent of v;
3. the computational cost at each step is essentially that of an application of A.

On the other hand, the most important drawback of the FPM is that we need
some a priori informations about � (A), that is, contrary to the KPMs, this method
is not �matrix free�. In fact, since it is based on the complex approximation of f
in a compact 
 containing � (A), obviously we need to know the location of at least
the outermost eigenvalues of A. Hence, to apply the FPM, we need a previous phase
where an eigenvalue method is used. In literature, such composite procedures are
usually called hybrid methods. However, we observe that in many practical problems,
one needs f(A)v for several vectors v, so that in these cases the initial cost for the
approximation of � (A) becomes negligible.

Other techniques based on the approximation of f on a certain 
 such that
� (A) � 
, have been already studied in the case of linear systems (polynomial accel-
eration methods, semi-iterative methods, see e.g. [7], [9], [17]), and in the case of the
exponential function (see e.g. [1], [19], [20], [21], [27], [28]), where, depending on the
geometry of 
, the polynomials pm�1 are de�ned as truncated Chebyshev or Faber
series with respect to f and 
 in order to obtain maximal convergence.

The use of Fejèr points for solving problems of type (1.1) had been already stud-
ied in [9] in order to get a �rst-order Richardson method for solving linear systems.
However, in [9] neither error analysis nor numerical experiments were given. Herein,
we extend the arguments already studied for the function 1=z (involved in the context
of linear systems) to the general case of f and provide a detailed error analysis. In
this analysis, we shall also distinguish between the cases of f analytic in the whole
complex plane and f singular at some �nite point. Error bounds for some f of practi-
cal relevance are given. At the end, we shall also show the e¤ectiveness of this method
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on a number of experiments.

The paper is organized as follows: in §2 we give a general convergence analysis
of polynomial methods, with particular attention to the concept of asymptotically
optimal methods. In §3, we study the possibility of using interpolatory approaches
for (1.1) and consider the particular choice of Fejér points as interpolation nodes and
their properties. In §4 we provide an error analysis of the FPM and in §5 we consider
some examples occurring in practical problems. §6 is devoted to the explanation of
some important computational details; in this section we also provide the algorithm
that is at the basis of the hybrid procedures that we test in §7.

2. Convergence analysis of polynomial methods. First, let us introduce
the following class of compact subsets of the complex plane,

M :=
�

 � C : 
 is compact, Cn
 is simply connected

and 
 contains in�nitely many pointsg .

Given 
 2M, by the Riemann Mapping Theorem there exists a conformal surjection

 : C n fw : jwj � 
g ! C n 
;

such that  (1) = 1;  0 (1) = 1: The constant 
 is called the capacity of 
. By
conformal mapping theory, it is known that the conformal surjection  has a Laurent
expansion of the type

 (w) = w + �0 +
�1
w
+
�2
w2

+ :::; jwj > 
: (2.1)

Let � : C n 
 ! C n fw : jwj � 
g be the inverse mapping of  . Moreover, let � be
the boundary of 
 and, for r > 
, let �(r) be the equipotential curve

�(r) := fz : j� (z)j = rg :

Let us denote by 
(r) the bounded domain with boundary �(r). Clearly, 
(
) = 

and �(
) = �.

Let f be a complex valued function analytic on 
 2 M. For the construction
of a polynomial method for (1.1), we are mainly interested in searching sequences of
polynomials fpm�1gm�1 such that

lim
m!1

kf � pm�1k
 = 0: (2.2)

Now, consider a general method (1.3). De�ne the error of them-th approximation
ym = pm�1 (A) v as

em := f(A)v � pm�1 (A) v; m � 0: (2.3)

If A is diagonalizable by X, and if � (A) � 
, then for the Euclidean norm of the
error (2.3) we have

kemk2 = kf(A)v � pm�1 (A) vk2
� kXk2



X�1


2
max
�2�(A)

jf (�)� pm�1 (�)j kvk2

� kXk2


X�1



2
kf � pm�1k
 kvk2 ;
3



so that, by condition (2.2), the convergence is ensured. If A is not diagonalizable, the
condition (2.2) is generally not su¢ cient for the convergence of fymgm�1, so that we
need a stronger uniform convergence condition.

If
�
p�m�1

	
m�1 is the sequence of polynomials of best uniform approximation of f

on 
, we want the sequence fpm�1gm�1 to satisfy the condition

lim
m!1

kpm�1 � fk1=(m�1)
 = lim
m!1



p�m�1 � f

1=(m�1)

=: k(
; f), (2.4)

that is, we want that fpm�1gm�1 behaves asymptotically as the best polynomial ap-
proximation sequence. The quantity k(
; f) is usually called asymptotic convergence
factor. Property (2.4) is known as maximal convergence of fpm�1gm�1, and this
sequence is usually called asymptotically optimal with respect to f and 
.

If
�

(r) denotes the interior of 
(r), we have that the quantity

� = �(f) := max

�
r : r > 
; f analytic on

�

(r)

�
; (2.5)

gives a measure of the optimal rate of convergence, because we have (cf. [31] Ch.4,
Th.76)

k(
; f) =



�
. (2.6)

By (2.6), for functions analytic in the whole complex plane, the rate of convergence of
asymptotically optimal sequences is superlinear, because � can be chosen arbitrarily
large.

As consequence of the maximal convergence property, we have the following result,
that will be fundamental in the sequel, and that de�nes the so called overconvergence.

Theorem 2.1. ([31], Ch.4, Th.6) Given 
 2M, if fpm�1gm�1 converges maxi-

mally to f on 
, then this sequence converges uniformly on compact subsets of
�

(�).

The following theorem recalls some criteria for convergence of a polynomial method.
Theorem 2.2. [12] Let m(z) =

Q�
i=1 (z � �i)

ni be the minimal polynomial of A.
The sequence ym = pm�1 (A) v converges to f(A)v for each v if and only if

lim
m!1

p
(j)
m�1 (�i) =

�
dj

dzj
f (z)

�
z=�i

; 1 � i � �; 0 � j � ni � 1: (2.7)

In case of diagonalizable A the criterion (2.7) reduces to

lim
m!1

pm�1 (�) = f (�) ; for each � 2 �(A):

Moreover, if G � C is an open set such that �(A) � G and such that f is analytic in
G, then the following condition is su¢ cient

fpm�1gm�1
converges to f; uniformly
on each compact subset of G:

(2.8)

Hence, by Theorem 2.1 and condition (2.8) the following result holds.
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Theorem 2.3. If fpm�1gm�1 converges maximally to f on 
, and if � (A) �
�

(�), then pm�1 (A) v converges to f(A)v.

For the asymptotic convergence factor of the method, de�ned as

lim
m!1

h
kemk1=m

i
;

since maximal convergence persists after di¤erentiation (cf.[31], Ch.4, Th.7), we have
the following result, which is a direct consequence of (2.6).

Theorem 2.4. [9] If fpm�1gm�1 converges maximally to f on 
 and � (A) �

(r) for 
 � r < �, then

lim
m!1

h
kemk1=m

i
� r

�
: (2.9)

By (2.9), for functions analytic in the whole complex plane, the rate of convergence
of the method is superlinear, because � can be taken arbitrarily large.

A polynomial method based on a sequence fpm�1gm�1 of Theorem 2.4 is said to
be asymptotically optimal with respect to f and 
.

3. The method based on Fejér points. Let f : C! C. Given an integer m
and a set f�(m)i gi=1;:::;m of distinct points in the complex plane, let pm�1 2 �m�1 be
the polynomial that interpolates f at these points:

pm�1 (z) =
Pm
k=1 f

�
�
(m)
k

�
!m(z)�

z��(m)
k

�
!0m

�
�
(m)
k

� ;
!m (z) :=

�
z � �(m)1

�
� ::: �

�
z � �(m)m

�
:

(3.1)

The sequence fpm�1gm�1 can be used to build a polynomial interpolation method for
f(A)v. When �i = �

(m)
i , the polynomials (3.1) can be written in Newton form

pm�1 (z) = f0 + f1 (z � �1) + :::+ fm�1 (z � �1) � ::: �
�
z � �m�1

�
; (3.2)

where fk (k = 0; :::;m� 1) are the usual Newton coe¢ cients:

f0 = f [�1] ; fk := f
�
�1; :::; �k+1

�
; k = 1; :::;m� 1: (3.3)

Thus, if �i = �
(m)
i , the sequence (3.2) of interpolatory polynomials full�ls the

recurrence

pm�1 (z) = pm�2 (z) +
fm�1
fm�2

�
z � �m�1

�
(pm�2 (z)� pm�3 (z)) ; m � 1: (3.4)

It is easy to show that for the corresponding polynomial interpolation method the
following 3-terms recurrence relation holds

y0 = 0; y1 = f0v;

ym = ym�1 +
fm�1
fm�2

�
A� �m�1I

�
(ym�1 � ym�2) ; m � 2: (3.5)

The issue is to choose the interpolation nodes such that the corresponding method
is convergent. The following theorem gives necessary and su¢ cient conditions for
having polynomial sequences which converge maximally to f on a certain 
 � C.

5



Theorem 3.1. (Basic Convergence Principle, [24]) Let 
 �M. Suppose that the
sequence of nodes f�igi�1 is entirely contained in 
 or that all its limit points are not
external to 
. Then for each function f , analytic in 
, the sequence of interpolatory
polynomials fpm�1gm�1 is such that

lim
m!1

kpm�1 � fk
 = 0;

if and only if

lim
m!1

j(z � �1) � ::: � (z � �m)j
1=m

= 
 (
) j� (z)j ; (3.6)

uniformly in each compact subset of Cn
. If this condition is ful�lled then fpm�1gm�1
converges maximally to f on 
.

In order to introduce the Fejèr points, let us de�nefM := f
 2M : � can be extended to �g :

Given 
 2 fM, if uj is the j-th root of unity, then the points
�j :=  (
uj) ; j � 1; (3.7)

are de�ned Fejér points. As proved in ([24] p.28, Th.1), the points (3.7) full�ls the re-
lation (3.6). Hence, by Theorem 2.3, the corresponding method for computing f (A) v

is asymptotically optimal and converges if � (A) �
o

(�), with � de�ned by (2.5). We

call this method Fejér Point Method (FPM). The sequence of approximations can be
iteratively obtained using (3.5).

Remark 3.2. Given n = 2k with k positive integer, it is easy to prove that, if 

is a real bounded interval, than the points

�
�j
	
j=1:::n

de�ned by (3.7) coincides with
the Chebyshev-Gauss-Lobatto points.

4. Error bounds. In this section we want to give bounds for the error em of
the FPM. Since we want to deal with the general case of A not diagonalizable, we
work with the �eld of values of A, de�ned as

F (A) :=

�
zHAz

zHz
: z 2 C= f0g

�
: (4.1)

For the following result see ([25] Th.4.1).
Lemma 4.1. Let d(z; F (A)) be the minimal distance between a point z and F (A).

Then

jj(zI �A)�1jj2 � 1=d(z; F (A)):

Using the above lemma we can prove the following result, that holds for each
polynomial method.

Theorem 4.2. Let 
 2M and f analytic on 
. Assume that F (A) � 
(s); for
some 
 � s < �. Then, for any s < r < �,

kemk2 � kvk2 kf � pm�1k
(r)
(r + s)

(r � s) : (4.2)
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Proof. By the de�nition of em, for any s < r < � it is

em =
1

2�i

Z
�(r)

(f(z)� pm�1(z))(zI �A)�1v dz:

Then we get

kemk2 �
kf � pm�1k
(r)

2�

Z
jwj=r

�� 0(w)�� jj( (w)I �A)�1vjj2dw:
Hence, by Lemma 4.1, we obtain

kemk2 �
kvk2 kf � pm�1k
(r)

2�

Z
jwj=r

�����  
0
(w)

 (w)� u

����� dw;
where u 2 
(s): Finally, sinceZ

jwj=r

�����  
0
(w)

 (w)� u

����� dw = 1

r

Z
jwj=r

����� w 
0
(w)

 (w)� u

����� dw;
using the relation ([24] p.16) ����� w 

0
(w)

 (w)� u

����� � r + s

r � s ;

the theorem is proved.

By Theorem 4.2, in order to get error bounds for the error of the FPM, it is
necessary to bound the quantity kf � pm�1k
(r), for r > 
, where pm�1 interpolates
f at Fejèr points. The bounds depend on the regularity of �. We have the following
result, essentially a collection of results from [24].

Theorem 4.3. Let 
 2 fM and f analytic on 
. Then, for 
 � r < R < �, the
residual term of interpolation in Fejèr points has the value

kf � pm�1k
(r) � 2 kfk�(R)Km
R+ r

R� r

�
r
R

�m
1�

�
r
R

�m ; (4.3)

where Km � K for each m, is a quantity depending on the regularity of �:
1. if � has continuously turning tangent, K = �2

�1
e2� and Km = K for each m,

where �1 and �2 are such that

0 < �1 �
j (t)�  (w)j

jt� wj � �2;

2. if � is an analytical Jordan curve,

Km = e
An

m2n�1 ; n = 1; 2; :::; (4.4)
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where An depends only on n and �. If  is analytic in a domain 
=s < jwj < +1,
s > 1, then we can put An = An (s), where

An (s) :=
2

3
�2

p
(4n� 1)!

�
s



�2n�1
��

s



�2
� 1
�2n

vuuuutln
�
s



�2
�
s



�2
� 1

;

3. if  in (2.1) has a Laurent expansion with a �nite number of terms, K = 1
and Km = K for each m.

Proof. For � with continuous turning tangent, the proof is given in [24] p.37
Lemma 4.

For � analytical Jordan curve, the proof is given in [24] p.38, Theorem 4.
For the last case, if  has a Laurent expansion with a �nite number of terms,

then  can be extended analytically to the domain 0 < jwj < +1, and the constant
An (s) can be chosen for each 1 < s < +1. Since An (s) is a decreasing function of s
and

lim
s!1

An (s) = 0; n = 1; 2; :::;

the thesis follows by (4.4).
The case of  with a Laurent expansion with a �nite number of terms, is especially

important from a computational point of view. In fact, even if there are in�nitely many
nonzero Laurent coe¢ cients of  , it is obviously impossible to compute all of them.
So, numerically, one always works with conformal mappings with a �nite number of
terms. This includes the important case of the three terms expansion of  , which
is equivalent to consider compact subsets 
 whose boundary is an ellipse, or, in the
degenerate case, 
 is an interval.

Using Theorems 4.2 and 4.3 we have the following result.
Theorem 4.4. Let 
 2 M. Assume that F (A) � 
(s); for some 
 � s < �:

Then for each r;R such that s < r < R < �, for the FPM we have

kemk2 � 2 kfk�(R)K
R+ r

R� r

�
r
R

�m
1�

�
r
R

�m r + s

r � s kvk2 ; (4.5)

where K is de�ned in Theorem 4.3.
Next, we distinguish between f analytic in the whole complex plane and f singular

at some �nite point.
Theorem 4.5. Assume that F (A) � 
(s): If f is analytic in the whole complex

plane, then for m � 4s we have the following upper bounds for the error of FPM

kemk2 � C1 kfk�(m)
� s
m

�m�1
; (4.6)

where

C1 := 24Kes

�
1 +

1

8s

�
kvk2 : (4.7)
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Proof. Since � = 1, by Theorem 4.4 the upper bound (4.5) is valid for each
s < r < R < +1. Now, if in (4.5) we put r = s

�
1 + 1

m

�
, m � 1, we obtain

s < r � 2s;
r + s

r � s = 2m+ 1:

Moreover we have � r
R

�m
=
� s
R

�m�
1 +

1

m

�m
� e

� s
R

�m
: (4.8)

Now, since R can be chosen arbitrarily large, we can put R = m, so that, for m � 4s
(m � 2r),

R+ r

R� r =
m+ r

m� r � 3; (4.9)

1

1�
�
r
R

�m =
1

1�
�
r
m

�m � 1

1� r
m

� 2; (4.10)

2m+ 1 � 2m
�
1 +

1

2m

�
� 2m

�
1 +

1

8s

�
: (4.11)

Inserting (4.8), (4.9), (4.10), (4.11) in (4.5) the theorem is proved.
Theorem 4.6. Let f be analytic in the interior of �(�), � < 1. Assume that

W (A) � 
(s); s < �: If m is the smallest integer such that

s

�
1 +

1

m

�
< �;

then for m � m, for the FPM we have the following upper bounds

kemk2 � C2m kfk�(�� "
m )

�
s

�

�m
; (4.12)

where

" = "(m) = � � s
�
1 +

1

m

�
;

and

C2 = 4K

�
1 +

T

2

� �
1 + sQ

�

�
�
1� (��s)T

� � sQ
�

�  1

1� (��s)T
�

!m
kvk2 ; (4.13)

with Q = 1 + 1
m ; T = Q� 1:

Proof. For m � m let

r = s

�
1 +

1

m

�
:

Thus we have

s < r � sQ � 2s;
9



and

(r + s)

(r � s) = 2m+ 1 = 2m
�
1 +

1

2m

�
� 2m

�
1 +

T

2

�
: (4.14)

Now, let us de�ne

R = R(m) := � � "

m
; (4.15)

where " := � � r. Thus R � �, and R! � for m!1. Hence, by (4.15) we obtain

R+ r

R� r
1

1�
�
r
R

�m � R (R+ r)

(R� r)2

� � (� + r)�
� � "

m � r
�2

�

�
1 + sQ

�

�
�
1� (��s)T

� � sQ
�

� : (4.16)

Using again (4.15) and the inequalities " � � � s; T � (1=m), we have

� s
R

�m
=

�
s

�

�m 
1

1� "
�m

!m
�
�
s

�

�m 
1

1� (��s)
�m

!m

=

�
s

�

�m 
1

1� (��s)T
�

!m
: (4.17)

Finally, inserting (4.14), (4.16) and (4.17) in (4.5), we get the thesis.

5. Some applications. In this section we consider some examples of problems
involving the computation of a matrix function times a vector. For these examples we
want to specialize the error estimates given in previous section for the FPM. In order
to deal with practical problems, where necessary we investigate the operation f(tA)v,
where t > 0 instead of f(A)v. It is important to point out that in order to get error
bounds for the FPM, it is fundamental to locate the singularity of the function f . In
particular, if f is analytic in the whole complex plane we can get error bounds using
Theorem 4.5, whereas if f has some singularities we use Theorem 4.6. In both cases
we have to analyze the quantity

kfk�(R) ;

where R must be chosen as in the above cited theorems.
Throughout this section, we assume that F (A) in (4.1) is strictly contained in

the right half plane and convex. Moreover, since A is real, we assume to work with
compacts symmetric with respect to the real axis. In other words, we shall work with
compact subsets belonging to the class

M :=

�

 2 fM : 
 is symmetric with respect to the

real axis, convex and 
 � C+
�

(5.1)
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As we shall see, convexity (and symmetry) is a property that allows to simplify some
later results, because it implies

min
z2�(R)

Re(z) =  (�R); (5.2)

max
z2�(R)

Re(z) =  (R); (5.3)

for each R � 
. Moreover, for some results we also assume that 
 has a vertical axis
(i.e., 
 is symmetric with respect to a vertical axis), that implies

max
z2�(R)

Im(z) = Im (iR): (5.4)

At least for R!1, these assumptions are tolerable. In fact, as proved in [26], there
always exists eR such that the compact 
(R) is convex for each R � eR, and so (5.2)
and (5.3) hold for R � eR. Furthermore, as jwj ! 1,

 (w) = w + �0 +O (1=w) ;

that is, �(R) ! C(�0; R) as R ! 1, where C(�0; R) denotes the circle of radius R
centered in �0. Since (5.4) clearly holds for circles, as R!1

max
z2�(R)

Im(z)! Im (iR):

The following result holds also for 
 not convex.
Proposition 5.1. Let 
 2 fM, symmetric with respect to the real axis and

contained in the right half plane. For each R � 
,

max
z2�(R)

Re(z) � K  (R);

where K is a constant depending only on  .
Proof. Let w, jwj = R, be such that

Re( (w)) = max
z2�(R)

Re(z):

By symmetry,  (R) is real, and so

Re( (w))�  (R) = Re( (w)�  (R)) = Re
Z w

R

 0(u)du:

Using the bound

�� 0(u)�� � 1 + � 


juj

�2
; jwj > 
; (5.5)

(see [16] for the proof) we get

Re( (w))�  (R) �
Z w

R

�
1 +


2

R2

�
du � �R:

Since  (R) > 0,

Re( (w))

 (R)
� 1 + � R

 (R)
:

11



Finally, using

 (R) = R
�
1 +

�0
R
+
�1
R2

+ :::
�

we have the thesis.

Similarly we can also prove

min
z2�(R)

Re(z) � K  (�R);

max
z2�(R)

Im(z) � eK Im (iR);

where K and eK are constants depending on  . By all these arguments, we can say
that whenever we shall use the hypothesis of convexity or symmetry with respect to a
vertical axis with relations (5.2), (5.3) and (5.4), we shall simplify the results without
any e¤ective theoretical restrictions.

The following Lemmas will be frequently used.
Lemma 5.2. Let 
 2 fM, symmetric with respect to the real axis, with capacity 
.

Given R > 
, for the associated conformal mapping  we have the following relations

 (R) �  (
) +R� 
2

R
(5.6)

 (�R) �  (�
)�R+ 
2

R
(5.7)

Im ( (iR)) � Im ( (i
)) +R� 
2

R
(5.8)

Proof. Writing

 (R) =  (
) +

Z R




 0(t)dt;

where the integral path is the real line segment [
;R], using (5.5) we have

 (R)�  (
) = j (R)�  (
)j �
Z R




�� 0(t)�� dt
�
Z R




 
1 +

�



jtj

�2!
dt: (5.9)

Since t is real, jtj2 = t2; and we can integrate (5.9) getting (5.6). Analogously, one
proves (5.7) and (5.8).

Lemma 5.3. Let 
 2M. Let s be such that 
 � s < �(0). Let m be the smallest
integer such that

s

�
1 +

1

m

�
< �(0):

De�ning

R = R(m) = �(0)� "

m
;

12



where

" = "(m) = �(0)� s
�
1 +

1

m

�
;

for m � m we have

 (�R) � L

m
; (5.10)

where L > 0 is a constant depending on  and s:
Proof. In order to simplify the notations, we set � := �(0) (note that �(0) is real

because 
 is symmetric with respect to the real axis). Hence, by the de�nition of R,

 (�R) =  (��+ "

m
)

= ��+ "

m
+ �0 +

�1
��+ "

m

+ :::

= ��+ "

m
+ �0 �

�1
�
+

�1
"
m

�
�
��+ "

m

� + :::
=  (��) + "

m

 
1 +

�1

�
�
��+ "

m

� + :::! :
Thus, since  (��) = 0 and " = "(m) � � � s

�
1 + 1

m

�
for m � m, there exists a

constant k > 0 such that

 (�R) � k
�� s

�
1 + 1

m

�
m

:

De�ning

L := k

�
�� s

�
1 +

1

m

��
; (5.11)

we get the thesis.

5.1. The case of f(tA) = exp(�tA). Let�s consider the computation of

y(t) = e�tAv; t � 0: (5.12)

As well known (5.12) is the solution of the IVP�
Ay + dy

dt = 0; t > 0;
y (0) = v:

Theorem 5.4. Let us suppose 
 2 M. Assume that W (A) � 
(s); for some
s � 
: Then,

kem(t)k2 � C1 exp (t�1)

�
s exp(t)

m

�m�1
; m � 4s; (5.13)

where C1 is de�ned by (4.7) and �1 = 1�  (�
).
13



Proof. Let R = m � 4s as in Theorem 4.5. The thesis follows easily from Theorem
4.5 using the relation

kexp(�tz)k�(m) = exp(�t (�m));

that follows by the hypothesis on 
 and (5.7), that implies

exp(�t (�m)) � (exp(t))m�1 exp(t (1�  (�
))):

5.2. The case of f(A) = A�1. The computation of y = A�1v is equivalent to
solve the linear system Ay = v. Clearly, the function f(z) = 1=z is not analytic in
the whole complex plane because it is singular at 0.

To evaluate the approximation error, it is necessary to bound kfk�(R) ; with R as
in Theorem 4.6.

Theorem 5.5. Let 
 2M. Assume that W (A) � 
(s) for 
 � s < � = j�(0)j.
Let m be the smallest integer such that

s

�
1 +

1

m

�
< �:

Then, for the error we have the following upper bound

kemk2 �
C2
L
m2

�
s

�

�m
; m � m; (5.14)

where C2 is de�ned by (4.13) and L by (5.11).
Proof. De�ning R as in Theorem 4.6, by the hypothesis on 
 we get

max
z2�(R)

����1z
���� = 1

 (�R) :

Hence, the thesis follows immediately by Theorem 4.6 and Lemma 5.3.

5.3. The case of f(A) =
p
A. An example of practical application where the

computation of the matrix square root arises is the following initial value problem�
Au+ d2u

dt2 = 0; t > 0;
u(0) = v; du

dt (0) = w;
(5.15)

whose solution is u(t) = cos(t
p
A)v +

p
A�1 sin(t

p
A)w.

The function f(z) =
p
z is not analytic in the whole complex plane because it

has a branch point at 0. Here, we want to consider only the branch of the square root
such that

p
1 = 1. Namely, on the basis of de�nition (1.2) we set

p
A =

1

2�i

Z
�

p
z(zI �A)�1 dz:

With this assumption, the square root can be considered analytic in all compact
subsets not containing 0.

14



Theorem 5.6. Under the same hypothesis of Theorem 5.5 and with the further
hypothesis that 
 has a vertical axis, for the error we have the following upper bounds

kemk2 � C2�2m

�
s

�

�m
; m � m; (5.16)

where C2 is de�ned by (4.13) and

�2 :=
p
 (�)2 + Im (i�)2: (5.17)

Proof. Let R be as in Theorem 4.6. By the hypothesis on 
, writing z = x+ iy,

max
z2�(R)

��pz�� = max
z2�(R)

p
jzj

= max
z2�(R)

p
x2 + y2

�
p
 (R)2 + Im (iR)2

where we used (5.3) and (5.4). Since R < �, we have simply

max
z2�(R)

��pz�� �p (�)2 + Im (i�)2:
Hence, by Theorem 4.6, we get the thesis.

5.4. The case of f(A) = cos(A). The computation of the matrix cosine arises
in important application such as in the solution of (5.15). Since the cosine function
is analytic in the whole complex plane, we have the following.

Theorem 5.7. Let 
 2M, with a vertical axis. Assume that W (A) � 
(s) for

 � s. For the error we have the following upper bound

kemk2 � C1�3 exp(m)
� s
m

�m�1
; m � 4s; (5.18)

where C1 is de�ned by (4.7), and

�3 :=
1

2

��
1 +

1

exp(4s)

�
cosh (Im (i
)) + sinh (Im (i
))

�
:

Proof. Let R = m � 4s as in Theorem 4.5. In order to estimate kcosk�(m),
writing z = x+ iy we have

cos z = cosx sin iy � cos iy sinx
= cosh y sinx� i cosx sinh y

and thus

jcos zj =
q
1� cos2(x) + sinh2(y)

�
q
1 + sinh2(y)

= cosh(y)

15



Using this relation and all the hypothesis on 
, have

kcosk�(m) � cosh (Im (im)) :

Now, using (5.8),

Im (im) � Im (i
) +m;

so that

cosh (Im (im)) �

� cosh (Im (i
) +m)
= coshm cosh (Im (i
)) + sinhm sinh (Im (i
))

�
�
exp(m)

2
+
1

2

�
cosh (Im (i
)) +

exp(m)

2
sinh (Im (i
))

=
exp(m)

2

��
1 +

1

exp(m)

�
cosh (Im (i
)) + sinh (Im (i
))

�
� �3 exp(m)

Hence, the thesis follows directly by Theorem 4.5.

5.5. The case of f(tA) = cos(t
p
A). As already said, the square root function

is not single valued. In fact it is two valued, having a branch for which
p
1 = 1

and another for which
p
1 = �1: However, since we are working with the cosine, the

composite function is single valued. Note that u(t) = cos(t
p
A)v is the solution of

(5.15) with w = 0.
Theorem 5.8. Let 
 2M, with a vertical axis and assume thatW (A) � 
(s) for


 � s. Let em := dmax( (�
); 4s)e, where d�e denotes the rounding to the nearest
integer towards in�nity. For the error we have the following upper bound

kemk2 � C1�5 exp(t�4
p
m)
� s
m

�m�1
; m � em; (5.19)

where C1 is de�ned by (4.7), and

�4 :=
1p
2

vuuts
1 +

�
Im (i
)em + 1

�2
+ 1;

�5 :=
1p
2

 
1 +

1

exp(2t�4
pem)

! 1
2

:

Proof. As in Theorem 4.5 let R = m. In order to estimate


cos(tp�)



�(m)
, writing

z = x+ iy and de�ning

a :=

r
1

2

p
x2 + y2 +

1

2
x; b :=

r
1

2

p
x2 + y2 � 1

2
x; (5.20)
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we have ���cos�tpx+ iy���� =qcos2 (ta) cosh2 (tb) + sin2 (ta) sinh2 (tb)
�
q
cosh2 (tb) + sinh2 (tb)

=
p
cosh (2tb)

�
�
exp(2tb)

2
+
1

2

� 1
2

(5.21)

By (5.20), the function exp(2tb) goes to +1 as x ! �1 or y ! 1, so that, under
the hypothesis on 
, we can put x :=  (�m) and y := Im (im), obtaining

b =
1p
2

rq
( (�m))2 + (Im (im))2 �  (�m):

Using (5.7) and (5.8),

b � 1p
2

vuuts�
 (�
)�m+ 
2

m

�2
+

�
Im (i
) +m� 
2

m

�2
�
�
 (�
)�m+ 
2

m

�

� 1p
2

rq
( (�
)�m)2 + (Im (i
) +m)2 � ( (�
)�m)

=
1p
2

vuut
m

s�
 (�
)
m

� 1
�2
+

�
Im (i
)

m
+ 1

�2
�  (�
) +m

=
1p
2

vuuutm

0@s� (�
)
m

� 1
�2
+

�
Im (i
)

m
+ 1

�2
�  (�
)

m
+ 1

1A

�
p
mp
2

vuuts
1 +

�
Im (i
)em + 1

�2
+ 1 = �4

p
m(5.22)

where to get (5.22) we used the hypothesis m � em. Hence, by (5.21) and (5.22),


cos(tp�)



�(m)
�
�
exp(2t�4

p
m)

2
+
1

2

� 1
2

� exp(t�4
p
m)

1p
2

 
1 +

1

exp(2t�4
pem)

! 1
2

Finally, by Theorem 4.5 we get the thesis.

6. Numerical implementation. In this section we want to deal with the prac-
tical implementation of the FPM. As we shall see, this leads to the construction of
an hybrid procedure based on this method. In particular, up to now we have assumed
to work with methods built on a given compact subset 
 containing �(A), with as-
sociated conformal mapping  . Obviously, by a numerical point of view, both 
 and
 have to be computed, and the aim of this section is to provide some important
numerical details about this problem.

17



6.1. The approximation of the spectrum. By Theorem 2.4 we observe that
the asymptotic behavior of an asymptotically optimal method built on a compact 

depends on how tightly 
 contains the spectrum � (A). The aim is to approximate as
well as possible the smallest connected compact subset 
opt such that � (A) � 
opt.
If 
opt is convex, then it coincides with the convex hull of the spectrum, co(� (A)).

In practice, the common way to build 
 � 
opt consists of using an eigenvalue
method to yield a certain number of estimates for � (A) and then de�ning 
 as the
compact whose boundary is the polygon obtained joining the outermost points of the
set of estimates (cf. [26]). Since we consider A real, � (A) is symmetric with respect
to the real axis and then we can also consider a polygon of this kind. Nevertheless,
we must point out that if the function f is not analytic in the whole complex plane,
in some cases it may be necessary to approximate very well � (A). In fact, if � (A)
is very closed to a singular point of f , but such singular point is not contained in

opt, it could happen that the estimating phase leads to a compact 
 containing
such singular point, so determining the failure of the method. For instance, this can
happen when A is highly non-normal (see [8] and [18] for a detailed analysis of this
problem). In such a case it is necessary to use a very accurate eigenvalue method,
such as the method proposed in [18] based on the Arnoldi algorithm to estimate the
�eld of values of A�1. If f is analytic in the entire complex plane, even a not very
accurate 
 yields acceptable results (see Theorem 2.4).

6.2. The computation of the mapping  . Given 
 2M whose boundary is
a polygon, in order to determine the Laurent expansion of the associated conformal
mapping  , we can proceed using the scheme proposed in [26], based on the resolution
of the parameters problem relative to the Schwarz-Christo¤el transformation associ-
ated to  , for which we refer to [29]. Obviously, only a �nite number of coe¢ cients of
this expansion can be determined numerically, and so, setting a priori this number,
instead of  we obtain the �nite expansion of a conformal mapping

e : Cn fw : jwj � e
g ! Cne
;
that is an approximation of  , such that e
 � 
 and e
 � 
. In the particular case
that we compute the only �rst two coe¢ cients of the Laurent expansion of  , that is
�0 e �1, we approximate 
 with an elliptical compact.

In our numerical experiments, for the computation of the Laurent coe¢ cients of
 we used the software Schwarz-Christoffel Matlab Toolbox, written by Driscoll
in 1995 (see [2]).

6.3. The algorithm. On the basis of what said above, the phases for the nu-
merical implementation of the FPM are the following:

1. using a suitable eigenvalue method, compute a set f�jgj=1;:::;s of estimates
of � (A);

2. build the compact 
 with a polygonal boundary, obtained joining the outer-
most values of the set f�jgj=1;:::;s;

3. evaluate the �rst p coe¢ cients of the Laurent series expansion of the associ-
ated conformal mapping  , obtaining a mapping e with a �nite expansion
relative to a compact e
 � 
 (if p is not too small, e
 is very closed to 
, but
with corners rounded o¤ (see e.g. [20], [21]));

4. compute the Fejèr points and the Newton coe¢ cients;
5. compute the approximation ym.

18



Remark 6.1. In practical situations, one often has to face problems of type
f(tA)v. Using the FPM, there are two possible ways to proceed. The �rst one consists
in working with the problem f(B)v, where B := tA, and the second one consists in
working with the function g(z) := f(tz). From the numerical point of view, there are
not substantial di¤erences between these two approaches, because once the conformal
mapping e relative to e
 has been computed, the conformal mapping e t relative to te

is given by e t(w) = te (w=t), w > te
.

In our numerical experiments, the eigenvalue estimating phase is performed by
means of the Krylov method based on the Arnoldi and Lanczos algorithms. We shall
use the following notations: if s is the number of eigenvalue estimates produced by
the Arnoldi or Lanczos method, and p is the number of the computed leading Laurent
coe¢ cients of  , we call ArnFPM(s; p) and LanFPM(s; p), the hybrid procedures
obtained applying the FPM to the Arnoldi and Lanczos estimates.

7. Numerical experiments. Let us consider the di¤erential operator

��+ �1
@

@x
+ �2

@

@y
; �1; �2 2 R; (7.1)

where � denotes the 3-dimensional Laplacian operator. Discretizing using central
di¤erences and Dirichlet boundary conditions on the cube (0; 1)� (0; 1)� (0; 1), with
uniform meshsize h = 1= (n+ 1) along each direction, a nonsymmetric matrix A of
order N = n3 with particular block structure is obtained. It can be represented by
means of a sum of Kronecker products as follows,

A :=
1

h2
fIn 
 (In 
 C1) + [B 
 In + In 
 C2]
 Ing ; (7.2)

where the matrix B of order n is de�ned as

B :=

266664
2 �1
�1 2 �1

�1 . . .
. . .

. . .
. . .

377775 ;
In is the identity of order n, and

Ci :=

266664
2 �1 + � i h2

�1� � i h2 2 �1 + � i h2
�1� � i h2

. . .
. . .

. . .
. . .

377775 2 Rn�n; i = 1; 2:

Using the test matrix A = h2A, with N = 3375, �1 = 0, �2 = 80, in the following
picture (Fig.7.1) we can see an example of computation of Fejèr points. In particular,
referring to the algorithm of §6.3, in this picture we can see: 1) s = 30 eigenvalue
estimates f�jgj=1;:::;30 obtained with 30 iterations of the Arnoldi algorithm; 2) the
boundary of e
 relative to the conformal mapping e obtained computing the �rst p = 6
leading coe¢ cients of the conformal mapping  relative to the polygonal compact
obtained joining the outermost points of f�jgj=1;:::;30; 3) 16 Fejèr points relative toe .
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Fig.7.1 �1 = 0, �2 = 80
Now, using the same matrix A = h2A, in the following examples we make a com-

parison between the hybrid method introduced and the KPMs applied to the compu-
tation of the matrix functions treated in Section 5. In all cases we use v = (1; 1; :::; 1)T

and this vector is also used as starting vector for the KPMs. In all pictures, the be-
havior of log10 kemk2 with respect to the number of scalar (dot) products is shown.
Since A is epthadiagonal, a matrix-vector multiplication costs 7 scalar products. The
count of scalar products does not take into account the initial cost of computing the
eigenvalues, because in practical situations one usually has to compute more than one
or a lot of f(A)v always with the same matrix A but with di¤erent vectors v. In
all tests we choose n = 15, so that the dimension of the problem is N = 3375 and
h = 1=16.

The �rst consideration we can make observing the pictures below is that the
hybrid FPM performs well in each of the cases considered, with a relatively small
number of computed eigenvalues.
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Fig.7.2 f(A) = e�A, �1 = �2 = 70
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By comparing pictures 7.2, 7.5, 7.6 with pictures 7.3 and 7.4, we must also observe
that the stability behavior of the hybrid FPM is sensitive to the singularities of f .
In other words, as one can expect from the error analysis of Sections 4 and 5, the
existence of singularities causes slow down and instability. Nevertheless, as we can
see, the regularity of f in�uences also the performance of the KPMs.
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Fig.7.3 f(A) = A�1, �1 = 0, �2 = 40

In Fig. 7.3, since we are solving the linear system Ay = v, the KPMs we use
as comparison methods are the BCG (that is equivalent to the Lanczos procedures
applied to the computation of A�1v) and the GMRES (for this example, its restarted
version does not show any e¤ective improvement). The results could appear confusing
because the GMRES is the optimal polynomial method. Anyway, as well known, such
optimality does not concern the cost. For this example the GMRES is faster than the
FPM with respect to the number of iterations, but not with respect to the workload.

Remark 7.1. As well known, in the case of linear systems, the key issue for
Krylov methods is that of preconditioning. A good preconditioner has the e¤ort of
collapsing the spectrum of the preconditioned matrix around the point 1 of the complex
plane. In this way, applying the FPM one gets a compact 
 with a small capacity 

and such that the quantity � (that can be seen as a measure of the distance between

 and the singular point 0) is very large with respect to 
. Therefore, looking at the
asymptotic convergence factor (2.6), we can understand that a good preconditioner
can improve remarkably not only Krylov type methods, but also any asymptotically
optimal method (see e.g. [10] for some illuminating numerical experiments).
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A, �1 = 0, �2 = 80

0 100 200 300 400 500 600
­8

­6

­4

­2

0

2

4

scalar produc ts

lo
g1

0(
no

rm
2(

er
ro

r)
)

ArnFPM(24,4)
Lanczos
Arnoldi

Fig.7.5 f(A) = cos(A), �1 = 80, �2 = 40
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Fig.7.6 f(A) = cos(t
p
A), t = 0:5, �1 = 10, �2 = 100

Finally, in Fig.7.7 we make a comparison between the FPM and the (truncated)
Taylor expansion method in the case of the matrix exponential. The slow down of
the Taylor expansion method is due to the fact that it does not use any information
on the spectrum and provides an asymptotically optimal approximation with respect
to the circles centered at the origin.
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Fig.7.7 f(A) = e�A, �1 = �2 = 170

Remark 7.2. In practical situation, when the exact solution of a certain problem
is not known, in order to monitor the convergence of the FPM we have to approximate
the constants appearing in the bounds given for kemk2, that is, the bounds given in
Theorems 5.4, 5.5, 5.6, 5.7, 5.8. Once the quantity s of those formulas has been
approximated, the other constants can be easily computed. Nevertheless, in order to
compute s it is necessary to know F (A). In some special cases of A it is possible to
embrace F (A) using some ad-hoc strategies, but in general, one is forced to use the
standard theoretical results (see e.g. [14] p.79).

On the other hand, if one is only required to know how many iterations are nec-
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essary to get a given accuracy, i.e., kemk2 < �, it is convenient to use Theorem 2.4.
Once the compact 
 with capacity 
 has been computed, under the hypothesis that
�(A) � 
, we have

lim
m!1

h
kemk1=m

i
� 


�
;

so that one can stop the procedure when (
=�)m � �.

8. Conclusions. As mentioned in the introduction, the use of Fejèr nodes has
never been tested in the context of the computation of functions of matrices. However,
because of its low cost and nice theoretical convergence properties, in the opinion of
the author it is an e¢ cient method, especially when the function f is analytic in the
whole complex plane. If f is not analytic in C, the trend of the error is generally
satisfactory but there are some stability problems. A more rigorous analysis of this
phenomenon is currently under study.
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