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Abstract

In this paper we consider the numerical approximation of Aα by con-

tour integral. We are mainly interested to the case of A representing

the discretization of the first derivative by means of a BDF formula, and

0 < α < 1. The computation of the contour integral yields a rational

approximation to A
α which can be used to define k-step formulas for the

numerical integration of Fractional Differential Equations.

1 Introduction

This paper deals with the numerical approximation of Aα, where A ∈ Rn×n

and 0 < α < 1 (see [12] Chapter 8 and the references therein for a background
and a review on the most effective methods). While some of the arguments
of the paper can be applied to matrices whose spectrum σ(A) is such that
σ(A) ⊂ C\ (−∞, 0], we are mainly interested to the case of A representing a
discretization of the first order derivative operator. In particular, denoting by
a0, a1, ..., ap the p+1 coefficients of a Backward Differentiation Formula (BDF)
of order p, with 1 ≤ p ≤ 6, which discretizes the derivative operator (see [10]
Chapter III.1 for a background), we consider lower triangular banded Toeplitz
matrices of the type

Ap =




a0 0 0
... a0 0

ap
...

. . . 0

0
. . .

. . . 0
0 ap · · · a0




∈ R
n×n, (1)

whose spectrum σ(Ap) consists of the point a0 > 0.
In this situation, Aα

p e1, e1 = (1, 0, ..., 0)T , contains the whole set of coeffi-
cients of the corresponding Fractional BDF (FBDF) formula for solving Frac-
tional Differential Equations (FDEs, see e.g. [17] for an exhaustive overview) of
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the type

t0D
α
t y(t) = g(t, y(t)), t ∈ [t0, T ], (2)

where t0D
α
t denotes the fractional derivative operator, and where we assume to

consider a uniform discretization t0, t1, ..., tn = T of the time domain. FBDF
formulas of order p ≥ 2 have been introduced in [14], and extend the Grunwald-
Letnikov discretization of the fractional derivative (see again [17]). We remark
that the j-th entry of Aα

p e1 is just the j-th coefficient of the Taylor expansion
of the generating function of the method

ω(α)
p (ζ) = (a0 + a1ζ + ...+ apζ

p)
α
, (3)

around ζ = 0.
For a given analytic function f and a general square matrix A, we know that

f(A) can be represented by the contour integral

f(A) =
1

2πi

∫

Γ

f(z)(zI −A)−1dz, (4)

where Γ is a closed contour lying in the region of analyticity of f and enclosing
the spectrum in its interior. Among the existing methods for the computation
of f(A) (end even f(A)v, v ∈ Rn, see [12] for an overview), the approximation
of (4) by a quadrature rule represents a strategy not much used so far. Recently,
however, it has been successfully used in [11] and [22] to approximate the matrix
functions here considered and the matrix functions involved in the Exponential
Integrators for IVPs (the so-called phi-functions) respectively.

It is just the paper [11] which has given us the basic input for the com-
putation of Aα, when A is of type (1), by means of the approximation of the
contour integral. For matrices of this kind, a polynomial approximation of Aα

p e1
may lead to very poor results, especially when n is large and α is not close to 1.
Indeed, in a situation like this, Aα

p is full lower triangular with entries that anni-
hilate quite slowly departing from the diagonal. At the same time, since Ap has
a narrow band (p ≤ 6), any matrix polynomial pm(Ap) (pm ∈ Πm, where Πm

denotes the set of polynomials of degree at most m) is still lower triangular but
the filling is attained only for m ≈ n/p. Therefore any polynomial method for
Aα

p e1 would require a number of iteration proportional to the dimension. This
consideration, together with the fact that a linear system with A of type (1)
can be solved with O(n) floating point operations, leads us to consider rational
approximations for Aα

p , based on the contour integral approximation. For com-
pleteness, we need to quote here the recent paper [8], where Padé type rational
approximations to Aα are considered.

In this paper we partially follow the ideas presented in [11] for the special case
of α = 1/2. After a suitable change of variable, the contour integral representing
Aα

p will be computed by the m-point Gauss-Legendre formula, leading to partial
fraction approximations of the type

Aα
p ≈ Rm(Ap) = Ap

∑m

j=1
γj(ηjI +Ap)

−1, (5)
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Rm(z) = pm(z)/qm(z), pm, qm(z) ∈ Πm. The above formula can be regarded
to as a new technique to evaluate the coefficients of a FBDF method, which
in general is not a very simple task when n is large and p > 1. The most
common approach seems to be the one based on the FFT ([17] Chapter 7.5),
already employed in [9] in the case of α = 1/2. More recently, in [21] the
authors introduce a new approach based on the computation of the Laplace
transform representing the formal power series of the unknown coefficients, using
a quadrature rule on Talbot contours (see [24]) and hyperbolas.

Without the explicit computation of Rm(Ap)e1, the definition of the coeffi-
cients γj , ηj , j = 1, ...,m, in (5), allows to construct the polynomials pm and qm
of degree m such that Rm(z) = pm(z)/qm(z) and then

Aα
p ≈ [qm(Ap)]

−1
pm(Ap). (6)

Note that Rm(a0 + a1ζ + ...+ apζ
p) represents a rational approximation to the

generating function (3). Writing a FBDF method for (2) in the matrix form

Aα
py = hαg, (7)

where y = (y0, ..., yn)
T , g = (h−αy0, g1..., gn)

T , being yj an approximation of
y(tj), and gj = g(tj, yj), the rational approximation (6) allows to define the
implicit formula

pm(Ap)y = hαqm(Ap)g, (8)

which asymptotically represents an mp-term finite difference equation. Compu-
tationally, the use of (8) represents a not negligible advantage since (7) is a full
recursion because Aα

p is full lower triangular. While the order of the underlying
FBDF formula is lost, as we shall see the Gauss-Legendre approximation of the
contour integral which leads to (8), ensures a good simulation of the convergence
and the linear stability properties of the FBDF method.

The paper is organized as follows. In Section 2 we study the contour integral
representation of Aα

p . In Section 3 we present our methods for the numerical
approximation of Aα

p e1, showing also some numerical examples. A theoretical
error analysis (with some further experiments) is given in Section 4. In Section
5 we apply our techniques for the construction of k-step formulas for FDEs, and
a numerical example on a linear problem is presented in Section 6.

2 The integral representation of Aα

As pointed out by many authors whenever the contour Γ of (4) is wide, it is
more convenient to consider the integral representation of A(A−1f(A)) if A is
nonsingular. Therefore, Aα can be written as

Aα =
A

2πi

∫

Γ

zα−1(zI −A)−1dz, (9)

where Γ is a suitable contour. The following known result (see e.g. [1]), expresses
Aα in terms of a real integral.
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Proposition 1 Let A ∈ Rn×n be such that σ(A) ⊂ C\ (−∞, 0]. For 0 < α < 1
the following representation holds

Aα =
A sin(απ)

απ

∫ ∞

0

(ρ1/αI +A)−1dρ. (10)

Before presenting our methods for the numerical approximation of (10) we
give the following result, which can be proved by direct computation.

Proposition 2 Let Ap ∈ Rn×n be a matrix of type (1), and let Ap = 1
a0
Ap.

Then the components of (τI +Ap)
−1e1, τ 6= −1, are given by

υ
(p)
1 (τ) =

1

τ + 1
,

υ
(p)
j (τ) =

c
(p)
2,j

(τ + 1)2
+ ...+

c
(p)
j,j

(τ + 1)j
, 2 ≤ j ≤ n.

where the coefficients c
(p)
i,j depend on the order p. For p = 1 we simply have

{a0, a1} = {1,−1}, and hence

υ
(1)
j (τ) =

1

(τ + 1)
j , 1 ≤ j ≤ n.

2.1 First approach, for 0 < α ≤ 1/2

For the computation of (10) we may consider the same approach presented in
[11], where, for the special case of α = 1/2, the authors consider a change of
variable involving Jacobi elliptic functions. In our case, and for each 0 < α ≤
1/2, this transformation reads

ρ = aα0 tan θ, (11)

so that, by Proposition 1,

Aα
p =

Apa
α
0 sin(απ)

απ

∫ π/2

0

(tan1/α θI +Ap)
−1

(
tan2 θ + 1

)
dθ, (12)

where Ap is defined as in Proposition 2.
In order to understand the reliability of the change of variable (11), and

remembering that we are just interested in computing Aα
p e1, we need to study

the regularity of the components of the vector

v(p) (θ) =
(
tan2 θ + 1

)
(tan1/α θI +Ap)

−1e1,

=
(
tan2 θ + 1

) (
υ
(p)
1 (tan1/α θ), ..., υ(p)n (tan1/α θ)

)T

,

in [0, π/2]. By Proposition 2 the components of v(p) (θ) contains functions of
the type

fj (θ) =
tan2 θ + 1

(
tan1/α θ + 1

)j , j = 1, ..., n, θ ∈ [0, π/2].
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For 0 < α ≤ 1/2, fj (θ) is bounded in [0, π/2] for each j ≥ 1, since fj (θ) → 1
as θ → 0 and

fj (θ) ∼ (cos θ)j/α−2 → 0 as θ → π/2. (13)

Note that the functions fj (θ) are analytic in some open subset containing
[0, π/2] for α = 1/q, q = 2, 3, ... (i.e., when we consider the matrix q-root),
and only continuous in [0, π/2] for other values. On the other side, by (13), for
1/2 < α < 1, f1 (θ) → ∞ as θ → π/2, and hence the substitution (11) does not
appear to be reliable anymore.

2.2 Second approach, for 1/2 ≤ α < 1

For 1/2 ≤ α < 1, we use the slightly different substitution

ρ = aα0 tanβ θ, (14)

where we want to define β > 0 such that the arising integrand in (10) remains
bounded in [0, π/2]. With this substitution we obtain

Aα
p = β

Apa
α
0 sin(απ)

απ

∫ π/2

0

(tanβ/α θI +Ap)
−1

(
tan2 θ + 1

)
tanβ−1 θdθ. (15)

Proceeding as before we have now to examine the behavior of the functions

fj (θ) =

(
tan2 θ + 1

)
tanβ−1 θ

(
tanβ/α θ + 1

)j .

We have that

fj (θ) ∼ (cos θ)
jβ/α−2−(β−1)

as θ → π/2,

and hence defining

β =
α

1− α
,

which is the solution of
β

α
− 2− (β − 1) = 0,

we have that f1 (θ) → 1 and fj (θ) → 0, for j ≥ 2, as θ → π/2. Since 1 ≤ β <∞
for 1/2 ≤ α < 1, we have that fj (θ) → 0 for θ → 0, for each j ≥ 1. It is easy to
see that the functions fj (θ) are analytic in some open subset containing [0, π/2]
for α = 1 − 1/q, q = 2, 3, ..., and only continuous for other values. Observe
that the method does not apply to the case 0 < α < 1/2, since we would have
β − 1 < 0 and hence fj (θ) → ∞ as θ → 0. Observe moreover that for α = 1/2
we have β = 1, and the method reduces to the previous one.
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2.3 Third approach, for 0 < α < 1

In order to define a substitution that allows to have a bounded integrand func-
tion in (10) for each 0 < α < 1, we consider the change of variable

ρ = aα0 cos−β θ sin θ. (16)

With this substitution in (10) we obtain

Aα
p =

Apa
α
0 sin(απ)

απ

∫ π/2

0

(cos−β/α θ sin1/α θI +Ap)
−1β sin

2 θ + cos2 θ

cosβ+1 θ
dθ. (17)

Defining as before the functions

fj(θ) =
β sin2 θ + cos2 θ

(cos−β/α θ sin1/α θ + 1)j cosβ+1 θ
,

we have that fj(θ) → 1 for θ → 0 and for each j ≥ 1. Moreover

fj(θ) ∼ β (cos θ)
jβ/α−β−1

as θ → π/2,

and hence, defining as before β = α
1−α , we have f1 (θ) → β and fj (θ) → 0, for

j ≥ 2, as θ → π/2, for each 0 < α < 1. Note that even in this case the method
reduces to the first one for α = 1/2. In this situation the functions fj(θ) are of
class C1 in [0, π/2], and, of course, analytic for α = 1/2.

3 The Gauss-Legendre approximations

For the three substitutions presented in the previous section, we consider the
Gauss-Legendre approximation of the corresponding integrals (12), (15), (17).
For the case α = 1/2, in [11] the authors consider the trapezoidal rule, re-
producing in that way the rational approximation of the square root function
proposed by Zolotarev in 1877, which has shown to be extremely efficient for
the approximation of this function on wide real intervals. Here, the situation is
quite different, since the spectrum of Ap reduces to one point.

Denoting by xk and wk, k = 1, ...,m, the nodes and the weights of the
m-point Gauss-Legendre rule, and defining

θk =
π

4
(xk + 1), k = 1, ...,m, (18)

from (12), (15) and (17) we obtain the following three methods, which coincide
for α = 1/2.

Method 1, for 0 < α ≤ 1/2

Aα
p ≈ Apa

α
0 sin(απ)

4α

m∑

k=1

wk(tan
1/α θkI +Ap)

−1
(
tan2 θk + 1

)
(19)
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Method 2, for 1/2 ≤ α < 1

Aα
p ≈ Apa

α
0 sin(απ)

4 (1− α)
×

m∑

k=1

wk(tan
1/(1−α) θkI +Ap)

−1
(
tan2 θk + 1

)
tan(2α−1)/(1−α) θk(20)

Method 3, for 0 < α < 1

Aα
p ≈ Apa

α
0 sin(απ)

4α
×

m∑

k=1

wk(cos
1/(α−1) θk sin

1/α θkI +Ap)
−1

α
1−α sin2 θk + cos2 θk

cos1/(1−α) θk
(21)

In order to appreciate the potential of the methods just described, below we
present some numerical experiments. In each examples we consider the matrices
of type (1) arising from the BDF formulas of order p = 1, 2, 3, 4, whose sets of
coefficients {a0, a1, ..., ap} are given by

p = 1 : {1,−1}
p = 2 : {3/2,−2, 1/2}
p = 3 : {11/6,−3, 3/2,−1/3}
p = 4 : {25/12,−4, 3,−4/3, 1/4}

For each experiment the dimension of Ap is n = 500, and the number of nodes
m of the quadrature formulas is between 2 and 16. All the computation are
performed in Matlab. Denoting by Rm(Ap) the rational approximation of Aα

p

arising by one of the three methods, in each picture we plot the relative error

∥∥Rm(Ap)e1 −Aα
p e1

∥∥
2∥∥Aα

p e1
∥∥
2

,

where the reference solution Aα
p e1 is computed with the Matlab functions expm

and logm.
Example 1. We take α = 1/2 and compare our Method 1 with the trape-

zoidal rule applied to (12). For this example we also consider the diagonal
(m,m) Padé approximations of the function

√
1 + z, used in [26] and [8] for the

computation of the matrix square root,

√
1 + z ≈ 1 +

∑m

k=1

a
(m)
k z

1 + b
(m)
k z

, (22)

where

a
(m)
k =

2

2m+ 1
sin2

kπ

2m+ 1
, b

(m)
k = cos2

kπ

2m+ 1
.
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Figure 1: Relative error (in logarithmic scale) with respect to m of the trape-
zoidal rule applied to (12) (diamonds), diagonal Padé approximation (circles)
and Method 1 (squares), for α = 1/2.

The results are reported in Figure 1.
Example 2. In this example we consider the case of α < 1/2. In particular

we consider the values α = 1/5 and α = 1/3 comparing Method 1 and 3. Figures
2 and 3 display the results, that also include the behavior of the trapezoidal rule
applied to (12).

Comparing Figure 2 and 3, we can observe that for the case α = 1/3 there is
little difference between the methods, but this is not true in general for smaller
values of α. Indeed for α = 1/5, Method 3 is much more accurate, and the
experiments reveal that this difference increases for α close to 0.

Example 3. In this third example we consider the case of α > 1/2 taking
α = 2/3 and α = 4/5. We compare Method 2 and 3. Figures 4 and 5 display
the results. Symmetrically (with respect to α = 1/2) to the case of α < 1/2,
the difference between the methods becomes well marked for α close to 1. In
this example we also report the behavior of the trapezoidal rule applied to (15).

It is clear from the above examples, that Method 3 seems to be able to ap-
proximate the discrete fractional derivative with an error around 10−4 in the
range α ∈ [1/5, 4/5], with m ≤ 16 quadrature points. If the goal is to design
alternative methods for FDEs, this approach seems to be promising. On the
other side, if one would rather compute with high accuracy the FBDF coeffi-
cients Aα

p e1, then larger values of m should be considered. It is also necessary
to point out that for α small or close to 1 (Figure 2 and 5) in some cases the
trapezoidal rule allows faster convergence. On the other side, for α near 1/2,
which is very important in the field of FDEs, the Gauss-Legendre approximation
guarantees better results (Figure 1, 3 and 4).
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Figure 2: Relative error (in logarithmic scale) with respect to m of Method 1
(squares), Method 3 (circles) and trapezoidal rule applied to (12) (diamonds)
for α = 1/5.

We remark moreover that, independently of the quadrature rule adopted, our
methods withm = 16 require about 0.1 seconds (for each p) to perform the com-
putation on a simple PC, as the one we have used. On the contrary, the compu-
tation of Aα

p e1 by means of the Matlab instruction expm(alpha*logm(A’))’*e1

takes about 8 seconds for n = 500 (the transpose of Ap is used to avoid the
Schur decomposition). We remark however that this Matlab instruction cannot
be considered a meaningful benchmark, since the structure of Ap cannot be fully
exploited as in a rational approximation.

4 Error analysis

In this section we provide a theoretical error analysis for Method 1, in the case
of α = 1/k, k = 2, 3, .... With some effort the result should be extendible to
Method 2. Let χ(z) be a function analytic in [−1, 1]. For r > 1, let

Φr =

{
z ∈ C : z =

1

2

(
reiϑ +

1

reiϑ

)
, ϑ ∈ [0, 2π]

}
,

be an ellipse of the complex plane with foci in ±1. Let moreover R > 1 be the
smallest real number such that ΦR contains a singularity of the function χ(z).
Denoting by Em(χ) the error of the m-point Gauss-Legendre quadrature rule,
that is,

Em(χ) =

∫ 1

−1

χ(x)dx −
m∑

k=1

wkχ(xk),
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Figure 3: Relative error (in logarithmic scale) with respect to m of Method 1
(squares), Method 3 (circles) and trapezoidal rule applied to (12) (diamonds),
for α = 1/3.

from a series of results dating back to the late 60’ ([3], [4], [13], [19], [23]), we
know that the error can be bounded as follows

|Em(χ)| ≤ C
M(r)

(r2 − 1) r2m
, 1 < r < R, (23)

where the constant C can be taken independent of m and r and

M(r) = max
Φr

|χ(z)| = max
[0,2π]

∣∣∣∣χ
(
1

2

(
reiϑ +

1

reiϑ

))∣∣∣∣ .

For a recent review about Gauss-Legendre formula, we refer to [25] and the
references therein.

Formula (23) may be difficult to use in practice, and in general it may be
also rather pessimistic. Anyway, it can help us to have a better insight about
the behavior of our methods with respect to some values of α. Indeed, whenever
α is such that the functions fj(θ) arising from our substitutions (11) and (14)
are analytic, the location of the poles of these functions plays a crucial role since
it defines R in (23). In the z-plane, looking at the corresponding fj

(
π
4 (z + 1)

)

(cf. (18)), for the substitution (11) (that is, for Method 1) the poles that define
R, are given explicitly by

z = ∞, for α = 1/2,

z =
4

π
arctan

(
eiαπ

)
− 1, for α = 1/3, 1/4, ... (24)

For the substitution (14) the poles are the same: z = 4
π arctan

(
ei(1−α)π

)
−1, for

α = 1−1/q, q = 3, 4, .... The analysis cannot be applied to the substitution (16)
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Figure 4: Relative error (in logarithmic scale) with respect to m of Method 2
(squares), Method 3 (circles) and trapezoidal rule applied to (15) (diamonds),
for α = 2/3.

(Method 3), since the corresponding functions are analytic only for α = 1/2.
For each method, the functions fj(θ) are thus entire for α = 1/2. In Table 1 we
report the poles of the Method 1 and 2 for some values of q, together with the
corresponding value of R = R(α) that is obtained by solving

1

2

(
Reiϑ +

1

Reiϑ

)
= z,

that is,

R = b+
√
b2 + 1, where b = Im(

4

π
arctan

(
eiαπ

)
).

q 2 3 4 5 6 7 8 9 10
z ∞ 0.838i 0.561i 0.429i 0.350i 0.296i 0.257i 0.227i 0.203i

R(α) ∞ 2.143 1.708 1.517 1.409 1.339 1.289 1.252 1.224
Table 1 - Poles in the z-plane of Method 1 and 2,

and corresponding values of R(α).

As we can see, for α near 0 or 1, the poles are close to the interval [−1, 1],
so that R is close to 1 and the methods are expected to be slow (with respect to
m) by (23). On the contrary, for α close to 1/2, R can be taken larger, and the
methods will be faster. This considerations are confirmed by the experiments
of Figures 1-5.

Now, for j = 1, ..., n, let

E
(p)
m,j =

∣∣eTj Rm(Ap)e1 − eTj A
α
p e1

∣∣ , (25)
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Figure 5: Relative error (in logarithmic scale) with respect to m of Method 2
(squares), Method 3 (circles) and trapezoidal rule applied to (15) (diamonds),
for α = 4/5.

be the error corresponding to the j-th component of Aα
p e1 obtained using one

of our methods. In what follows we focus the analysis on Method 1.
In order to use (23) to bound (25), we need to work in the z-plane with the

functions (cf. (12) and (18))

ψ
(p)
j (z) := eTj Ap

(
tan1/α

(π
4
(z + 1)

)
I +Ap

)−1

e1

(
tan2

(π
4
(z + 1)

)
+ 1

)
,

for α = 1/q, q = 2, 3, ..., so that

E
(p)
m,j ≤ C

aα0 sin (απ)

4α

maxΦr

∣∣∣ψ(p)
j (z)

∣∣∣
(r2 − 1) r2m

, 1 < r < R. (26)

Let us define the functions

dα(ξ) = tan1/α
(
π

4

(
1

2

(
ξ +

1

ξ

)
+ 1

))
,

for ξ = reiθ, 1 < r < R. Remember that dα(ξ) + 1 = 0 for ξ = iR.

Proposition 3 For z = 1
2

(
ξ + 1

ξ

)
we have

ψ
(p)
j (z) =

s
(p)
j (dα(ξ))(d1/2(ξ) + 1)

(dα(ξ) + 1)
j ,

where s
(p)
j is a polynomial of degree less than j, whose coefficients depend on

a0, a1, ..., ap. For p = 1, we simply have s
(p)
1 (x) ≡ 1 and s

(p)
j (x) = −x.
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Proof. The result follows straightfully from Proposition 2.
Before proceeding, we need the following two lemmas.

Lemma 4 Let 0 < α ≤ 1/2 and ξ = reiθ. Then for 0 ≤ θ ≤ 2π

1

|dα(ξ) + 1| ≤ K(r)
1

|dα(ir) + 1| , for 1 < r < R, (27)

with K(r) ≤ 2. Moreover, for 0 < α < 1/2, K(r) ≤ 3/2 for (R+1)/2 ≤ r < R.

Proof. Consider the auxiliary function

ϕ(ϑ, r) :=

∣∣∣∣
dα(ir) + 1

dα(reiθ) + 1

∣∣∣∣ , 1 ≤ r ≤ R,

that is 2π-periodic and such that ϕ(ϑ, r) = ϕ(2π − ϑ, r). Hence we can restrict
our analysis to ϑ ∈ [0, π]. For each 1 < r < R, one shows that ϕ(ϑ, r) ≥ ϕ(0, r)
and ϕ(ϑ, r) is monotonically increasing in [0, π/2). Thus, the maximum with
respect to ϑ is attained in [π/2, π]. Moreover, for each ϑ ∈ [π/2, π], ϕ(ϑ, r) is
monotonically decreasing with respect to r. Thus we have

max
ϑ∈[0,π],r∈[1,R]

ϕ(ϑ, r) = max
ϑ∈[π/2,π],r∈[1,R]

ϕ(ϑ, r)

≤ max
ϑ∈[π/2,π]

ϕ(ϑ, 1)

= ϕ(π, 1)

= 2

The second part of the lemma is obtained evaluating

max
ϑ∈[π/2,π]

ϕ(ϑ, (R + 1)/2).

Lemma 5 Let α∗ ≈ 0.271 be the solution of

π

8α

(
1 +

1

R2

) ∣∣1 + e2iαπ
∣∣ = 2

R− 1
.

Then for 1 ≤ r ≤ R
|dα(ir) + 1| ≥ µα(R− r),

where

µα =

{
2

R−1 for 0 < α ≤ α∗

π
8α

(
1 + 1

R2

) ∣∣1 + e2iαπ
∣∣ for α∗ ≤ α < 1/2

. (28)

13



Proof. We observe that |dα(ir) + 1| → 2 for r → 1 and |dα(ir) + 1| → 0 for
r → R. Moreover one proves that

d

dr
|dα(ir) + 1| < 0 for 1 < r < R,

d2

dr2
|dα(ir) + 1| < 0 for r = 1,

d2

dr2
|dα(ir) + 1| > 0 for r = R,

and that the second derivative is equal to 0 only once in 1 < r < R. Therefore,
since

d

dr
|dα(ir) + 1|

∣∣∣∣
r=R

= − π

8α

(
1 +

1

R2

) ∣∣1 + e2iαπ
∣∣

one easily obtains the result.

For Method 1, we can state the following result, that holds for p = 1.

Theorem 6 Let α = 1/q, q = 3, 4, .... We have

E
(1)
m,j ≤

K

R− 1
Cj

α

(
2

R+ 1

)2m

, for m ≥ 1, (29)

where

Cα =
3

µα(R− 1)
,

and

E
(1)
m,j ≤

K

R− 1

(
4me

jµα

)j

exp

(
j2

2m

)
1

R2m+j
, for m ≥ j(R + 1)

2(R− 1)
, (30)

where K is a constant depending on α but not on j and m.

Proof. Let us define

Mj(r) := max
Φr

∣∣∣ψ(1)
j (z)

∣∣∣ , (31)

so that by (26) we have

E
(1)
m,j ≤ C

sin(απ)

4α

Mj(r)

(r2 − 1) r2m
. (32)

By Proposition 3, for z = 1
2

(
ξ + 1

ξ

)

ψ
(1)
j (z) =

−dα(ξ)(d1/2(ξ) + 1)

(dα(ξ) + 1)j
, j > 1.

14



Now, since the function
∣∣dα(ξ)(d1/2(ξ) + 1)

∣∣ is bounded in the annulus

{
ξ = reiθ : 1 < r ≤ r ≤ R, 0 ≤ θ ≤ 2π

}
,

we have that

Mj(r) ≤ K(r) max
|ξ|=r

∣∣∣∣∣
1

(dα(ξ) + 1)
j

∣∣∣∣∣ , for 1 < r < R, (33)

where K(r) < ∞ is a function of r, which can be uniformly bounded in [r, R].
By (33) we can restrict our analysis on the function dα(ξ). For j = 1 (33) still

holds since ψ
(1)
1 (z) = (d1/2(ξ) + 1) (dα(ξ) + 1)

−1
, by Proposition 3.

By Lemmas 4 and 5 we have that

Mj(r) ≤ K(r)

(
K(r)

µα(R− r)

)j

, for 1 < r ≤ r ≤ R, (34)

where K(r) is the function appearing in (27). Taking r = (R+ 1)/2, and using
again the above lemmas we obtain

Mj(r) ≤ Kα

(
3

µα(R− 1)

)j

,

where
Kα := maxR+1

2
≤r≤RK(r).

Using the inequality
1

(
R+1
2

)2 − 1
≤ 1

R− 1
, (35)

in (32), we obtain (29), in which K = CKα
sin(απ)

4α .
In order to demonstrate (30), observe that for each 0 < α < 1/2 the mini-

mum of
1

(R − r)jr2m
, (36)

with respect to r (cf. (32) and (34)), is obtained for

r =
2m

j + 2m
R. (37)

Since we need r > 1, we can use the above expression only for m > j
2(R−1) . In

particular, taking m such that

2m

j + 2m
R ≥ R+ 1

2
,

that is,

m ≥ j(R+ 1)

2(R− 1)
,

15



using (37) we obtain

Mj(r)

r2m
≤ Kα

(
2

Rcα

)j (
2m+ j

j

)j (
2m+ j

2m

)2m
1

R2m
.

Now, using the bound

(
2m+ j

j

)j

≤
(
2m

j

)j

exp

(
j2

2m

)
,

and (35) for the term 1/(r2 − 1) in (32), we obtain (30).

Remark 7 By (28), in Theorem 6 we have Cα = 3/2 for α = 1/4, 1/5, ..., and
Cα ≈ 1.83 for α = 1/3.

Theorem 8 Let α = 1/2. We have

E
(1)
m,j ≤ K

coshj−1
(

2m
j

)

((
8m
jπ

)2

− 1

)
(
jπ

8m

)2m

, for m > max

(
jπ

8
, 1

)
, (38)

where K is a constant independent of j and m.

Proof. For α = 1/2, we have that for j ≥ 2 and z = 1
2

(
ξ + 1

ξ

)

ψ
(1)
j (z) = − dα(ξ)(

d1/2(ξ) + 1
)j−1

. (39)

Defining as before

Mj(r) := max
Φr

∣∣∣ψ(1)
j (z)

∣∣∣ = max
|ξ|=r

∣∣∣∣∣
d1/2(ξ)(

d1/2(ξ) + 1
)j−1

∣∣∣∣∣ ,

by (23) and (19) we have

E
(1)
m,j ≤

C

2

Mj(r)

(r2 − 1) r2m
.

Following the proof of Theorem 6 we also have

Mj(r) ≤ K(r)max
Cr

∣∣∣∣∣
1

(
d1/2(ξ) + 1

)j−1

∣∣∣∣∣ , for 1 < r <∞, (40)

where K(r) <∞ is a function of r, which can be uniformly bounded in [1,∞).

For j = 1 (40) still holds since ψ
(1)
j (z) = 1.
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Now using Lemma 4 and well known trigonometric relations, we have

1∣∣d1/2(ξ) + 1
∣∣ ≤ 2∣∣d1/2(ir) + 1

∣∣

= 2

∣∣∣∣cos
2

(
π

4

(
i

2

(
r − 1

r

)
+ 1

))∣∣∣∣

≤ 2

∣∣∣∣cos
2

(
π

4

(
ir

2
+ 1

))∣∣∣∣

= 2

(
cosh2

(π
8
r
)
− 1

2

)

= cosh
(π
4
r
)
,

so that

E
(1)
m,j ≤

C

2
K1/2

coshj−1
(
π
4 r

)

(r2 − 1) r2m
. (41)

where K1/2 := max[1,∞)K(r). In order to define a suitable value for r we
consider the approximation

cosh
(π
4
r
)
≈ exp

(
π
4 r

)

2
,

so that we can easily minimize with respect to r the function

(
exp

(
π
4 r

))j

r2m
,

which yields r = 8m
jπ . Substituting this value in (41) yields (38).

While restricted to the case of p = 1, the results of Theorems 6 and 8
are representative of what happens also for p > 1 since by Proposition 2 and
3 the rate of convergence is always related with the behavior of the function
(dα(ξ) + 1)

−1
. Anyway, for p > 1, it is quite complicated to control the coeffi-

cients c
(p)
i,j of Proposition 2 (or the quantities s

(p)
j (dα(ξ)) in Proposition 3) and

hence the constants given in the proofs.
Moreover, it is important to observe that the results explain the asymptotic

behavior (m → ∞) in the computation of a given component of Aα
1 e1. As

expected, the theorems show that the asymptotic rate of convergence is equal to
1/R2 (and superlinear for α = 1/2), but also partially reveal the difficulty of the
problem whenever the dimension grows, that is, when j → ∞, for a fixed number
of points of integration. Indeed, for j → ∞ the functions (dα(ξ) + 1)

−j
are no

longer controllable unless we take r ≈ 1, because j represents the multiplicity

of the poles of the function ψ
(p)
j (z). In this situation, experimentally one can

see that Mj(r) is close to 1 and its value attained near ϑ = π. Theoretically we
can only say that Em,j ≤ const for m fixed and j → ∞. A rigorous analysis
of what happen in this situation is not very simple, because it is difficult to
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provide a sharp bound for Mj(r) when j is large, and consequently to define a
suitable value for r, similarly to what we have made in the proof of Theorems
6 and 8. Note that the conditioning of the matrices Ap, κ(Ap), is proportional
to the dimension, so that the theorems also express the behavior of the method
with respect to κ(Ap).

Since in our situation j ≤ n, where n is the number of points of the discretiza-
tion of the derivative, we can restrict our consideration to values of n of interest
to this aim. For this reason, in Figure 6, for α = 1/5, 1/3 and α = 1/2, we ob-
serve the error behavior with respect to the dimension, in the range [200, 1200],
in the computation of Aα

1 e1 using Methods 1 and 3 with m = 16 points. It
seems that the error stagnates with respect to the dimension.

200 400 600 800 1000 1200 1400
−5.5

−5

−4.5

−4

−3.5

−3

dimension

Figure 6: Relative error (in logarithmic scale) of Method 1 (dotted lines) and
Method 3 (solid lines) with m = 16, for α = 1/5 (diamonds), α = 1/3 (squares)
and α = 1/2 (circles), changing the dimension of the problem. The order is
p = 1.

In Figure 7 we also consider the relative error componentwise, that is, for
each 1 ≤ j ≤ n, we plot the relative error of the approximation of the j-th
components of Aα

1 e1, for some values of α and with n = 500.
We remark that for Method 2 the analysis given in Theorem 6 is very sim-

ilar. The poles are the same, so that we can still work with the functions
(dα(ξ) + 1)

−j
with ξ = ir. We have only differences in the constants defined

during the proof.

For what concern Method 3, an analysis based on formula (23) is no longer
possible because the functions involved are not analytic (the same consideration
holds for Method 1 when α 6= 1/q, q = 2, 3, ...). For each 0 < α < 1, α 6= 1/2,
the functions fj(θ) arising from the substitution (16) of Method 3 are only of
class C1 at one end-point of the interval of integration, so that the asymptotic
error analysis would require other tools (see e.g [25] and the reference therein),
and this is beyond the purpose of the present paper. We also quote here [16]
and [20] for some classical results about the error of the Gaussian rule for non-
smooth functions. In any case, as demonstrated in Figures 1-5, Method 3 shows
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0

j

Figure 7: Componentwise relative error (in logarithmic scale) of Method 1 for
α = 1/5 (blue line), α = 1/3 (black line), and α = 1/2 (red line). The order is
p = 1.

a good initial convergence (generally superior of Method 1 and 2), so that we
can consider this approach of practical interest for our accuracy requirement
(3-4 digits).

5 Fractional Differential Equations

A Caputo’s type FDE is an equation of the form

t0D
α
t y(t) = g(t, y(t)), t ∈ [t0, T ], (42)

where g : R× RN → RN , and t0D
α
t denotes the Caputo’s fractional derivative

operator defined as

Dα
t0y(t) =

1

Γ(1− α)

∫ t

t0

y′(u)

(t− u)α
du, for 0 < α < 1. (43)

Among the existing definitions of fractional derivative (see [17]), Caputo’s def-
inition (43) allows to treat the initial conditions at t0 for FDEs in the same
manner as for integer-order differential equations, so that we assume y(t0) = y0.
We refer here to [2] Chapter 6, for a wide background about the numerical
solution of Volterra integral equation of the second kind with weakly singular
kernel, by means of which the solution of (42) can be represented as follows

y(t) = y(t0) +
1

Γ(α)

∫ t

t0

(t− s)α−1g(s, y(s))ds. (44)

In [14] the author extends the well known BDF formulas for ODEs to the
fractional case, introducing methods of the type

∑n

j=0
ωn−jyj = hαg(tn, yn), n ≥ p, (45)
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where, ωn−j, 0 ≤ j ≤ n, are the Taylor coefficients of the generating functions

ω(α)
p (ζ) = (a0 + a1ζ + ...+ apζ

p)
α
, for 1 ≤ p ≤ 6, (46)

being {a0, a1, ...ap} the coefficients of the underlying BDF formula. In [14] it
is also shown the order p of the BDF formula is preserved. We remember that
for this kind of equations, there is generally a intrinsic lack of regularity of the
solution in a neighbor of the starting point, that is, we may have y(t) ∼ (t−t0)α
as t → t0. For this reason, in order to preserve the theoretical order p of the
numerical method, formula (45) is generally corrected as

∑M

j=0
wn,jyj +

∑n

j=0
ωn−jyj = hαg(tn, yn), (47)

where the sum
∑M

j=0 wn,jyj is the so-called starting quadrature, whose aim is
to have an exact integration of functions of the type

∑
k,l=0

k+αl≤p

γkl(t− t0)
k+αl, γkl ∈ R.

As stated in the Introduction, an FBDF method (45) can be written in the
matrix form as

Aα
py = hαg, (48)

where y = (y0, ..., yn)
T , g = (h−αy0, g1..., gn)

T , being yj an approximation of
y(tj), and gj = g(tj , yj). Note that the generating function (46) is just the
symbol of the Toeplitz matrix Aα

p . Now, our approximations (19), (20), (21),
leads to approximations of the type

Aα
p ≈ Ap

∑m

j=1
γj(ηjI +Ap)

−1 = [qm(Ap)]
−1
pm(Ap), (49)

where qm and pm are polynomials of degree m, and pm(0) = 0. In this way we
are able to define the recursion

pm(Ap)y = hαqm(Ap)g, (50)

which yields (neglecting for a moment the starting) the implicitmp-step method

∑mp

j=0
αjyn−j = hα

∑mp

j=0
βjg(tn−j , yn−j), n ≥ mp+ 1. (51)

We denote by GL(m, p) a formula of type (51), where GL remembers the use of
the Gauss-Legendre rule. The starting values y0, ..., ymp, can be generated by
the formula (45) or eventually by (47). In this sense our approach is based on
the rational approximation of the generating function (46)

ω(α)
p (ζ) ≈

∑mp
j=0 αjζ

j

∑mp
j=0 βjζ

j
=
pm(a0 + a1ζ + ...+ apζ

p)

qm(a0 + a1ζ + ...+ apζp)
. (52)
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For what concerns the computation of the coefficients αj , βj , they can be eas-

ily obtained in the following way. Let Ãp ∈ R(mp+1)×(mp+1) be the principal
submatrix of Ap of order mp+ 1, then

(α0, ..., αmp+1)
T

= pm(Ãp)e1,

(β0, ..., βmp+1)
T

= qm(Ãp)e1.

We remark that for the practical computation of the coefficients of the polyno-
mials pm and qm, one can use the standard algorithms for converting partial
fractions to polynomial quotients. For our computation we have used the Matlab
function residue.

Unfortunately, from a theoretical point of view, we cannot expect that a
GL(m, p) method could preserve the consistency of the underlying BDF formula.
Indeed defining as usual the linear difference operator

Lh(z(t)) =
∑mp

j=0
αjz(t− jh)− hα

∑mp

j=0
βj

[
t0D

α
t−jhz(t− jh)

]
,

where z(t) is assumed to be regular as necessary, we know that the method is
consistent with (42) if limh→0 h

−αLh(z(t)) = 0, with t = t0 + nh (cf. [7]). We
can state the following result.

Proposition 9 For each GL(m, p) method and t = t0 + nh

lim
h→0

h−αLh(z(t)) = const. (53)

Proof. By the expansion (eventually truncated)

z(t− jh) = z(t) +
∑

k≥1

(n− j)khk

k!
z(k)(t0),

we have

t0D
α
t−jhz(t− jh) =

∑
k≥1

(n− j)k−αhk−α

Γ(k + 1− α)
z(k)(t0).

Therefore
Lh(z(t)) = C0(n)z(t) +

∑
k≥1

hkCk(n)z
(k)(t), (54)

where

C0(n) =
∑mp

j=0
αj ,

Ck(n) =
1

k!

∑mp

j=0
αj(n− j)k − 1

Γ(k + 1− α)

∑mp

j=0
βj(n− j)k−α.

Now ∑mp

j=0
αj = pm

(∑p

k=0
aj

)
= pm (0) ,
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because a BDF method is consistent for 1 ≤ p ≤ 6. Hence by (49) we have that
C0(n) = 0. For k ≥ 1 we have

hkCk

(
t− t0
h

)
= −hα (t− t0)

k−α

Γ(k + 1− α)

∑mp

j=0
βj +O(h),

that proves (53) since
∑mp

j=0 βj 6= 0.
While the above result express a theoretical not negligible drawback of

GL(m, p) methods, numerically the situation is rather different. Indeed, already
for m relatively small, a GL(m, p) method appears to be a good approximation
of a method of order p, because of the quality of the approximation (52). Since
a numerical method for (42) is of order p whenever Ck(n)n

α = O(hp−k) (cf.
(54)), in Table 2, for m = 12, we report the values of the quantities Ck(n)n

α,
k = 0, ..., p, for p = 1, ..., 4, and n = 500. In this example α = 1/2.

p C0(n)n
α C1(n)n

α C2(n)n
α C3(n)n

α C4(n)n
α

1 -1.5e-13 -3.5e-9
2 -9.0e-13 4.9e-8 -4.9e-6
3 -2.1e-13 7.7e-8 2.6e-6 -1.5e-3
4 2.1e-10 3.3e-7 5.7e-6 -3.3e-4 1.4e-1

Table 2 - Values of Ck(n)n
α, k = 0, ..., p, for GL(12,p)

with p = 1, ..., 4, and n = 500.

Unfortunately, for this kind of methods we cannot expect to improve the
quality of the numerical solution for h→ 0 over a certain level determined by the
approximation (52). Indeed, for n → ∞, the approximation of the coefficients
of the FBDF formula slowly deteriorates or, at best, stagnates (cf. Figure 6).
For this reason we cannot even provide a classical analysis of the numerical
order applying a GL(m, p) formula to a given problem with different values of
h. Moreover, we remark that the use of the Matlab function residue is also
responsible for additional errors, especially for p > 1. Indeed, as stated by
Proposition 9, theoretically we should always have C0(n) = 0, independently of
m and p. Numerically, this theoretical property can be destroyed, as shown in
Table 2.

Notwithstanding the theoretical disadvantages of a GL(m, p) formula, it is
important to point out that especially for problems arising from spatial dis-
cretization, as for instance fractional diffusion equations (see e.g. [17] Section
10.10 and the references therein for some examples), the computational advan-
tages of amp-step formula with respect to the full recursion (45) is not negligible,
especially in terms of memory saving. Moreover, as remarked in [6], in particu-
lar when α 6= 1/2, the use of a starting quadrature as in (47), that theoretically
should ensure the order of the FBDF formula, in practice may introduce sub-
stantial errors, causing unreliable numerical solutions. For high-order formulas,
this is due to the severe ill-conditioning of the Vandermonde type systems one
has to solve at each integration step.
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We also remark, that in a typical application α, y0 and possibly also the
function g, may be only known up to a certain accuracy (see [5] for a discussion),
so that one may only be interested in having a rather good approximation of
the true solution. In such situations the short memory principle (consisting in
the approximation of the generating function by a truncated Taylor series) is
often applied, and our rational approach can be somehow regarded as a rational
version of this principle.

6 A computed example

We consider the one-dimensional Nigmatullin’s type equation

0D
α
t u(x, t) =

d2u(x, t)

dx2
, t > 0, x ∈ (0, π) ,

u(0, t) = u(π, t) = 0,

u(x, 0) = sinx.

We discretize the spatial derivative using central differences on a uniform mesh-
grid of meshsize δ = π/(N + 1) and Dirichlet boundary conditions. The dis-
cretization yields the N -dimensional FDE

0D
α
t y(t) = Ly(t), y(0) = y0. (55)

where L = (N + 1)2 · tridiag(1,−2, 1), and y0 is the sine function evaluated at
the grid points. The exact solution of (55) is given by

y(t) = Eα(t
αL)y0,

where Eα(x) denotes the one-parameter Mittag-Leffler function (see e.g. [17]
Chapter 1)

Eα(x) =
∞∑

k=0

xk

Γ(kα+ 1)
.

In Figure 8 some results on the approximation of y(t) are reported. We compare
the error at each step of the FBDF formula of order 1 and the method GL(m, 1)
for some values of m, based on Method 3. The reference solutions have been
computed using the Matlab function funm applied to the function mlf from [18]
that implements the Mittag-Leffler function. Them+1 initial values are defined
in the same manner so that they can be considered almost exact. The dimension
of the problem is N = 200, and we consider a uniform time step h = 1/n, with
n = 100.

While the example is rather simple the results are encouraging. The cost of
the GL(m, p) method is about 2/3 of the cost of the FBDF formula. Increasing
n, the number of discretization points, the difference, obviously, grows. In this
situation the FBDF formula produces better results near the endpoint, while
the GL(m, p) methods typically stabilize around a certain error. The reason of
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Figure 8: Step by step error (in logarithmic scale) for the FBDF method of
order 1 (dashed line) and GL(m, 1) method (solid line), for m = 8 (blue), 12
(black), 16 (red). N = 200, n = 100.

this situation is that the approximation (8) is independent of h (or n), while this

is not true for FBDF method, in which ω
(α)
p (ζ) is approximated by its truncated

Taylor series. This is also the reason for which, initially, the GL(m, p) formula
is much more accurate than the FBDF method.

As already mentioned, the Matlab function residue may introduce errors
for large values ofmp. This is what we have seen in other numerical experiments
not reported. This of course represents a computational problem that should
be fixed (cf. Figure 8 for α = 2/3, where, unexpectedly, GL(8, 1) and GL(12, 1)
behave better than GL(16, 1)). Anyway, for a given m and p, one can of course
improve the results of this Matlab function computing the corresponding coef-
ficients once and for ever.

For what concerns the linear stability, taking g(t, y(t) = λy (t) in (42), we
have that y(t) = Eα(t

αλ) → 0 for

|arg(λ) − π| <
(
1− α

2

)
π,

(see [15]). The stability region of a FBDF formula is given by

C\
{
ω(α)
p (ζ) : |ζ| ≤ 1

}
, (56)

and, as expected, the GL(m, p) methods rapidly (already for m small) simulates
the behavior of these formulas. In Figure 9 we show some examples involving
GL(m, p) formulas, generated again by Method 3.

7 Conclusions

In this paper we have presented an alternative approach, based on the contour
integral approximation of the matrix function Aα, to compute the coefficients
of a FBDF formula for FDEs. Implicitly the methods presented also produce
the coefficients of stationary k-step formulas for FDEs that in general are less
accurate than FBDF formulas but that present important computational ad-
vantages. In our opinion the GL(m, p) methods are worth of consideration even
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Figure 9: Left: boundary of the stability domains of GL(4,1) and GL(12,1) for
α = 1/2. Right: boundary of the stability domains of GL(8,p), for p = 1 (inner)
to 4 (outer), for α = 2/3.

if much work has still to be done in order to fix some computational aspect.
We remark moreover that either the substitutions considered in Section 2 or the
choice of the quadrature rule are responsible for this kind of formulas and the
rational approximation (8). In this sense, other strategies are of course possible.

Acknowledgement 10 The author is grateful to Igor Moret for some helpful
discussions.
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