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Abstract. In this paper we consider a method based on Faber polynomials for the approximation
of functions of real nonsymmetric matrices. Particular attention is devoted to some functions that
occur in practical problem, such as exp(z), exp(�

p
z), cos(

p
z). Finally we give some numerical

results on a test matrix arising from the discretization of a second order partial di¤erential operator.

1. Introduction. Given a real matrix A of order N and a N -dimensional vector
v, we consider the problem of the computation of

y = f(A)v; (1.1)

where f is a given function that we suppose to be analytic in a certain domain of the
complex plane containing the spectrum of A, �(A). That is, as well known,

f(A)v =
1

2�i

Z
�

f(z)(zI �A)�1v dz; (1.2)

where � is the boundary curve of a piecewise smooth bounded region containing �(A)
and where f is analytic.

This problem occurs in several applications, for instance in the solution of alge-
braic linear systems (where f(z) = 1=z) or of systems of di¤erential equations, where
the solution can be expressed in terms of (1.1). In the recent years, many studies
have been devoted to polynomial approximations of (1.1). Consider, for instance, the
methods proposed in [6], [7], [8], [9], [14], [17], [19], where approximations of (1.1)
are obtained by projection into Krylov subspaces, de�ned with respect to A and v.
Clearly, these procedures depend on v, and in some applications this may represent a
disadvantage (see e.g. [14]).

Following a di¤erent line, in this paper we introduce a polynomial approach based
on the approximation of f through Faber polynomials de�ned on a certain compact
subset of the complex plane containing � (A). More precisely, given a certain compact

 � C such that � (A) � 
, we consider a polynomial approximation

pm�1 (A) v � f(A)v;

where the polynomials pm�1, m � 1, of degree m� 1, are the truncating Faber series
with respect to 
 and the function f (cf. e.g. [31]). So doing we extend procedures
already considered in the contest of the solution of algebraic linear systems (see e.g.
[10], [12], [33]). In the particular case that A is symmetric (skew-symmetric), � (A)
is contained in a real (imaginary) interval, the associated Faber polynomials can be
represented by scaled and translated Chebychev polynomials, and so the methods
here considered also generalize some ideas already developed in [22], [23],[34], [35].
Another approach still based on complex polynomial approximation can be found in
[26].

The main features of the approach here proposed, that make it competitive with
other methods presented in the literature, are the following:

1



a) if � (A) � 
 and f is analytic in 
, the method converges (superlinearly if f
is analytic everywhere). Moreover, depending on the position of the singularity of f
outside 
, the method can converge even if � (A) * 
.

b) The use of Faber polynomials ensures the existence of a recurrence relation
with a �nite number of terms for the approximations ym = pm�1 (A) v.

c) The de�nition of the iteration parameters for the above mentioned recursion
is independent of v.

d) No explicit computation of any matrix functions must be performed (this is
not the case of Krylov-projection methods).

e) The cost at each step is constant and substantially equal to that of an appli-
cation of A.

The paper is organized as follows. In Sect. 2, we give an outline about the
fundamental properties of polynomial methods for the computation of (1.1). Faber
polynomials and series are described in Sect. 3, with particular attention to their
asymptotic properties. In Sect.4 general error bounds for Faber series approximations
is given. In Sect. 5 we consider some error bounds for some functions of practical
interest. The implementation of the procedures is discussed in Sect. 6. Finally Sect.
7 contains some numerical tests involving a matrix arising from the discretization of
a second order partial di¤erential operator.

2. Background on polynomial methods. A polynomial method for the com-
putation of (1.1) is a method yielding approximations of the type

ym := pm�1 (A) v � f(A)v; (2.1)

where pm�1 (z) is a polynomial of degree at most m� 1.
Given a compact subset 
 � C such that � (A) � 
, we are mainly interested in

searching a sequence of polynomials fpm�1 (z)gm�1 such that the following holds:

lim
m!1

kf � pm�1k
 = 0; (2.2)

where k k
 denotes the supremum-norm on 
 . If A is diagonalizable i.e. XAX�1 is
diagonal, we have immediately

kexp(A)v � pm�1 (A) vk2 � cond2 (X) kf � pm�1k
 kvk2 ; (2.3)

and so condition (2.2) ensures the convergence of the corresponding method (2.1).
For the general case the following result (see e.g.[15]) holds:

Proposition 2.1. Let m (z) =
Q�
i=1 (z � �i)

ni the minimal polynomial of A.
The sequence ym = pm�1 (A) v converges to f(A)v if and only if

lim
m!1

p
(j)
m�1 (�i) = f (j)(�i); 1 � i � �; 0 � j � ni � 1: (2.4)

If A is diagonalizable then (2.4) reduces to

lim
m!1

pm�1 (�) = f(�) for each � 2 � (A) : (2.5)

Moreover, if G is an open subset of C such that � (A) � G, then the following condi-
tion is su¢ cient

fpm�1 (�)gm�1 converges to f(�); uniformly on

every compact subset contained in G:
(2.6)
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From these results we have that, if A is not diagonalizable, condition (2.2) does
not ensure convergence. So in this case we must satisfy a condition stronger than (2.2).
In this sense, we know (cf. [27]) that, if 
 (� � (A)) contains in�nitely many points
and if

�
p�m�1 (z)

	
m�1 is the sequence of polynomials of best uniform approximation

of f on 
, then the condition

lim
m!1

kpm�1 � fk1=(m�1)
 = lim
m!1



p�m�1 � f

1=(m�1)

; (2.7)

ensures the convergence of the method even if A is not diagonalizable (cf. also [12]).
Indeed, if condition (2.7) holds, then (cf. e.g. [27]) there exists an open set G such that

 � G (and therefore � (A) � G) and such that fpm�1 (z)gm�1 converges uniformly
on every compact subsets in G. In this situation the sequence fpm�1 (z)gm�1 is
said maximally convergent to f on 
, and the corresponding method asymptotically
optimal with respect to 
 and f .

3. Faber polynomials and series. Let

M :=

�

 � C : 
 is compact, C n 
 is simply connected and 
 contains

more than one point

�
Given 
 2M, by the Riemann Mapping Theorem there exists a conformal surjection

 : C n fw : jwj � 
g ! C n 
;  (1) =1;  0 (1) = 1: (3.1)

The constant 
 is called the capacity of 
. Let � : C n 
 ! C n fw : jwj � 
g be
the inverse mapping of  . The j-th (ordinary) Faber polynomial is de�ned as the
polynomial part of the Laurent expansion at 1 of [� (z)]j (cf.[31],§2)

[� (z)]
j
= zj +

j�1X
k=�1

�j;kz
k; j � 0;

that is

Fj (z) := zj +

j�1X
k=0

�j;kz
k; j � 0:

As well known, in the particular case that 
 coincides with the closure of the internal
part of an ellipse or with an interval in the complex plane, Faber polynomials reduce
to scaled and translated Chebychev polynomials [10].

Faber polynomials can be computed recursively (cf.[5]) from

F0 (z) = 1; F1 (z) = z � c0; and, for m � 2;
Fm (z) = (z � c0)Fm�1 (z)� (c1Fm�2 (z) + :::+ cm�1F0 (z))� (m� 1)cm�1:

(3.2)
where the coe¢ cients c0; c1; ::: are those of the Laurent expansion of the mapping  ,
that is

 (w) = w + c0 + c1w
�1 + c2w

�2:::: (3.3)

For any R > 
; let �R be the equipotential curve

�R := fz : j� (z)j = Rg :
3



Moreover let us denote by 
R the bounded domain with boundary �R. Let bR =bR(f) > 
 be the largest number such that a given function f is analytic on 
R
for each 
 < R < bR and has a (possible) singularity on � bR. The (ordinary) Faber
coe¢ cients with respect to the function f and the compact 
 are de�ned as

aj(f) :=
1

2�i

Z
jwj=R

f( (w))

wj+1
dw; j � 0; 
 < R < bR: (3.4)

From [31] (Theorem 1, p.167) we know that f can be expanded into a series of
ordinary Faber polynomials in the following way

f(z) =
1X
j=0

aj(f)Fj (z) ; (3.5)

and this representation is unique. De�ning the polynomial sequence fpm�1 (z)gm�1
obtained by truncating the series (3.5), that is

pm�1 (z) :=

m�1X
j=0

aj(f)Fj (z) ; (3.6)

we can de�ne the method

ym := pm�1 (A) v: (3.7)

From now on, we use the simplifyed notation pm�1 (z) = Fm�1(f)(z) to indicate (3.6).
From [13], we know that the polynomial sequence (3.6) converges maximally on 
 to
f (cf.(2.7)) and hence, if �(A) � 
 the method (3.7) converges and is asymptotically
optimal with respect to 
 and f . For the asymptotic convergence factor of the method,
de�ned as

lim
m!1

h
kemk1=m

i
; em := f(A)v � pm�1 (A) v; (3.8)

it is known that

lim
m!1

h
kemk1=m

i
� 
= bR(f); (3.9)

even if A is not diagonalizable (see e.g. [10], [12], [26]). Relation (3.9) follows from
the property of maximal convergence. By (3.9), for functions analytic in the whole
complex plane, the rate of convergence of the method is superlinear, because of bR(f) =
1.

Besides the property of de�ning an asymptotically optimal method for the approx-
imation of f (A) v, the use of Faber polynomials ensures the existence of a recurrence
relation (cf.(3.2)) for computing the approximations ym = Fm�1 (f) (A)v. Namely,
the computation of the approximations ym can be carried out recursively by

y0 = 0; y1 = a0v; y2 = y1 +
a1
a0
(A� c0I) r0;

ym = ym�1 +
am�1
am�2

(A� c0I) rm�2 � am�1
am�3

c1rm�3 � ::� am�1
a0

(m� 1) cm�2r0
for m � 3;

(3.10)
where r0 := y1, rk := yk+1 � yk (k � 1), and where the coe¢ cients ak := ak(f),
k � 0, are de�ned by (3.4). Formula (3.10) follows by direct computation from (3.2)
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and (3.6). Of course, if the expansion (3.3) has a (a priori �xed) �nite number of
terms (and for example this is the case of the compact subsets bounded by ellipses)
then the same will be true for relation (3.10).

Remark 3.1. If 
 is a compact such that � (A) � 
 then


t :=
�
�0 : �0 = t�; � 2 


	
contains � (tA), where t is a given scalar, and if

 (w) = w + �0 + �1w
�1 + :::

is the conformal mapping from Cnfw : jwj � 
g into Cn
 with  (1) =1,  0 (1) =
1, then

 t (w) := w + t�0 + t
2�1w

�1 + :::

is the conformal mapping from C n fw : jwj � t
g into C n 
t with  t (1) = 1,
 0t (1) = 1, and so the coe¢ cients of the Laurent expansion of  t can be easily
determined from those of  .

This may be useful when we want to approximate the evolution operator of some
di¤erential problems.

4. Error bounds for truncated Faber series. In this section we want to give
an error bound for our approximation (3.6) written in the form

ym := Fm�1 (f) (A) v; m � 1: (4.1)

Assume �rst that the boundary � of 
 is a Jordan curve with bounded total boundary
rotation, which is de�ned as

V (
) :=

Z 2�

0

��arg � �ei
t��  �ei
#���� dt:
Let CR := fw : jwj = Rg. We have the following general result.

Proposition 4.1. If f is analytic on 
R with 
 < R < bR then, for every

 � r < R,

kf � Fm�1 (f)k
r �
V

2
M(R)

R

m

�
r
R

�m
1� r

R

; (4.2)

where V = V (
r) and

M(R) := kf 0k�R


 0



CR
:

Proof. By (3.5) we have that

f(z)� Fm�1 (f) (z) =
1X
k=m

akFk(z); m � 1: (4.3)

By (3.4) we can write

ak =
1

2�Rk

Z 2�

0

f( (Rei�))e�ik�d�: (4.4)
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For k � 1, changing � to � + �
k we easily obtain

ak = �
1

2�Rk

Z 2�

0

e�ik�d�;

and summing with (4.4),

ak =
1

4�Rk

Z 2�

0

�
f( (Rei�))� f( (Rei(�+�

k ))
�
e�ik�d�:

Now, since

@f

@�
= f 0( (Rei�) 0(Rei�)Rei�;

we obtain

jakj �
M(R)�

2kRk�1
:

Using the well known bound (see e.g. [13])

max
z2
r

jFm(z)j �
V

�
rm (4.5)

and inserting it in (4.3), we get

kf � Fm�1 (f)k
r �
V

2
M(R)

1X
k=m

1

k

rk

Rk�1

=
V

2
M(R)R

1X
k=m

1

k

� r
R

�k
� V

2
M(R)

R

m

1X
k=m

� r
R

�k
=
V

2
M(R)

R

m

�
r
R

�m
1� r

R

: �

Remark 4.2. For the quantity kf � Fm�1 (f)k
r the following simpler bound is
also available (see e.g. [13])

kf � Fm�1 (f)k
r �
V

�
M(R)

�
r
R

�m
1� r

R

(4.6)

where

M(R) := kfk�R ;

which is easisly obtained using (4.5) and the bound

jakj �
M(R)

Rk
;

which comes directly from (4.4). Formula (4.6) can be useful when working with f 0

to estimate M(R) is complicate.
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As previously mentioned, if A is diagonalizable with diagonalization matrix X,
and if � (A) � 
r (

 = 
); for some 
 � r < bR; then for the Euclidean norm of the
m-th error vector em := f (A) v � ym the following bound holds (cf.(2.3))

kemk2 � cond2 (X) kf � Fm�1 (f)k
r kvk2 ; m � 1; (4.7)

where cond2 (X) = kXk2


X�1



2
. In general, a bound of kemk2 can be obtained as

follows, via de�nition (1.2).
Let W (A) denote the �eld of values (numerical range) of A; i.e.

W (A) :=

�
xHAx

xtx
; x 2 C= f0g :

�
(4.8)

For the following result see ([32] Th.4.1).
Proposition 4.3. Under the above assumptions

jj(zI �A)�1jj2 � 1=dist(z;W (A)):

�
For simplicity consider tha case (often occurring in practice) that 
 (and so any


r, with r > 
 ) is convex, so that V (
) = 2�:
Proposition 4.4. Let 
 be convex. Assume that W (A) � 
s; for some 
 � s <bR: Then,

kemk2 � kvk2 kf � Fm�1 (f)k�r
(r + s)

(r � s) ; for any s < r < bR: (4.9)

Proof. For any s < r < bR it is
em =

1

2�i

Z
�r

(f(z)� Fm�1 (f) (z))(zI �A)�1v dz; r > s:

Then we get

kemk2 �
kf � Fm�1 (f)k�r

2�

Z
jwj=r

�� 0(w)�� jj( (w)I �A)�1vjj2dw:
Hence,by Proposition 4.3, we obtain

kemk2 �
kvk2 kf � Fm�1 (f)k�r

2�

Z
jwj=r

�����  
0
(w)

 (w)� u

����� dw; (4.10)

where u 2 
s: As well known (cf.[31]), Faber polynomials can be expressed by their
generating function, that is we have

w 
0
(w)

 (w)� u = 1 +
1X
j=1

Fj (u)w
�j ; u 2 
s; s � 
; jwj > s: (4.11)
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Using this and

max
z2
s

jFj(z)j � 2sj (4.12)

one gets

r

�����  
0
(w)

 (w)� u

����� � (r + s)

(r � s) ; u 2 
s; jwj = r:

Then, the thesis follows. �
5. Error bounds for some particular functions. In this section we want

to specialize (4.2) or (4.6) for the following four important cases: 1. f(z) = e�z; 2.
f(z) = cos(z); 3. f(z) = e�

p
z; 4. f(z) = cos(

p
z). Throughout this section we assume


 symmetric with respect to the real axes (since A is real), convex (V (
) = 2�) and
strictly contained in the right half plane. It�s importat to observe that in the cases
1. and 2. the function involved is analytic in the whole complex plane ( bR(f) = 1)
and, as already mentioned, this property determines the superlinear convergence of
the method. On the other hand, cases 3. and 4. involve the square root function that
has a singularity in 0, and so they have to be treated with particular attention.

Case 1: f(z) = e�z: As well known, this function is related to the Cauchy
problem �

Au(t) + du(t)
dt = 0; t > 0

u(0) = v;

whose solution is u(t) = e�tAv:
Proposition 5.1. For every 
 � r we have

e�� � Fm�1 �e���


r � 8

m2
e� (�2r)�

m2

4r ; m � 2r; (5.1)

e�� � Fm�1 �e���


r � 5

2
e��0+O(1=m)

�er
m

�m
; m � 2r; (5.2)

Proof. Let�s start considering the case m � 2r. By our assumptions on 
 and
since the exponential function is analytic in the whole complex plane, for each R > r
we have 

e�� � Fm�1 �e���


r � 

 0

CR e� (�R)Rm

�
r
R

�m
1� r

R

; (5.3)

because of kf 0k�R � exp(� (�R)). Setting R = m, for m � 2r we easily get

e�� � Fm�1 �e���


 � 2

 0

CR e� (�m) � rm�m :
Since

� (�m) = m� �0 +
�1
m
� �2
m2

+ ::: (5.4)

we have 

e�� � Fm�1 �e���


 � 2

 0

CR e��0+O(1=m) �erm�m :
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From [20], for  0 we have the bound



 0


CR
� 1 +

� r
R

�2
(5.5)

= 1 +
� r
m

�2
� 5

4
;

that leads to (5.2).
For the case m � 2r, let�s start by setting

" := 1� r=R; ) 0 < " < 1 (5.6)

Sustituting this in (5.3) we reach

e�� � Fm�1 �e���


r � 

 0

CR e� ( r
"�1 ) 1� "

mr"
(1� ")m:

Using 1� " � e�",



e�� � Fm�1 �e���


r � 

 0

CR e� ( r
"�1 ) e

�m"

mr"
: (5.7)

With " := m
4r , we have that " � 1=2 and r=(" � 1) � �2r for m � 2r; using these

relations in (5.7) it follows that

e�� � Fm�1 �e���


r � 4

m2



 0


CR

e� (�2r)�
m2

4r ;

and the thesis is reached because by (5.5)

 0


CR
� 2: � (5.8)

Case 2: f(z) = cos(z): For the following Proposition let us make the further
hypotesis that 
 has a vertical axis.

Proposition 5.2. For every 
 � r we have

kcos�Fm�1 (cos)k
r �
8

m2
cosh(Im ( (2ri)) e�

m2

4r ; m � 2r; (5.9)

kcos�Fm�1 (cos)k
r �
5

2
eO(1=m)

�er
m

�m
; m � 2r; (5.10)

Proof. Let�start with the case m � 2r. Using (4.2), for each R > r we �nd

kcos�Fm�1 (cos)k
r � ksink�R


 0



CR

R

m

�
r
R

�m
1� r

R

:

In order to estimate ksink�R , writing z = x+ iy we have

sin z = sinx cosh y + i sinh y cosx

and thus

jsin zj =
q
1� cos2(x) + sinh2(y):
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Using this formula and all the hypotesis on 
, have

ksink�R � cosh (Im (iR)) :

As in the previous Proposition we de�ne R = m and for m � 2r we �nd

kcos�Fm�1 (cos)k
r � 2


 0



CR
cosh (Im (im))

� r
m

�m
:

Now,

Im (im) = Im

�
im+ �0 �

i�1
m
� �2
m2

+ :::

�
= m� �1

m
+O(1=m3); (5.11)

that leads to

cosh (Im (im)) � eIm (im) � em+O(1=m):

By (5.5) we �nally obtain (5.10).
For m � 2r, we can proceed as in the previous Proposition getting

kcos�Fm�1 (cos)k
r �
4

m2



 0


CR
cosh

�
Im

�
 

�
ir

1� "

���
e�

m2

4r :

The thesis follows straightfully from (5.8) and

r

1� " � 2r:

�
Case 3: f(z) = e�

p
z: As said before, in this case the function involved is not

analytic in the whole complex plane because the square root function is singular in
0. As consequence there will be not superlinear convergence. By the theory of Faber
polynomials, for a general function f , it is known that

limm!1 kf � Fm�1 (f)k1=(m�1)
r
=

rbR(f) ; (5.12)

where bR(f) is de�ned in Sect. 3 (cf. (3.9)). Therefore, for this case our aim is to �nd
out a bound whose asymptotical behaviour is described by (5.12).

We must specify that here we consider only the branch of the square root such
that

p
1 = 1. Namely, on the basis of de�nition (1.2) we set

A1=2v =
1

2�i

Z
�

z1=2(zI �A)�1v dz; (5.13)

With this assumption the square root can be considered analytic in all regions not
containing 0 and 1.

We recall that u(t) = e�tA
1=2

v solves the boundary value problem(
Au(t)� d2u(t)

dt2 = 0; t > 0;
u(0) = v; u(1) = 0:
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Proposition 5.3. For every 
 � r and m � 2, it is


e�p� � Fm�1 �e�p��




r
� Kp

m
e�O(1=

p
m)

�
rbR
�m

(5.14)

where K is a constant depending on 
r and his position with respect to the point 0.
Proof. By (4.2), for 
 < R < bR we easily get


e�p� � Fm�1 �e�p��





r
�


 0



CR

1

2
max
z2�R

�����e�
p
z

p
z

����� Rm
�
r
R

�m
1� r

R

;

=


 0



CR

1

2

e�
p
 (�R)p

 (�R)
R

m

�
r
R

�m
1� r

R

: (5.15)

For m � 2 we de�ne

R = R(m) := bR� "

m
; (5.16)

where " := bR� 
. Thus R(m)! bR for m!1. Since m � 2, we have

1� r

R(m)
�
bR+ rbR� r ; and

R(m)

m
=
bR
m
� "

m2
= O(1=m): (5.17)

Regarding  (�R(m)), using (5.16) after some computations we obtain the relation

 (�R(m)) =  (� bR) +O(1=m) = O(1=m); (5.18)

because  (�R�) = 0: Hence we have that

e�
p
 (�R)p

 (�R)
=
e�O(1=

p
m)

O(1=
p
m)

: (5.19)

By (5.16), since m � 2 we also have�
r

R(m)

�m
=

�
rbR
�m 

1

1� "bRm
!m

�
�
rbR
�m 

2 bR
2 bR� "

!2
=

�
rbR
�m 

2 bRbR+ r
!2

(5.20)

and 

 0


CR
� 1 +

� r
R

�2
= 1 +

r2� bR� "
m

�2 � 1 + 4r2"2 : (5.21)

Joining all previous results in (5.15) we get


e�p� � Fm�1 �e�p��





�

1
2

�
1 + 4r2

( bR�r)2
� bR+rbR�r

�
2 bRbR+r
�2

Cp
m
e�O(1=

p
m)
�
rbR
�m
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which proves the thesis that satis�es the property (5.12). �
Case 4: f(z) = cos(

p
z): Let�s start making some considerations. As already

said, the square root function is not single valued. In fact it is two valued, having
a branch for which

p
1 = 1 and another for which

p
1 = �1: However, since we

are working with the cosinus, the composite function is single valued. Moreover, by
expanding we get

cos
p
z = 1� z

2!
+
z2

4!
� ::: (5.22)

Since (5.22) converges for each z 2 C, we have that cos
p
z is analytic in the whole

complex plane.
Note that this function is related to the Cauchy problem(

Au(t)� d2u(t)
dt2 = 0; t > 0;

u(0) = v; du
dt (0) = 0;

whose solution is u(t) = cos(tA1=2)v:
Also in this case, for the following Proposition we make the further hypotesis that


 has a vertical axis.
Proposition 5.4. For m � 2r,

cos(p�)� Fm�1 �cos(p�)�


r � 4ec1pm+c2 �0p

m
+O(1=m3=2)

� r
m

�m
: (5.23)

where c1 and c2 are positive constants.
Proof. For this case, instead of (4.2) it is much more convenient to use the estimate

(4.6), which leads to



cos(p�)� Fm�1 �cos(p�)�


 � 2 maxz2�R

��cos �pz��� � rR�m
1� r

R

; (5.24)

for r < R <1. Writing z = x+ iy and de�ning

a :=

r
1

2

p
x2 + y2 +

1

2
x; b :=

r
1

2

p
x2 + y2 � 1

2
x;

we have ���cos�px+ iy���� =qcos2 (a) cosh2 (b) + sin2 (a) sinh2 (b)
�
q
cosh2 (b) + sinh2 (b)

� cosh (b) + sinh (b) = eb:

The function eb goes to +1 as x! �1 or y !1, so that we can put x :=  (�R)
and y := Im (iR), obtaining

max
z2�R

��cos �pz��� � e
1p
2

qp
( (�R))2+(Im (iR))2� (�R)

:
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Now, setting R = m as in Propositions 5.1 and 5.2, and using formulas (5.4) and
(5.11), from the above relation, as m!1 we get

max
z2�R

��cos �pz��� � e
1p
2

rq
2m2�2m�0+�20�

2�0�1
m +O(1=m2)+m��0+�1

m +O(1=m2)

= e
1p
2

r
(
p
2+1)m+

�
1�

p
2
2

�
�0+

�p
2
8 �

2
0+1

�
1
m+O(1=m

2)

= e

pp
2+1p
2

p
m+ 1

2
p
2

�
1�

p
2
2

��
1pp
2+1

�
�0

1p
m
+O

�
1

m3=2

�

which proves the thesis. �
For various cases of interest, like those considered for instance in [17], [25], [26],

the previous general bounds can be specialized, taking into account the particular
structure of 
: Accordingly estimates of the error em will follow from (4.7 ) or using
Proposition 4.3 with a suitable choice of r in (4.9 ), as we show, as an example, here
below.

Proposition 5.5. Assume that W (A) � 
s; for some 
 � s and that there is
are positive constants C and c such that for every r � s

kf � Fm�1 (f)k
r � C
�cr
m

�m
(5.25)

then

kemk2 � 2csC
�

cs

m� 1

�m�1
kvk2 : (5.26)

Proof. The result follows easily by application of Proposition 4.3 , taking in (4.9)
r = sm=(m� 1). �

6. Numerical implementation. Until this moment for the de�nition of the
methods we supposed to work with a certain compact subset 
 containing � (A).
Actually, we observed that condition � (A) � 
 is not essential for the convergence
(cf.(4.7)). Moreover, by condition (2.3) the rate of convergence is clearly as faster as
better the compact 
 approximates the convex hull of the spectrum, and in the more
general case, as better 
 2 M approximates the smallest connected compact 
opt
such that � (A) � 
opt.

In practice, the simplest way to build 
 consists of using an eigenvalues- estimat-
ing method to yield a certain number of estimates for � (A) and then considering 

as the compact whose boundary is the polygon obtained joining the marginal points
of the estimates set (cf. [24], [33]). Since we consider A real, � (A) is symmetric with
respect to the real axis and then we can also consider a polygon of this type. Never-
theless we must point out that if the function f is not analytic in the whole complex
plane, in some cases it could be necessary to approximate very well � (A). In fact if
the � (A) is very closed to a singular point of f , it could happen that the eigenvalue
estimating phase leads to a compact 
 containing such singular point, determining
the failure of the method. In a such case we can proceed using an eigenvalue method
very accurate (for example the Arnoldi algorithm made run for a large number of
iteration), or the method proposed in [24] based on the Arnoldi algorithm to estimate
the �eld of values of A�1. If f is analytic in the whole complex plane, even a not very
e¢ cient eigenvalue method yields acceptable results.

13



In order to determine the Laurent expansion of  , we can proceed using the
scheme proposed in [33], based on the resolution of the parameters problem relative
to the Schwarz-Christo¤el transformation associated to the mapping  , for which we
refer to [36]. Obviously,only a �nite number of coe¢ cients of this expansion can be
determined numerically, and so, �xing a priori this number, instead of  we obtain
the �nite expansion of a conformal mapping

 � : Cn fw : jwj � 
�g ! Cn
�;

which represents an approximation of  , such that 
� � 
 and 
� � 
.
Theoretically, the optimal situation consists of working directly with 
opt, that

is building the method on this compact subset. So, in general, working with  �

produces the e¤ect of making further worse the optimal situation, already weakened
by the fact that we are working on the compact 
 determined by an estimates set
instead of � (A). On the other hand, from the computational point of view, working
on 
� (with the mapping  �) is clearly an advantage because in this way formula
(3.2) is a recurrence with a �xed �nite number of terms. In the particular case that
we compute the only �rst two coe¢ cients of the Laurent expansion of  , that is c0 e
c1,we work with scaled and translated Chebychev polynomials (cf.[16], [22], [23]).

­0.5 0 0.5 1 1.5 2 2.5
­3

­2

­1

0

1

2

3
p=2,3

­0.5 0 0.5 1 1.5 2 2.5
­3

­2

­1

0

1

2

3
p=4,5

­0.5 0 0.5 1 1.5 2 2.5
­3

­2

­1

0

1

2

3
p=6,7

­0.5 0 0.5 1 1.5 2 2.5
­3

­2

­1

0

1

2

3
p=8,9

Accordingly with what sayd above, if it is necessary to give a good estimate of
� (A), it is important to compute a certain number of the leading coe¢ cients of  .In
the �gure above we consider four approximations  � of the conformal mapping relative
to the compact 
 = [0:1; 2] � [�2i; 2i] whose associated mapping  has an in�nite
Laurent expansion with �2n+1 = 0 for each n � 1. In �gure we indicate with p the
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number of its computed leading coe¢ cients, so that

 � (w) = w + c�0 + c
�
1w

�1 + ::::+ c�pw
�p:

We can immediately observe that the good quality of the approximation of 
 by
means of 
� improves as p increases. In particular, if p = 2; 3, the approximation is
given by an ellipse that contains the point 0. Hence, if this point is a singularity of
the function considered, the method fails whereas for p > 3 the approximation leads
to a convergent method.

A further consideration has to be made when A is symmetric or skew-symmetric:
in this situation, if we can achieve an interval as approximation of the smallest interval
containing � (A) (this possibility depends on the algorithm that we use for estimating
the eigenvalues of A) the associated conformal mapping  has a three terms expan-
sion, it can be computed exactly and we reach anyhow methods based on Chebychev
polynomials.

Concerning the method of the truncated Faber series, in order to de�ne the iter-
ation parameters in (3.10) it is also necessary to compute the Faber coe¢ cients (3.4)
using some numerical integration rule. In particular, we we use a k-point trapezium
rule, evaluating as many of the aj as we require. About the choice of R > 
, for
a generic function f (z) it is necessary to avoid that the compact 
R contains any
singularity of f (z). The value R = 
 is also acceptable when the mapping  can be
extended continuously to the boundary jwj = 
 [13], as for example in the case of the
polygon.

In summary the preliminary phases we need for the implementation of our schemes
are:

1. construction of the polygon 
 containing � (A);
2. evaluation of the �rst p coe¢ cients of the Laurent series expansion of the
mapping  de�ned by (3.3);

If, to build 
, we use an eigenvalue estimating algorithm, such algorithm must
be suitable for this purpose. The power method, used in [23] or the Arnoldi method
used in [33], represent possible choices. Obviously in this phase no approximation for
f(A)v is achieved but only information on A, and so we can say it produces a certain
�delay� for the computation of f(A)v, which does not regard Krylov type methods.
Nevertheless this information can be re-used every time we want to compute f(A)v
with di¤erent vectors v, for example implementing the integrators discussed in [14] and
[18]. The cost for the computation of the p-truncated expansion of  is independent of
the order of A, and, if 
 is a polygon, it is proportional to the number of its vertices.

7. Numerical experiments. In the example that follows we illustrate the be-
havior of the method, making a comparison with the Krylov methods based on the
Arnoldi and Lanczos algorithms (see e.g. [30]). Let us consider the di¤erential oper-
ator

L = �� �1
@

@x
� �2

@

@y
; �1; �2 2 R: (7.1)

Discretizing using central di¤erences on the cube (0; 1)� (0; 1)� (0; 1) with uniform
meshsize h = 1= (n+ 1) along each direction, a nonsymmetric matrix A of order
N = n3 with particular block structure is obtained. It can be represented in the
following way,

A :=
1

h2
fIn 
 (In 
 C1) + [B 
 In + In 
 C2]
 Ing ;

15



where B is de�ned as

B :=

266664
�2 1
1 �2 1

1
. . .

. . .
. . .

. . .

377775 ;
In is the n-order matrix identity, and, by setting �i := � i (h=2),

Ci :=

266664
�2 1� �i
1 + �i �2 1� �i

1 + �i
. . .

. . .
. . .

. . .

377775 ; i = 1; 2:

De�ning A = h2A and

�n := cos

�
�

n+ 1

��q
1� �21 +

q
1� �22 + 1

�
;

the spectrum of A is contained in the rectangle

R = [�6� 2Re�n;�6 + 2Re�n]� [�2i Im�n; 2i Im�n];

that we directly use to build the method (i.e. we de�ne 
 := R).
In the table below, err is the �nal kemk2 achieved, p (as in Sect.6) indicates

the number of the computed leading Laurent coe¢ cients of  , nit is the number of
iteration of the methods employed and nsp is the corresponding number of scalar
products performed (taking into account of the sparsity pattern of A). In all tests,
N = 3375.

Faber Arnoldi Lanczos
�1 �2 err p nit nsp nit nsp nit nsp f(z)

2 2 10�8 5 31 198 28 590 31 471 ez

3 5 10�8 5 40 257 37 947 38 577
5 10 10�8 5 56 363 52 1721 54 820

1 2 10�7 5 31 170 26 498 31 413 cos z
2 3 10�7 5 36 231 32 739 34 516
3 4 10�7 5 41 264 38 991 86 1307

2 2 10�7 4-5 59 382 50 1605 60 912 e�
p
z

7-9 56 363
3 2 10�7 3 104 679 56 1965 63 957

4-5 63 409
7-9 61 396

4 3 10�7 3 183 1201 67 2720 78 1185
4-5 73 475
7-9 71 462

3 3 10�9 5 12 72 10 121 11 167 cos
p
z

8 9 10�9 5 14 85 13 176 13 197
15 25 10�9 5 18 112 16 241 16 243
Remark 7.1. For the computation of the Laurent coe¢ cients of  we employed

the software SC Matlab Toolbox, written by T.A.Driscoll at M.I.T. in 1995.
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