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Abstract. We introduce a new family of fractional convolution quadratures based on generalized Adams methods for the
numerical solution of fractional differential equations.We discuss their accuracy and linear stability properties.The boundary
loci reported show that, when used as Boundary Value Methods, these schemes overcome the classical order barrier for
A-stable methods.
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INTRODUCTION

In this paper we are interested in the numerical solution of fractional differential equations (FDEs) of the type

Dα
0 y(t) = f (t,y(t)), 0< t ≤ T, 0< α < 1, (1)

whereDα
0 y(t) denotes the Caputo’s fractional derivatives defined as [3]

Dα
0 y(t) =

1
Γ(1−α)

∫ t

0

y′(u)
(t −u)α du.

As well known, the use of the Caputo’s definition allows to treat the initial conditions att = 0 for fractional differential
equations in the same manner as for integer-order differential equations, whereas this is not possible using the
Riemann-Liouville approach (see e.g. [8] for a wide background). Settingy(0) = y0 the solution of (1) exists and
is unique under the hypothesis thatf is continuous and fulfils a Lipschitz condition with respectto the second variable
(see e.g. [4] for a proof). The solutiony(t) solves

y(t) = y0+
1

Γ(α)

∫ t

0
(t −u)α−1 f (u,y(u))du, (2)

that represents a Volterra integral equation of the second kind with a weakly singular kernel and constant forcing
function.
For the numerical solution of (2) we consider the application of fractional convolution quadratures. When used over
an assigned uniform partition of the interval of integration I = [0,T], given by

tn = nh, n= 0,1, . . . ,N, h= T/N, (3)

these schemes provide a discrete problem of the following form

yn = y0+hα
M

∑
j=0

wn, j f j +hα
n+k2

∑
j=0

ωn− j f j , n= M+1, . . . ,N− k2, (4)

whereyn ≈ y(tn), fn = f (tn,yn), the weightswn, j andωn are independent ofh, andM depends on the order of the
method and onα. The terms

Sn = y0+hα
M

∑
j=0

wn, j f j , Ωn = hα
n+k2

∑
j=0

ωn− j f j



are usually called thestarting and theconvolutionterms, respectively. A convolution quadrature arise, for example,
when the integral in (2) is approximated by an Adams product quadrature rule or a fractional linear multistep method
[2, 5, 6, 7]. In both casesk2 is set equal to zero and the resulting schemes suffer of the usual order barrier forA-
stable methods. In particular, in [6] it was proved that the order of anA-stable convolution quadrature cannot exceed
2. Clearly, this result represents an extension of the famous second Dahlquist barrier for linear multistep methods
(LMMs) for ordinary differential equations. This latter barrier can be overcomed if LMMs are used as Boundary
Value Methods (BVMs) that is if the discrete problem generated by ak-step LMM is completed by imposingk1
andk2 = k− k1 boundary conditions, [1]. In this paper, we shall investigate if the BVM approach is successfull in
overcoming the barrier established in [6] for convolution quadrature methods. In particular, we shall consider the
application of a generalized version of implicit Adams product quadrature rule that we callFractional Generalized
Adams methods(FGAMs).

FRACTIONAL GENERALIZED ADAMS METHODS

For eacht ∈ [0,T], let

J [φ ] (t) =
1

Γ(α)

∫ t

0
(t −u)α−1φ(u)du, φ(u) = f (u,y(u)). (5)

In addition, for the assigned uniform partition in (3), let

J(m) [φ ] (t) =
1

Γ(α)

∫ tm

tm−1

(t −u)α−1φ(u)du, m= 1, . . . ,N.

It is evident that

J [φ ] (tn) =
n

∑
m=1

J(m) [φ ] (tn), n= 1, . . . ,N. (6)

In order to compute an approximation ofJ(m) [φ ] (tn), we consider the application of a generalized version of the
implicit k-step Adams product quadrature rule given by

J(m) [φ ] (tn)≈ hα
k

∑
j=0

β j ,rφm+k2− j =: Ω(m)
n [φ ] , n≥ m≥ k1, r = n−m+1, k1+ k2 = k, (7)

whereφs= φ(ts) for eachs≥ 0. The coefficientsβ j ,r are uniquely determined by imposing the method to be consistent
of orderp= k+1, namely ifφ ∈Cp(I) then

J(m) [φ ] (tn)−Ω(m)
n [φ ] = τ(m)

n ≤ Khp+α (8)

being K a constant independent ofh. It is possible to prove that the coefficientsβ j ,r ’s behave asymptotically as
β j ,r ∼ rα−1. Moreover, the resulting local truncation error in (8) is given by

τ(m)
n = θ (r)hp+αDpφ(ξm,n), ξm,n ∈ [tm−1, tm], (9)

where the principal error coefficientsθ (r) verifiesθ (r) ∼ rα−1. It is to be noted that forα = 1 and

k1 = ⌈k/2⌉= ⌊p/2⌋, k2 = k− k1 = ⌊(p−1)/2⌋ (10)

the resulting methods are the Generalized Adams Methods (GAMs) for ODEs introduced in [1]. After some computa-
tions, one verifies that

n

∑
m=k1

J(m) [φ ] (tn)≈
n

∑
m=k1

Ω(m)
n = hα

k−1

∑
j=0

w̄n, jφ j +hα
n+k2

∑
j=0

ωn− jφ j

where, for eachj = 0,1, . . . ,k−1, ands≥−k2

w̄n, j =−
k1−1

∑
i= j−k2

βi+k2− j ,n−i+1, ωs =
min(k,s+k2)

∑
i=0

βi,s+k2+1−i . (11)



The fractional convolution quadrature we have considered for approximating (6) is given by

J [φ ] (tn)≈ Jn[φ ] := hα
M

∑
j=0

wn, jφ j +hα
n+k2

∑
j=0

ωn− jφ j =: hα
M

∑
j=0

wn, jφ j +Ωn [φ ] (12)

whereM depends onk and α as described later on. From (11) and the previous consideration on the asymptotic
behaviour of the coefficientsβ j ,r ’s, one immediately deduces that the convolution partΩn [φ ] is stable[6] (with respect
to J[φ ]) since its weights verify

ωn = O(nα−1), n> 0, and ωn = O(1), −k2 ≤ n≤ 0.

Moreover, it is possible to prove that it isconvergent of order psince, for allφ(t) = tλ−1, with λ > 0,

∆n[φ ] := J[φ ](tn)−Ωn[φ ] = O(hλ )+O(hp), tn = nh∈ [a,T], a> 0 fixed.

The overall truncation (or quadrature) error associated to(12) is given by

En[φ ] = J[φ ](tn)− Jn[φ ] = ∆n[φ ]−hα
M

∑
j=0

wn, jφ j .

It is known that ify(t) is the exact solution of (2) withf (t,y) smooth enough, thenφ(t) = f (t,y(t)) is generated by
functions of the formφµ,ℓ(t) = tµ+ℓα whereµ andℓ are nonnegative integers. This means thatφ(t) contains nonsmooth
components in proximity of the origin. It follows that the starting quadrature must be chosen appropriately, in order
to get a convolution quadrature for whichEn[φ ] = O(hp) uniformly for all nh≥ a > 0. This objective is gained by
imposing

En[φµ,ℓ] = 0, for all (µ , ℓ) ∈ Mp(α) (13)

whereMp(α) =
{

(µ , l) : l ≤ lp(α),µ ≤ µp(α, l)
}

with µp(α, l) = p−1− lα andlp(α) = (p−1)/α if α is irrational
or lp(α) = min(q−1,(p−1)/α) if α = m/q with m andq coprime. If we setM = #Mp(α)−1, then the conditions
in (13) uniquely determine the starting weightswn, j , j = 0,1, . . . ,M, for eachn≥ M+1. It is possible to prove that
wn, j are independent ofh and wn, j = O(nα−1). Moreover, for any functionφ(t) = ∑M

l=0 φ̃l (t)t lα , with φ̃l ∈ Cp(I),
En[φ ] = O(hp) uniformly for anynh∈ [a,T] with a> 0 fixed. ANDREBBE MESSO IL COMPORTAMENTO DIEn

SENZA IL VINCOLO nh> a> 0?? These results are in perfect agreement with those obtained for fractional linear
multistep method in [6].

CONVERGENCE ANALYSIS

We consider, for simplicity, the case where the FDE is scalar. If we denote withen = y(tn)− yn the global error at
t = tn, and withL the Lipschitz constant off (t,y) then it is not difficult to verify that, see (4),

|en| ≤ hαL

(

min(n+k2,N−k2)

∑
j=0

|ωn− j ||ej |

)

+gn+ |En|, n= M+1, . . . ,N− k2, (14)

beingEn thenth truncation error of the convolution quadrature whose behaviour, with respect toh, has been studied in

the previous section, andgn = hαL
(

∑M
j=0 |wn, j −ωn− j ||ej |

)

+hαL
(

∑n+k2
j=N−k2+1 |ωn− j ||ej |

)

. If we assume to know an

approximation of the firstM and the lastk2 values of the numerical solution with accuracyO(hp−α) thengn = O(hp)
for eachn. The system of inequalities in (14) can be rewritten in matrixform as

Ze ≤ g+E,

wheree =
(

|eM+1|, . . . , |eN−k2|
)T

, g =
(

gM+1, . . . ,gN−k2

)T
, E =

(

|EM+1|, . . . , |EN−k2|
)T

, andZ = (zi, j ) is a Toeplitz
matrix withzi, j = 0 for eachj − i > k2. It is possible to prove that ifh is “sufficiently” small thenZ−1 ≥ O and‖Z−1‖∞
is bounded. Clearly, this implies that

‖e‖∞ ≤ K (‖g‖∞+ ‖E‖∞) ,

beingK a suitable constant independent ofh.



LINEAR STABILITY ANALYSIS

Let us consider the application of the method to the scalar test equation

Dα
0 y(t) = λy(t).

It is known that forλ ∈Sα =
{

µ ∈ C : |arg(µ −π)|<
(

1− α
2

)

π
}

the exact solution satisfiesy(t)→ 0 ast → 0. When
applied to the test equation, the discrete problem generated by ak-step FGAM used withk2 final conditions reads

yn = gn+q
n+k2

∑
j=0

ωn− jy j , gn = y0+q
M

∑
j=0

wn, jy j , n= M+1, . . . ,N− k2, q= hαλ .

y0, . . . ,yM, yN−k2+1, . . . ,yN fixed

It is evident thatyn ≡ yn,N(q) for eachn= M+1, . . . ,N−k2. Theregion of absolute stabilityof the method, sayDα , is
the set of allq∈ C for which there exists a sequence{vn(q)}n≥0 independent ofN such thatvn(q)→ 0 asn→ 0, and
|yn,N(q)| ≤ |vn(q)| whenevern andN−n are sufficiently large. Clearly, the exact and the numericalsolutions have the
same qualitative behaviour for eachq∈Sα ∩Dα . and the method isA-stableif Sα ⊆Dα . If we denote withω(ζ ) the
generating power series of the convolution weights{ωn}n≥−k2

, i.e. ω(ζ ) = ∑∞
j=0 ω j−k2ζ j , then the stability region is

Dα = C\
{

ζ k2/ω(ζ ) : |ζ | ≤ 1
}

. In Figure 1, we have reported the boundary loci for the FGAMs of ordersp= 3 and
5 used withk2 = ⌊(p−1)/2⌋, see (10), final conditions for three values ofα. As one can see, the methods are always
A-stable.
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FIGURE 1. Boundary loci for the FGAMs of orderp= 3 (solid line) andp= 5 (dashed line).
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