Generalized Adams methods for fractional differential
eguations.

Lidia Aceto’, Cecilia Magherini and Paolo Novati

*Dipartimento di Matematica Applicata “U.Dini", Universit di Pisa, Italy
TDipartimento di Matematica, Universita di Padova, Italy

Abstract. We introduce a new family of fractional convolution quadras based on generalized Adams methods for the
numerical solution of fractional differential equatioffde discuss their accuracy and linear stability properfiég. boundary

loci reported show that, when used as Boundary Value Methth@se schemes overcome the classical order barrier for
A-stable methods.
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INTRODUCTION

In this paper we are interested in the numerical solutiomaaftfonal differential equations (FDES) of the type
Dgy(t) = f(t,y(t)), 0<t<T, O<a<l1, (1)

whereD{y(t) denotes the Caputo’s fractional derivatives defined as [3]
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As well known, the use of the Caputo’s definition allows t@trhe initial conditions at= 0O for fractional differential
equations in the same manner as for integer-order diffialeeuations, whereas this is not possible using the
Riemann-Liouville approach (see e.g. [8] for a wide backad). Settingy(0) = yp the solution of (1) exists and

is unique under the hypothesis tHaits continuous and fulfils a Lipschitz condition with respexthe second variable
(see e.g. [4] for a proof). The solutigft) solves

O =0+ ps (-0 () @

that represents a \olterra integral equation of the secamdl With a weakly singular kernel and constant forcing
function.

For the numerical solution of (2) we consider the appligatibfractional convolution quadrature$Vhen used over
an assigned uniform partition of the interval of integratic= [0, T], given by

th =nh, n=0,1,...,N, h=T/N, 3)
these schemes provide a discrete problem of the following fo
n+k2
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wherey, =~ y(tn), fn = f(tn,yn), the weightswy j and w, are independent di, andM depends on the order of the

method and om. The terms
n+ko
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are usually called thetarting and theconvolutionterms, respectively. A convolution quadrature arise, f@meple,
when the integral in (2) is approximated by an Adams produetigature rule or a fractional linear multistep method
[2, 5, 6, 7]. In both casek; is set equal to zero and the resulting schemes suffer of thal wsder barrier foA-
stable methods. In particular, in [6] it was proved that theeo of anA-stable convolution quadrature cannot exceed
2. Clearly, this result represents an extension of the fameunsrgl Dahlquist barrier for linear multistep methods
(LMMs) for ordinary differential equations. This latter fioi@r can be overcomed if LMMs are used as Boundary
Value Methods (BVMs) that is if the discrete problem geneddby ak-step LMM is completed by imposinky
andk; = k— k; boundary conditions, [1]. In this paper, we shall invedigi& the BVM approach is successfull in
overcoming the barrier established in [6] for convolutiamadrature methods. In particular, we shall consider the
application of a generalized version of implicit Adams protquadrature rule that we cadtactional Generalized
Adams method$-GAMS).

FRACTIONAL GENERALIZED ADAMSMETHODS

For eacht € [0,T], let
1
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In addition, for the assigned uniform partition in (3), let

JM g (t) = ﬁ /ttml(t —u)?ep(u)duy, m=1,...,N.

Itis evident that |
N t) =Y I™[gl(t), n=1,...N. (6)
nM=1

In order to compute an approximation #f" [¢] (t,), we consider the application of a generalized version of the
implicit k-step Adams product quadrature rule given by

k
3™ (@] (ta) ~ Z)Bj,r%szj =aoV[g, n>m>k, r=n-m+l ktk=k (7
J:
wheregs = ¢(ts) for eachs > 0. The coefficients; ; are uniquely determined by imposing the method to be carsist
of orderp=k+ 1, namely if@ € CP(l) then
3™ @) (tn) — QA" (] = 7" < KhP* ®)

beingK a constant independent of It is possible to prove that the coefficieng,’s behave asymptotically as
Bjr ~ ra-1 Moreover, the resulting local truncation error in (8) iseyvby

Trgnm) =0 hp+aDp(P(Em,n), Emn € [tm—1,tm), 9)
where the principal error coefficien®") verifies6(") ~ r®~1. Itis to be noted that foar = 1 and

ki=[k/2] =[p/2], ke=k—ki=[(p—1)/2] (10)

the resulting methods are the Generalized Adams Method®4&}for ODEs introduced in [1]. After some computa-

tions, one verifies that
n+k2
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where, foreach =0,1,... k— 1 ands> —ky

M=Kq

ki—1 min(k,s+kz)
Wnj=— 3 Bitke-jn-it1, Ws = Z} Bi.stko+1—i- (11)
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The fractional convolution quadrature we have considesedgpproximating (6) is given by

n+ky
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whereM depends ork and a as described later on. From (11) and the previous considerah the asymptotic
behaviour of the coefficienf$ ;’s, one immediately deduces that the convolution Eafty] is stable[6] (with respect
to J[¢]) since its weights verify

wh=0n""1Y,  n>0 and wh=0(1), —-ka<n<O.
Moreover, it is possible to prove that ité®nvergent of order gince, for allg(t) =t* 1, with A > 0,
Dnl@] :=J[@)(tn) — Qn[@] = O(M*) +O(hP),  ty=nhe[a,T], a>0 fixed

The overall truncation (or quadrature) error associatéd2pis given by
M

En[¢] = J[¢](tn) — In[¢] = An[¢] — D Z)Wn,j -
J:

It is known that ify(t) is the exact solution of (2) witli(t,y) smooth enough, thep(t) = f(t,y(t)) is generated by
functions of the fornp, ,(t) =t#+‘@ whereu and¢ are nonnegative integers. This means (&} contains nonsmooth
components in proximity of the origin. It follows that theaging quadrature must be chosen appropriately, in order
to get a convolution quadrature for whiéh[@] = O(hP) uniformly for all nh > a > 0. This objective is gained by
imposing

En[@u¢] =0, forall (u,0) e Mp(a) (13)
whereMp(a) = {(u,1) 11 <lp(a),u < pp(a,l)} with pp(a,l) = p—1—la andly(a) = (p—1)/a if a is irrational
orlp(a) =min(q—1,(p—1)/a) if a = m/qwith mandq coprime. If we seM = #Mp(a) — 1, then the conditions
in (13) uniquely determine the starting weightg;, j =0,1,...,M, for eachn > M + 1. It is possible to prove that
Wnj are independent di andw, j = O(n°~1). Moreover, for any functiorp(t) = SM,@(t)t'?, with @ € CP(1),
En[@] = O(hP) uniformly for anynh € [a, T] with a > 0 fixed. ANDREBBE MESSO IL COMPORTAMENTO Di;
SENZA IL VINCOLO nh > a > 0?? These results are in perfect agreement with those ebtéon fractional linear
multistep method in [6].

CONVERGENCE ANALYSIS

We consider, for simplicity, the case where the FDE is sc#flave denote withe, = y(tn) — yn the global error at
t =tn, and withL the Lipschitz constant off(t,y) then it is not difficult to verify that, see (4),

min(n+k2,N—kz)
len| < h7L ZO ln-jllej] | +an+[Enl,  N=M+1.. N—k, (14)
J:

beingE, thenth truncation error of the convolution quadrature whoseabtur, with respect th, has been studied in
the previous section, argl = h“L (Z'J-V':O [Whn,j — th—j|€j |) +hoL (ZTZKﬁkZH |ah—jlej |) . If we assume to know an
approximation of the firsM and the lask;, values of the numerical solution with accura@ghP—) theng, = O(hP)
for eachn. The system of inequalities in (14) can be rewritten in médtnm as

Ze<g+E,

T T T . :
wheree = (lev+1l,....|en-kpl) » 9= (OM+1.---,ON-ky) > E = (|[Em1],---,|Enkp|) ,andZ = (z,j) is a Toeplitz
matrix withz j = 0 for eachj —i > ko. It is possible to prove that li is “sufficiently” small therz ! > O and||Z ||«
is bounded. Clearly, this implies that

1€l < K(llglles +[[Elleo).

beingK a suitable constant independentof



LINEAR STABILITY ANALYSIS
Let us consider the application of the method to the scatdeguation

DGy(t) = Ay(t).

Itis known that ford € %, = {p € C: |arg(u — m)| < (1— %) 11} the exact solution satisfigét) — 0 ast — 0. When
applied to the test equation, the discrete problem gertebgtak-step FGAM used witlk, final conditions reads

n+ko

M
yn = gn+q a)ﬂ*]yh gnZYO+q Wn,jyj7 n:M+17"'aN_k25 q:haA
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Yo, -, YM, YN—ko+15---5YN fixed

It is evident thay, = ynn(0q) foreachn=M+1,...,N — k. Theregion of absolute stabilitgf the method, sayy, is

the set of allq € C for which there exists a sequenp&(q)},,-, independent oN such thawn(q) — 0 asn — 0, and
lynN(a)| < [vn(g)| wheneven andN — n are sufficiently large. Clearly, the exact and the numesoaltions have the
same qualitative behaviour for eaglt .7, N Z4. and the method id-stableif ./, C Z;. If we denote withw({) the
generating power series of the convolution weigfs } -y, , i-e. w({) = 37 wj-k,{’, then the stability region is
Pa =C\{{*%/w(): || < 1} . In Figure 1, we have reported the boundary loci for the FGAKsrdersp = 3 and

5 used withk, = [ (p—1)/2], see (10), final conditions for three valuesmfAs one can see, the methods are always
A-stable.

o = 0.25

=3

FIGURE 1. Boundary loci for the FGAMs of ordgp = 3 (solid line) andp = 5 (dashed line).
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