MULTI-PARAMETER ARNOLDI-TIKHONOV METHODS
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Abstract. For the solution of linear ill-posed problems, in this pape¥ introduce a simple algorithm for
the choice of the regularization parameters when perfayminlti-parameter Tikhonov regularization through an
iterative scheme. More specifically, the new technique getan the use of the Arnoldi-Tikhonov method and the
discrepancy principle. Numerical experiments arisingrftbe discretization of integral equations are presented.
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1. Introduction. In the framework of Tikhonov regularization for the solutiof ill-
posed linear systemdz = b, A €¢ RV*V, the use of the multi-parameter regularization
(even called multiple penalty regularization) has beerichadly introduced with the aim of
acting simultaneously on different frequency bands of thet®n, in the hope of reproducing
all the basic features of the unknown solution with a goodueazy. Due to the wide range
of applications, there is a growing interest in this kindedularization, and many numerical
schemes has been recently presented in various contextsitevgl2] and the references
therein for an overview).

In this paper we mainly focus the attention on linear discilb{posed problems (seé]|
Chapter 1, for a background) and we assume that the availigihehand side vectob is
affected by noise, caused by measurement or discretizaitiors. Therefore, throughout the
paper we suppose that

b="b+e, (1.1)

whereb represents the unknown noise-free right-hand side, andewetd byz the solution
of the error-free systemz = b.

In the multi-parameter Tikhonov regularization settingndting byA = (A, ..., \x)7
the vector of the regularization parameteks ¢ 0, i = 1,....k, A # 0)f and byL =
{L4,..., Ly} the set of regularization matrices, a regularized solutign is defined as

k
zac = arg min J(z, A, L), whereJ(z, A, £) = || Az — b|* + > X || Lix|®.  (1.2)

]RN
vE i=1

Here and in the sequel, the norm used is always the Euclidzram. n

While the multi-parameter regularization is theoretigaliperior to any single-parameter
regularization which uses one of the matriégsn (1.2), the main problem is that in practice
it may be quite difficult to work simultaneously with more thane regularization matrix and
to define suitably the regularization parametgrs The existing methods for the automatic
choice of the parameters are essentially based on the djeadra-curve criterium (see e.g.
[2]) and on the generalization of the GCV criterium (sép.[ More recently an algorithm
based on the knowledge of the noise structure has been irtieddn L].

In many real applications, the noisy dats known to satisfy

1o =Bl <,

tDepartment of Mathematics, University of Padova, Italy.&im{gazzol a, novati }@rat h. uni pd.it.
fWhen treating multi-parameter methods, one usually requhiat each component of the vectois different
from zero. However we prefer to present the analysis justdilgeneralization of the one-parameter case.
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so that the use of the discrepancy principlé][may be considered even in the case of the
multi-parameter regularization. Indeed, ib2] the authors introduce an algorithm for the
definition of the regularization parameters based on theemigal solution with respect th

of the equation

|Aza.c — b = 7e, n>1. (1.3)

Up to now, to the best of our knowledge, such technique seerhe the only existing one
based on the discrepancy principle in the framework of th&irparameter regularization.

In this paper we solvel(2) using an iterative scheme called Arnoldi-Tikhonov (AT)
method, first proposed irb] in the case of the single-parameter regularization with=
{In}, wherely denotes the identity matrix of ordéy. This method has proved to be
particularly efficient when dealing with large scale prabte as for instance the ones arising
from image restoration. Indeed, it is based on the projeatiothe original problemi(.2)
onto Krylov subspaces of smaller dimensions computed bytheldi algorithm.

Using an iterative method forl(2) we automatically introduce a new parameter to be
determined, that is, the number of iterations. Let us deby)tef(”) them-th approximation
arising from the Arnoldi-Tikhonov process (from now we otthié notations which show the
dependency oi, since this set is assumed to be fixed). The algorithm hegoged for the
definition of A and to arrest the procedure, is based on the solution of

s~ <o

at each step, by means of a linear approximation (with rédpeeach parametey;, i =
1, ..., k) of the function

o (4) = [[4af™ ~ .

This method generates a sequence of regularization vettéts m > 1, whose compo-
nents)é"” are automatically defined. The idea extends the one studigd for the single-
parameter case, which has been shown to be really competiith the existing ones for
Krylov type solvers (see e.gl{], [11], [5]).

The paper is organized as follows. In Sectibwe explain the use of the AT method for
the solution of {.2). In Section3 we describe our scheme for the choice of the parameter
vectorA. In Sectiond we explain the algorithm associated to the new method aldtigaw
computationally cheaper variant. In Sectiowe display the main results obtained perform-
ing common test problems. Finally, in Secti®nwe propose some concluding remarks. We
also include an Appendix in which we report some tables thairsarize various meaningful
results related to the experiments described in Seétion

2. The Arnoldi-Tikhonov method. Let us work in the single parameter case with-
{A} and£ ={L}. The Arnoldi-Tikhonov (AT) method was introduced if] fwith the basic
aim of reducing the problem

min {|Az — b||> + A||Lz||*}, whereXx > 0andL = Iy, 2.1)
e

to a problem of much smaller dimension. The idea is to prdafeematrixA onto the Krylov

subspaces generated Hyand the vectob, i.e., K, (4, b) = span{b, Ab, ..., A™~1b}, with

m < N. The method was also introduced to avoid the matrix-vectoitiplication with
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AT required by Lanczos type schemes (see 8.g ], [10], [15]). To construct the Krylov
subspaces, the AT method employs the Arnoldi algorithmctviields the decomposition

AVZm = m+1Hm7 (22)

whereV,, ;1 = [v1, ..., vm41] € RV>*(m+1) has orthonormal columns which span the Krylov
subspacéC,, ;1 (A, b) andv, is defined a$/ ||b|. The matrixH,, € R(™+D*" is an upper
Hessenberg matrix. Denoting Wy ; the entries off,,, in exact arithmetics the Arnoldi
process arrests whenevey, .1 ,,, = 0, which meansC,,+1(4,b) = K,,(A,b).

The AT method searches for approximations of the solutidch@problem2.1) belong-
ingto/C,,,(A,b). Inthis sense, replacing= V,,,y,, (v € R™)into (2.1), yields the reduced
minimization problem

min, {1 ~ V0| + Alyml?) @

yme]R'm.
sinceV, 1 Viny1 = Int1. Remembering that; = b/|b|| we also have
Vil b= |bller wheree; = (1,0,...,0)" € R™*,

Looking at @.3), we can say that the AT method can be regarded to as a regpdarérsion
of the GMRES.

The method considered in this paper is an extension of the éfhaod in order to work
with one or more regularization operators not necessarglegquhe identity matrix. In de-
tails, replacing, as before,= V,, . (v, € R™)into (1.2) and using 2.2), we have that

min J(z,A,£) = min {HHmym 18] ex || +Z)\ L Vi | } (2.4)

€K (A,D) Ym € P
Hp, 161l €1
VALV, 0
= min ) Ym — ) . (2.5)
Ym ER™ : :
VALV 0

In the sequel we will refer tdX.5) as least squares formulation of the multi-parameter Atirol
Tikhonov method. We emphasize that the above strategy capfdeed even when the regu-
larization matrices are rectangular, as for instance wiasidering scaled finite differences
approximations of the derivative operators. However wearnthat, contrary to4.3), the
original dimension of the problem is only partially reducsthceL;V,, € RN-p)xm jf
L; e RWN-P)xN,

Anyway, sinceH,,, = V,L AV, if L; € RN*¥ i =1, ...k, one may even consider
the projected operators

K™ =V LV, (2.6)

} . 2.7)

The problem 2.7) is not equivent to the original on&.4), but many numerical experiments
have revealed that the use 8f) is worth of further investigation. However, it is importda
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min {HI_{'my'm— ‘bHeIH +Z

y'rn
Ym ER™




point out that, in fact, the computational cost associatele solution of2.7) is comparable
with the one of 2.5), because of the operatio®.f).

Finally, we remark that if an initial approximatiary of the solutionz is available,
then we can incorporate it into the Arnoldi-Tikhonov schemelefining the initial residual
ro = b — Axo and by considering the Krylov subspad€s, (A, ). Consequently, the
approximate solution of the problem.p) is of the formx,, = z9 + V,,y,n and in the
expressions4.3), (2.4), (2.9, (2.7) we simply have to substitutewith rq (cf. [7]).

3. The parameter selection strategyAs already said in the Introduction, if we assume
to know the quantity = ||b — b||, it turns out that a successful strategy to definas well as
a stopping criterium, is the discrepancy principle3f adapted to the iterative setting of the

AT method. At each iteration we can define the functiéft) (A) = Hb — Az(™
say that the discrepancy principle is satisfied as soon as

, and we

o™ (A) <nme, where 72 1.

We remark that, if we rather know the noise lesiek | e||/||b||, then the discrepancy principle
reads

o™ (A) = ne]|bll. 3.1)

We |mmed|ately note that, smce for the AT method the appnations are of the form(’”)
meA € Kim(A,b), wherey ) solves 2.5, the discrepancy can be rewritten as

"™ (A) = [|b— AViy ™|l = lle — Huy (™|, (3.2)

wherec = ||b|le; € R™ T

Now we briefly focus on the cage= 1, since the strategy derived to choose the com-
ponents of the regularization vectarin the multi-parameter case is a generalization of the
algorithm adopted in the single-parameter case.

3.1. The one-parameter caseAs in Section2, here we denote the unique regulariza-
tion parameter and operator simply hyand L, respectively. We underline that the method
that we are going to describe has been introduced]jrahd is able to simultaneously deter-
mine suitable values fak andm. Our basic hypothesis is that the discrepancy can be well
approximated by

M) ~ o™ 4 \gM), (3.3)

i.e., by a linear function with respect #g in whicha("), (™) ¢ R can be easily computed
or approximated.

Sincey&m) solves the normal equations

(HL H,py + AVELTLV, )™ = HZ e,
associated to the least square probl&m)(with £ = 1, by (3.2) we obtain
@A) = || Ho (HE Hyy + AV,E LT LV, ) " HE e — o] (3.4)

For what concerns the computation®@f™) in (3.3, the Taylor expansion of3(4) suggests
to chose

o™ — Qg(m) HH
4

) Hy) " HL e —cl| (3.5)
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which is just the norm of the residual of the GMRES, which carelaluated working in
reduced dimension, by solving the least squares problem

min
y € R?n

Hmy - CH . (3.6)

For what concerng("™), suppose that, at step, we have used the parametéf"—") (ob-
m)

tained at the previous step or,sit = 1, given by the user) to compuyﬁ(m,l) by solving
(2.5 with A = A(”—1_ The corresponding discrepancy is

SN ) = |l = HnyT 3.7)
and consequently, using the approximatidr), we obtain
(m) )\(m—l) _ o (m)
(m) _ ¢ ( ) @
PR NCESY . (3.8)
To select\("™) for the next step of the Arnoldi-Tikhonov algorithm we imgos
(A = e 3.9
and we force the approximation
¢(m) ()\(m)) _ a(m) + )\(m)ﬂ(m); (310)
Hence, by 8.8) and 3.9), we define
— am
(m) _ ne @ (m—1)
A = S0 (A1) — ) A . (3.11)

The method §.11) has a simple geometric interpretation which allows to sessia
zero finder. Indeed, with this choice of™ and 3", the functiong(™)()\) is linearly
interpolated at0, o(™) and(A(™ =1 ¢(m) (A(m=1))): looking at @.10), we understand that,
at each iteration of the Arnoldi-Tikhonov method, a step skaant-like zero-finder for the
solution of B.9) is performed (see agaiid]).

We remark that in the very first iterations &.{ 1) instability can occur, due to the fact
that we may have (™ >> ne. In this situation the result oB(11) may be negative (recall
that the functions("™ () is increasing and is only defined far> 0); therefore we consider

ne — a('rn) (‘H'L—l).

)\(m) _
q/)('rn) ()\('rn—l)) — a(m)

(3.12)

Numerically, formula 8.12) is very stable, in the sense that after the discrepancyipta

is satisfied \(") ~ const for growing values ofn. We address the fact that this parameter
choice technique can also be used together with the Ranggei¢ted approacHl[l] and even

in the case of Krylov methods based on the Lanczos unsynmpeticess].

Finally we note that, with respect to the strategies use@ismfconnection with the AT
method, the present one is intrinsically simpler and chedpdeed it essentially involves
quantities that are strictly connected to the projectedlero and the only additional com-
putations are performed in reduced dimension. More spaflifidche computation of the
GMRES residual require8(m?) operations (if the QR update is not employed, otherwise in
justO(m)).



3.2. The multi-parameter case.As pointed out by many works in literature (cf. for
example fi] and [12]), the most natural way to face a multi-parameter probleno ifirst
solve some single-parameter problems, one for each rézatian matrix, and then to find a
connection between all the problems. In our case, abitttha step of the Arnoldi-Tikhonov
algorithm and for a given, 1 < j < k, we consider the problem

Hy,
et e
)\1 LV, 0

Ym — : , (3.13)

m 0
\/Ag',%Lj—lem 0

\/XLj ern

which is aj-parameter Arnoldi-Tikhonov scheme; it can also be reghadea reduced version
of the systemZ.5), where the corresponding regularization vector is

min
Ym ER™

P T P P P
A= ((Ag’fi)T7 A0, O) ,  where Ag'fi = ()‘(1m), o )\grfi)T (3.14)
According to the notation that we have used in the one-paeroase, this means that
we have already solved, in a sequential wgy;- 1) reduced problems obtained adding to
the original projected problen3(6) a new regularization term and that we have determined

the suitable regularization parameter%”), ce Ag.’f%, for the problems so far considered.
Therefore, now the task is to determine the pararm%fé)r; since we only have to update one
parameter, we can resume the strategy employed for theegraghmeter AT method. We
define the function

_ m m T
¢§m)()\):¢(m)(/\):HC—H,,Lyj(\J) , A:((A;{)T’A,o’...,o) . (3.15)

Whereyf\’? is the solution of 8.13. In this framework, the normal equations associated to
the problem .13 are

j—1
(H,,ZLH,,L + 3 NVILE LV + AVE LJTLjvm> sy = Hle.
1=1

As before, we are looking for a linear approximation, witepect to the parametar of the
discrepancy associated to the reduced multi-parametblgmoso far considered, i.e.,

oM (N~ al™ 4+ apim. (3.16)

J J
Analogously to the one-parameter case, to omé'i?f we considen\ = 0, that is
j-1 -t
ol = ¢lm (o) = ||, <H,2Hm + 3 AMVILT L,-Vm> He—cl. (3.17)

J
i=1

Observing the above expression we see that now we have tevilbdahe discrepancy asso-
ciated to thgj — 1)-parameter method with vector of the regularization patensgiven by

A§’fi. Using the definitiong.15 we also have

a§7n) _ ¢(7rL) ()\Efibb (3.18)

7j—1
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We emphasize that, to obtain the quanctiﬁ/”), we have to solve again ti{g — 1)-parameter
problem with the regularization vector given hy_”%. Of course, whenp = 1, the determi-
nation of)\g’”) again requires the computation of the solution of the pmoh@.6) as in the
mono-parameter case, i.a.g,m) = §m> (0) is still the residual of the GMRES.

For what concerns the quanti,ﬂé’”), once we have solve®(13 for \ = )\g’”_l), we
obtain

K — 7 7 n m— T
o) = [le = gl A= (DT A 0,000) (329)

and consequently, using the approximatidrig), we get

(m) /y(m—1) (m)

¢; (A )~y
(m—1) ’
)\j

g™ =

Finally, imposingqb;m)()\;m)) = ne and forcing again3.16, we compute the new-th
component of the regularization vector as

)\Slm) _ ne — Oégm) )\(77L—1).
J ¢§m) ()\gmfl)) - aSm) J
As in the one-parameter case, the computation of e@’(fhj =1,...,k can be meaning-

m

less for the first few iterations, sinee is abovex; ) and the values oj\gm) are therefore

negative. For this reason we actually consider

(m)
E — O T —
N = n<m71>] A (3.20)
¢ (T ) e

At this point, if j < k we add a regularization term and we repeat the previous ctatipo
considering(j + 1) instead ofj; otherwise, ifj = k&, the solutior‘ryf\"’? of (3.13 is indeed
the solution of the complete multi-parameter problén), We stop the iterations as soon as

¢ (A) < ne.

3.3. Geometric interpretation. We close this section suggesting a geometric interpre-
tation of the above proposed scheme. For simplicity we tteatase: = 2, but the ideas
exposed can be generalized to an arbitrary number of regati@n terms. We fix an index
m and a Cartesian coordinate systém, \, z). Considering: = #("™ (A1, A2) we obtain
a differentiable surface iR3; solving (L.3) means finding the intersections between the just
mentioned surface and the horizontal plane 7e (see Figures.1, upper frame). The strat-
egy described above prescribes to initially take = 0; in this way we actually work on
the plane(\1, z) and the approximate solutio™ of ¢(™ (A, 0) = ¢{™ (A1) = 5z is the
intersection between = o{™ + X\ 8™ andz = e if this scalar is positive, otherwise its
absolute value (see Figugel, lower leftmost frame). At this point we takg = )\gm), that
is, we work on the planéx{"™, Ay, 2): the new value\\™ the approximate solution™’
of oM (A™ Ay) = ¢{™(X;) = 7e is the intersection between= o™ + A,5{™ and
z = ne if this scalar is positive, otherwise its absolute value (Bgjure3.1, lower rightmost
frame; in this case we display what happens when the quarfﬂtglis above the noise level
1¢)-
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(m-1) —\(m
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FI1G. 3.1.Geometric interpretation of the strategy proposed to fire\thlues of the regularization parameters
when performing Arnoldi-Tikhonov multi-parameter metfmthe cases = 2.

4. Algorithms. In this section we summarize the above described method arutav
pose a computationally cheaper variant of the followingatgm.

ALGORITHM 4.1. Multi-parameter Arnoldi-Tikhonov
Lonput: A, b, £ = {Ly,..., L}, A= (M2, A, 20,6,
2. Form =1,2,... until [|c — Hmy,(xm)H < ne
(&) UpdateV,,, H,, by the Arnoldi algorithmZ.2).
(b) Forj=1,...k—1
i. Solve B.13 with the parameter§(A'™})”, A" V)7 and evaluatey|"™ (\\" )
by 3.19.
ii. Solve @.13 with the parameters(A?fi)T, 0)” and evaluatezs§m) (0) by
(3.19.
iii. Compute the new parameteém) by (3.20 and thenA;m) (cf. (3.19).
(c) Compute the vectqum) = yl(x";) by solving the complete probler.§), with
A= (AT AT
(d) Compute the new parameﬂeé’") by (3.20 and then updatd.
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3. Compute the approximate solution= V,,Lyj(\m).

Algorithm 1 follows the lines of previous section, and hereguires to solve twice each
reduced system (that is, for egh= 1,..., k), in order to sequentially update the values of
the components of the regularization vector There is however a cheaper alternative that
consist in not using the updated values of the parametethbr ords, forj = 1,...k — 1,

we do not need to refreskf.m’l) with A§m), but we can work with the regularization vector

(AT AT = (A7 AT A T)T at Step2bi. The new expression

of a!™ is now (cf. G.18)

a™ =\ (). (4.1)
This alternative approach, described by Algorithr, needs only one solution 08(13, for
j=1,... k, ateach step.

ALGORITHM 4.2. Multi-parameter Arnoldi-Tikhonov without update
1oInput: A, b, £ = (Ly, ..., L), A = (A, A9 26,6,
2. Form = 1,2, ... until ||c — H,,y™|| < ne
(a) UpdateV,,, H,, by the Arnoldi algorithmZ.2).
(b) Forj=1,...k
i. Solve 8.13 with the parametersA'™"))T and evaluates!™ (A"~ "))
by (3.19.
ii. Takea!™ asin @.1).
iii. Compute the new parametaém) by (3.20.
(c) Update the vectoA = (Ag’”), el )\g’”)).
3. Compute the approximate solution= mef\"(’ii,l).

The numerical tests reported in the Appendix show that théderyy can compute regu-
larized solutions whose relative error is still comparabléhe one of the solutions obtained
running Algorithm4.1 However, the number of iterations required to return tHatgm is,
on average, higher than the one related to the former method.

REMARK 4.3. In our computations both Algoritheh1 and Algorithm4.2 have been
implemented with some minor changes regarding the stopgitgrium. Indeed we have
employed a sort ofveakened discrepancy principldat is, we arrest the iterations as soon as

o™ (X) — bl < 107, (4.2)

wheref < 0 is automatically determined as the sum of the order of thealevek and of the
order of the last significant digit of. In this way, when applying the discrepancy principle,
we neglect any quantity coming after the last significanitdifthe producgn. For instance,

if £ =102 andn = 1.01 thend = —4 and we stop the iterations as soon as

(N /|Ib]| <1.01-107249.9-107°.

We remark that, if the “classical’discrepancy princigdel] is fulfilled, then also4.2) is sat-
isfied. We introduced this weakened version of the discrepprinciple because, while exe-
cuting the numerical experiments, we noted that very ofterdiscrepancy stagnates slightly
above the prescribed threshold without crossing it andppming too many iterations, the
quality of the approximate solution deteriorates.
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At the same time we decide to enforce the stopping criteriuorder to assure that not
only the solutioryf{”) of the complete problem but also all the solutions of the ceduegu-
larization problems satisfy the weakened discrepancyipi@ (4.2), that is,¢>§m) (Aﬁm’l)) —
ne||b|| < 10°Vj = 1,...,k—1. Thisis a quite natural choice, since the solution of thetimul
parameter problem is built taking into account kheolutions of the associated one-parameter
problems.

5. Numerical Experiments. In this section we test the behavior of Algorithfnl to
solve the multi-parameter problem. We believe that the Wegtto validate the method just
described is to make suitable comparisons with what happethe one-parameter case; in
the sequel we will explain the details and the goal of eacteenpent. We will exclusively
focus on the two-parameter and the three-parameter casetheAest problems are taken
from Hansen’s packadeegularization Tool§8].

In all the examples we suppose to know the exact soldti@amd the exact right-hand
side vector is either given ir8] or constructed taking = AZ. The elements of the noise
vectore are normally distributed with zero mean and the standarihtiem is chosen such
that||e||/||b]| is equal to a prescribed levél Moreover we always consider the initial guess
zo = 0, we setyp = 1.01 andA = (1,...,1)T € R*. Each test problem is generated 100
times, to reduce the dependence of the results on the ranolmponents of the vecter All
the computations have been executed using Matlab 7.10 @isighificant digits on a single
processor computer Intel Core i3-350M.

Before describing each test, we list the regularizatiorrices that we have employed:

e the identity matrixl,y € RV*Y,
e Scaled finite difference approximations of the first and sdaarder derivatives, i.e.

1 -1
Dy := e RIWN-DxN (5.1)
1 -1
1 -2 1
Dy : = € RIN-2)xN (5.2)
1 -2 1

whose null-spaces are given8{(D; ) = span {(1,1,..., 1)} c RY andV(D;) =
span {(1,1,..., )7, (1,2,...,N)T} C RV,

e Square projection matrices built using the strategy sugdeds [13]: given M €
RN *¢ we compute the “skinny” QR factorizatioW/ = W R (wherelV € RN*¢
andR € R“*%) and we take, as regularization matrix,

L:=1Iy—-WWT e RV*VN, (5.3)

In this way the null space df is spanned by the orthonormal columng@f This
kind of matrix is particularly useful when we want to considaegularization oper-
ator with a given null-space different from the ones of themomwnly used operators

(5.) and 6.2).

5.1. Results obtained considering particular solutions.The aim of the first set of per-
formed experiments is to show that, when applying the npdtameter method to a problem
whose exact solutiom lies in the null space of the regularization operalgy the parame-
ter selection strategy correctly weights th#th component of the regularization vectby by
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assigning to\; a value dominating the other components. Indeed, in thigtitn, the regu-
larization operatoL; is the most suitable one, since the important features fdhgion are
not damped. Therefore we start to consider two particulacesolutions: the constant one,
Z. = (1,1,...,1)T € RV, and the linear oneg; := (1,2,...,N)T € RY; as recalled in
the above listz. € N (D1) N N(D3), whileT; € N'(D5). For this reason we will employ
both the two and three-parameter methods with differentiinations of the regularization
matricesl, Dy andDs.

First of all we take the solutiom. and we consider the matrix of siZé = 200 associ-
ated to the problern_| apl ace. The noise level involved i§ = 102 and we determine a
regularized solution by using théxgo, D) two-parameter method.  To be aware of what

Relative Errors

T
|200 G0 O DO GOSN O 0 O @
D1 o O
(120002 * * oM okl * % wkmek
1
107 107" 10°
Regularization Parameters
T
| OO0 OCUBIENITRENEDD
200
Dl O I I R T
200 SRS H ol X
Dl * Mk Kk Aok oMk Rk ik Sk ok Rk ok
Il Il Il
10° 10" 107 10° 10°

FiG. 5.1. Comparisons of the relative errors and the regularizatiargmeters obtained applying theoo
one-parameter (circle), th®; one-parameter (square) and tié&o0, D1) two-parameter method (asterisk) to the
test problem _| apl ace with the particular solutionz..

happens using the single parameter Tikhonov method, fdr test we also report the results
obtained considering exclusively = Iy, and L = D;. We display the results in Figure
5.1 We can clearly see that, with very few exceptions, the camepts of the regularization
vector associated td,oo and D; replicate the behavior of the parameter of the Tikhonov
method with, = Iy and L = Dy, respectively. This means that, in the regularization
process, the most appropriate regularization operattinjsrcaselD,, weights more than the
others. In almost all cases, the solutions of iy and D, one-parameter method belong to
Krylov subspaces of dimension 5 and 6, respectively, whibstof the solutions associated
to the two-parameter method belong to Krylov subspacesmédsion 6 or 7. In Figurg.2

we focus on a single test and we display the course of theuelatror, the regularization
parameters and the discrepancies of the examined methedelatstep of the Arnoldi al-
gorithm. Looking at both figures we can see that the qualitthefsolutions computed by
the multi-parameter method do not improve with respect éorésults associated to tig
mono-parameter method. However this is quite reasonafte sas said in the Introduction,
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the task of the multi-parameter methods is to preserve miffieyeht features of the solution;
when, as in this case, the solution belongs to the null spaeeof the considered operator,
the mono-parameter method with that regularization opeiiatthe one that works better.
Now we consider the matrix associated to the probpgml! | i ps with N = 200 and we
take, as exact solution, the linear aRg the noise level is agaid = 10~2. We compute
the regularized solution employing the three-parametehatewith regularization matrices
Ly = Iy, Ly = Dy andL3 = Ds. We display the results in Figute3 together with what
we have obtained treating the same problem withithe, D;, D> one-parameter methods.
Even in this case the parameter selection strategy camgtdimatically weight the regular-
ization matrices, assigning the highest parameter to thexavehose null space contains the
exact solution (in this casd),). Regarding the number of iterations required to satiséy th
weakened discrepancy principle, the three-parameteradetbeds in most of the cases 8, 11
or 13 iterations, thdsog mono-parameter method needs 7 or 8 iterations while botlbthe
and D, mono-parameter methods require 8 or 9 iterations. As invtloegarameter case, in
Figure5.4we show the values of the relative errors, of the regulddngtarameters and of
the discrepancy versus the number of iterations.

The method has been experimented on the most popular tdstepr® of B], all of
dimensionN = 200, using the two particular solutiong andz,. We also consider two
different noise levels§{= 102 andz = 5-10~2) and several combinations of regularization
operators. We summarize the obtained results in TAble TableA.2, TableA.3 and Table
A.4 reported in the Appendix.

Finally we propose the results of a couple of experiments bansidering the artificial
solutions

Tgin = 2@ 4 2 := 10sin (g) +z RV, (5.4
1

Tsin IS 0Scillating whilez,,,, is quickly increasing. This test is motivated by the fact thea

so far considered couple of matricés) and 6.2) indeed represents a particular situation,
sinceN (D) € N(Ds). Taking instead the solutio® ) or (5.5), by (5.3) we can build two
particular regularization matricds® and L) such that:(¥) € NV(L(@)), z®) ¢ N (L®))
and N (L) N N(L®) = {0}. As consequence, both;, andZ,, don't belong to the
null space of the matrices(®) or L), In this way we can really appreciate the essence of
the multi-parameter methods, that is, as said in the Inttolo, to preserve many different
features of the solution of the original problem that may ksodted imposing only one
regularization operator. For both solutions we considemtiatrix A € R2°0%200 associated
to the test problerh oxgood, a noise leveF = 102 and the regularization matricdg =
L@ L, = L, We display the results relative t6.6) and 6.5) in Figure5.5.

5.2. Results obtained considering more general solutionsn the second set of com-
puted experiments we simply consider the most common testigms in B] with their ap-
propriate solution. We are just going to display some grdapascompare the performances
of the new multi-parameter method and the usual Arnoldhdikov method. We will only
consider the regularization matricés, D, andDs.

In Figure5.6 we display the behavior of the relative errors and the vabigke regu-
larization parameters obtained solving the test problelnrapl ace of dimensionN = 200
with a noise of leveE = 1072 that affects the right-hand-side vector; we considerltiag
and D, one-parameter methods and {®,, I5) two-parameter method. We remark that,
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when performing the multi-parameter method, the results lwa affected by the order in
which the regularization matrices appear. Indeed, loo&irthe parameters selection strategy
described in subsectidh2, we can understand that the first matfix is weighted similarly
to in the one-parameter case, while the following ones wark@rection. This is a con-
sequence of the fact that many reduced problems are solegesgally and each one is
based on the solution and on the parameters associated poetfieus ones; in this sense
the first regularization operator is somehow advantagdunggpect to the others. Therefore,
if one has some intuition about the regularity of the solutiwe suggest to put in the first
place the most suitable regularization matrix. In Tablg and in TableA.6 reported in the
Appendix we collect the results obtained considering th@orparameter and the two and
three-parameter methods with various combinations of sealuregularization matrices and
two different noise levels.

5.3. Further considerations. In this subsection we highlight a couple of important fea-
tures of the new method that we noted while performing theemical experiments just de-
scribed.

The first property is that the AT multi-parameter method isyw@bust with respect to
the initial choice of the regularization vectadr, that is, considering different values of the
component of\, the accuracy of the results and the number of iterationbaseally stable.
In Figure5.7 we display the values of the regularization parametersimdxdeby solving the
test problenms haw of dimensionN = 200 and taking as exact solution the one givendj [
the noise level i§ = 10~2. We have employed th@zq, D1, D2) three-parameter method
and we have executed four tests considering the vettwhose three entries are all equal
to 0.5, 1, 10 or 100. We can see that, except in the very first iterations, the\nehaf

FiG. 5.7.Values of the components of the regularization vedtatersus the number of iterations. The initial
values considered ard = (0.5,0.5,0.5)” (diamond),A = (1,1,1)7 (asterisk),A = (10, 10,10)7 (circle),
A = (100, 100, 100)T (square).

each);, i = 1,2, 3 is very similar independently on the value)«if”. We have also tried to
consider different components of the vectoand the results, even if not shown, are identical
to the ones just described.

The second property is about the performance of the methed wiany extra iterations
are executed after the stopping criterium is fulfilled. Despe had to review the stopping
criterium introducing the weakened discrepancy princ{pfe Sectior4), we can appreciate

17
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to the first regularization matrix/200, the diamond denotes the quantities associated to the deegularization
matrix, D1, and the square denotes the quantities associated to treertgularization matrix,D2. This method
would stop at the 9th iteration (denoted by the big asteyislgj we decide to run it till the 30th iteration.
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that in many cases the behavior of the method is very stalele @hen we decide to go on
with an arbitrary number of iterations. For instance, inuk&b.8 we display what happens
solving the problenshaw by the three-parameter method and considering, as before,
200, = 1072, L; = Iz, L» = D; andLs; = D,. Similar results have been obtained also
forphi | I i ps andf oxgood.

6. Conclusion. We have described a new strategy to work with multi-paramékéonov
method when an iterative scheme based on the Arnoldi atgotig adopted. The parameters
selection method is founded on the discrepancy principietia@ algorithm to determine the
suitable regularization parameters at each step of theldiratgorithm is computationally
very cheap, since it exclusively involves computationseiduced dimension. We have veri-
fied that the new method is able to automatically weight tigellagization matrices, assign-
ing to the most suitable ones a higher regularization patemm&he numerical experiments
performed also show that, in many cases, the new method éstalimprove the solution
computed by means of the mono-parameter Arnoldi-Tikhonethiwd.

Appendix.

We report some tables that complete the results describ&bdtion5. The results
shown are obtained performing, for each problem, 100 tesistaking the average of the
relative errors, the average of each regularization patemtieat appears in the method and
the average of the number of iterations. The paramaters, and\; are always associated to
the regularization matricelsy, D, and D, respectively. When the multi-parameter method
is concerned we report the results obtained applying bogorthm 4.1 and Algorithm4.2
(we mark the latter with the abbreviatidiJ within brackets next to the test name). The
dimension of the problem is alway$é = 200. TableA.1, TableA.2, TableA.3 and TableA.4
are referred to the test concerning particular solutionagtant and linear), while Tabke5
and TableA.6 are referred to the solution given in the routines&f We consider different
noise levels and we highlight the most interesting reswdisgiboldface.
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TABLE A.1

Constant solutiorz. with noise leveE = 10~2.

Relative Errors A1 A2 A3 Iterations
baart 1.0378e-001 6.7818e-004 - - 3.00
baart 3.1941e-002 - 2.9526e+002 - 3.36
baart 4.6184e-002 - - 1.5322e+003 3.08
baart 3.3079e-002 4.1362e-003  2.3190e+003 - 3.40
baart (W) 3.8475e-002 2.3079e-003  1.0314e+003 - 4.31
baart 3.5972e-002 5.8633e-003 - 8.8528e+004 3.34
baart (W) 4.6334e-002 6.8556e-004 - 1.5115e+004 3.01
baart 5.4689e-003 - 3.9761e+002  1.5605e+005 4,01
baart (W) 6.3468e-003 - 3.3345e+002  6.4547e+005 4.00
baart 3.2744e-002 3.9987e-003  2.7437e+003  8.9722e+007 3.48
baart (W) 2.5777e-003 3.7114e-003  8.3275e+003  2.0124e+009 5.30
gravity 7.6927e-002 2.7235e-002 - - 4.05
gravity 3.5608e-002 - 1.2120e+002 - 4.89
gravity 3.7409e-002 - - 7.5008e+003 5.01
gravity 3.6233e-002 4.3953e-002  5.0042e+001 - 5.06
gravity (W) 3.6591e-002 3.5814e-002  9.1060e+001 - 4.82
gravity 3.7397e-002 4.6282e-002 - 1.8640e+002 4,94
gravity (W) 3.7525e-002 3.7270e-002 - 2.6912e+003 4,92
gravity 3.0131e-002 - 2.9360e+002  1.8309e+004 6.08
gravity (W) 2.7768e-002 - 3.8358e+002  2.3200e+004 7.08
gravity 3.1157e-002 5.7598e-002 4.7711e+001  3.1995e+003 6.50
gravity (W) 2.6016e-002 6.3788e-002  2.6957e+002  7.3402e+003 8.02
shaw 1.9111e-001 8.2282e-004 - - 11.96
shaw 1.0719e-001 - 9.6939e-001 - 6.82
shaw 1.4307e-001 - - 1.7511e+002 7.12
shaw 1.2701e-001 1.1500e-003  6.5296e+000 - 6.91
shaw (W) 9.5561e-002 8.9523e-004 1.2847el - 7.65
shaw 1.1748e-001 9.5530e+000 - 1.3175e+003 7.44
shaw (W) 1.2813e-001 6.1538e+000 - 2.2507e+003 7.82
shaw 1.1748e-001 - 9.5530e+000  1.3175e+003 7.44
shaw (W) 1.2813e-001 - 6.1538e+000 2.2507e+003 7.82
shaw 1.7063e-001 1.0023e-003  3.0629e+000  1.2808e+003 7.65
shaw (W) 1.0891e-001 9.5358e-004  7.0005e+000 1.5660e+003 8.38
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TABLE A.2

Constant solutior. with noise leveE = 5 - 10~2.

Relative Errors A1 A2 A3 Iterations
baart 4.7271e-002 1.8289e-002 - - 3.03
baart 4.6467e-002 - 2.6946e+002 - 3.00
baart 4.8727e-002 - - 3.1295e+001 3.00
baart 2.8299e-002  3.5002e-002  2.8047e+003 - 3.81
baart (W) 4.5396e-002  1.8319e-002  3.1644e+002 - 3.01
baart 5.6287e-002 3.5177e-002 - 6.1848e+004 3.81
baart (W) 4.5595e-002  1.8319e-002 - 2.0673e+004 3.01
baart 4.1186e-002 - 2.6891e+003 3.5107e+006 3.12
baart (W) 4.2843e-002 - 1.2127e+003  4.1811e+006 3.09
baart 2.9684e-002  3.4540e-002 2.8129e+003 7.0676e+006 3.95
baart (W) 4.5433e-002  1.8319e-002 3.1644e+002  1.4420e+005 3.01
gravity 1.4412e-001 6.2068e-002 - - 3.00
gravity 7.3863e-002 - 1.0178e+003 - 3.38
gravity 7.6596e-002 - - 5.8340e+002 3.30
gravity 7.5657e-002 8.9338e-002  2.6968e+001 - 3.52
gravity (W) 5.9147e-002  1.7299e-001  1.4920e+003 - 4.61
gravity 7.6178e-002 9.4794e-002 - 7.9399e+002 3.41
gravity (W) 7.7175e-002 6.9617e-002 - 1.6570e+003 3.23
gravity 5.6443e-002 - 3.4291e+003  1.0032e+005 5.13
gravity (W) 5.7096e-002 - 2.1291e+003 1.7057e+005 5.14
gravity 7.5426e-002 1.1257e-001  3.4710e+001  1.6360e+004 3.90
gravity (W) 5.5631e-002  3.2129e-001  7.2494e+002 5.6887e+004 10.39
shaw 3.8658e-001 1.1241e-002 - - 4.73
shaw 3.7087e-001 - 1.0679e+001 - 4.30
shaw 3.7499e-001 - - 1.1396e+002 4.08
shaw 3.4765e-001  4.0968e-002  6.2112e+000 - 5.77
shaw (W) 3.2295e-001  2.8325e-002  8.9987e+000 - 6.71
shaw 3.6824e-001  9.7160e-002 - 5.0404e+002 4.85
shaw (W) 3.5303e-001  1.8491e-002 - 1.3922e+003 5.06
shaw 2.2610e-001 - 8.0840e+001  1.0614e+003 6.59
shaw (W) 2.8593e-001 - 2.4070e+001  2.7850e+003 6.02
shaw 3.4812e-001  3.0250e-002  6.1392e+000 5.6965e+002 7.06
shaw (W) 3.2119e-001  3.3386e-002 3.6780e+000 1.0717e+003 9.23
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TABLE A.3

Linear solutionz; with noise leveE = 102,

Relative Errors A1 A2 A3 Iterations
gravity 9.1882e-002 9.9070e-003 - - 5.88
gravity 4.3925e-002 - 6.2429e+000 - 6.60
gravity 4.4210e-002 - - 8.3509e+002 6.60
gravity 4.8555e-002 3.0927e-002 - 1.5557e+001 6.32
gravity (W) 4.5759e-002 2.1120e-002 - 2.0771e+003 6.85
gravity 4.0287e-002 - 3.9018e+001  7.2829e+003 7.96
gravity (W) 3.5810e-002 - 6.9289e+001  7.7211e+003 9.39
gravity 4.0742e-002  3.3236e-002  5.2950e+000 1.8860e+003 8.15
gravity (W) 3.6273e-002  4.3565e-002  6.7350e+000 2.0170e+003 12.37
phillips 8.3395e-002 7.5351e-004 - - 3.88
phillips 5.1312e-002 - 6.0850e+000 4.79
phillips 2.5810e-002 - - 1.0223e+004 3.70
phillips 4.9806e-002 1.1568e-003 - 1.5404e+002 3.76
phillips (W) 2.9860e-002 7.8084e-004 - 1.1637e+005 3.73
phillips 2.0121e-002 - 1.3793e+001  3.0215e+005 5.34
phillips (W) 7.3637e-003 - 1.0211e+001  7.1454e+007 5.82
phillips 2.1245e-002  1.1547e-003  5.1765e+000 7.0991e+005 4.03
phillips (W) 4,9555e-003  1.0063e-003 2.6263e+000 1.3782e+009 6.12
shaw 1.6558e-001 5.6169e-004 - - 8.04
shaw 9.8639e-002 - 2.0738e+000 - 7.05
shaw 1.1969e-001 - - 2.8091e+002 7.90
shaw 1.6111e-001 9.4367e-004 - 2.4475e+002 7.60
shaw (W) 1.4970e-001 6.4663e-004 - 3.0588e+002 8.65
shaw 1.8624e-001 - 1.4567e+003  7.5914e+003 10.66
shaw (W) 1.8275e-001 - 1.6192e+003 6.4621e+004 12.87
shaw 1.5545e-001 7.2387e-004 1.1118e+000  3.0236e+002 8.34
shaw (W) 8.5492e-002  6.8840e-004  2.3488e-001  9.2377e+002 10.08
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Linear solutionz; with noise leveE = 5 - 1072,

TABLE A.4

Relative Errors A1 A2 A3 Iterations
gravity 2.8768e-001 5.5438e-002 - - 4.05
gravity 7.9760e-002 - 8.3692e+001 - 4.99
gravity 9.9241e-001 - - 2.0821e+003 6.47
gravity 9.9263e-001 3.0098e-002 - 3.0273e+002 8.08
gravity (W) 9.9256e-001 3.0199e-002 - 3.9649e+002 9.23
gravity 7.0756e-002 - 5.1613e+002 5.8957e+004 6.88
gravity (W) 6.9625e-002 - 5.1480e+002  8.2787e+004 7.32
gravity 7.1772e-002  2.7579e-001  3.3161e+001  3.5037e+003 8.09
gravity (W) 6.9084e-002  2.8820e-001  1.6383e+001  2.2734e+003 15.31
phillips 1.3393e-001 6.9273e-003 - - 4.98
phillips 4.6177e-002 - 1.9380e+001 - 4.00
phillips 6.2626e-002 - - 1.5541e+002 3.00
phillips 5.9475e-002 1.2138e-002 - 3.8318e+003 3.04
phillips (W) 4.4428e-002  7.1280e-003 - 7.3170e+005 3.96
phillips 4.4724e-002 - 8.0428e+001  2.8338e+006 5.74
phillips (W) 3.0147e-002 - 4,9414e+001  9.6469e+006 5.51
phillips 5.9309e-002 1.1927e-002 1.9741e+001  2.6932e+004 3.15
phillips (W) 5.1288e-002 8.9332e-003 5.1621e+000  2.0490e+007 6.68
shaw 4.2575e-001 5.0157e-003 - - 5.40
shaw 3.3582e-001 - 9.5404e+000 - 5.81
shaw 3.8572e-001 - - 1.2562e+003 5.41
shaw 3.7063e-001 1.6175e-002 - 5.2509e+002 6.60
shaw (W) 3.3534e-001  1.8732e-002 - 1.0808e+003 8.03
shaw 1.9170e-001 - 3.4898e+001  1.0244e+003 7.64
shaw (W) 1.5476e-001 - 3.7043e+001  3.9485e+003 8.22
shaw 3.3859e-001 1.8235e-002 5.7642e+000 5.6926e+002 7.68
shaw (W) 3.1797e-001  2.1206e-002 3.7208e+000 2.1282e+003 12.32
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TABLE A.5

Given solution with noise levél= 10—2.

Relative Errors A1 A2 A3 Iterations
baart 5.0485e-002 5.9453e-004 - - 4.00
baart 9.6425e-002 - 4.2167e-001 - 6.00
baart 6.2569e-002 - - 1.0876e+003 5.01
baart 1.5099e-001 1.0683e-003  6.3735e-002 - 5.50
baart (W) 1.5135e-001 1.0854e-003  1.0809e-001 - 6.10
baart 8.8097e-002 8.3136e-004 - 1.3274e+002 4.38
baart (W) 1.2243e-001 1.0936e-003 - 2.3528e+002 5.67
baart 1.2223e-001 - 8.5082e-001  1.6022e+002 7.57
baart (W) 1.2907e-001 - 8.9299e-001  1.1968e+002 8.93
baart 1.4903e-001 1.1395e-003  1.5122e-002  9.7826e+001 6.63
baart (W) 2.0029e-001 1.2088e-003  2.5714e-003  3.3557e+001 15.88
gravity 1.2013e-001 9.7765e-003 - - 5.27
gravity 4.0751e-002 - 3.4584e+000 - 6.24
gravity 4.0657e-002 - - 5.4844e+002 6.19
gravity 4.3901e-002 3.3339e-002  7.3607e-001 - 6.15
gravity (W) 4.2829e-002 2.7101e-002  3.6701e+000 - 6.50
gravity 4.2992e-002 4.1944e-002 - 9.7444e+001 6.04
gravity (W) 4.1431e-002 2.8425e-002 - 2.3548e+003 6.60
gravity 4.5887e-002 - 1.1104e+001  2.0749e+003 7.92
gravity (W) 4.6282e-002 - 1.2389e+001 2.5341e+003 8.83
gravity 3.7745e-002  4.0109e-002  8.4321e-001  4.1857e+002 7.80
gravity (W) 3.5941e-002  5.1580e-002  6.8753e-001  8.0771e+002 13.03
phillips 2.8920e-002 1.8711e-002 - - 5.00
phillips 2.5621e-002 - 5.2041e+000 - 5.05
phillips 2.5663e-002 - - 5.5949e+002 5.00
phillips 2.5654e-002 5.5102e-002  2.2946e+000 - 7.52
phillips (W) 2.5428e-002  4.2635e-002  2.2588e+000 - 8.06
phillips 2.6108e-002 5.0990e-002 - 2.7694e+002 7.48
phillips (W) 2.6021e-002 4.1527e-002 - 3.0252e+002 8.05
phillips 2.7134e-002 - 1.0548e+001  1.4744e+002 7.54
phillips (W) 2.7043e-002 - 9.1030e+000  1.3533e+002 8.43
phillips 2.5571e-002  4.6571e-002  9.4471e-001  4.5558e+001 9.71
phillips (W) 2.5307e-002  5.1642e-002  3.8008e-001  5.2265e+001 12.56
shaw 1.3445e-001 7.5858e-004 - - 5.85
shaw 1.2074e-001 - 5.4351e-001 - 6.29
shaw 1.2074e-001 - - 1.2207e+002 6.01
shaw 1.3477e-001 1.8739e-003  2.5149e-001 - 6.73
shaw (W) 1.4452e-001 3.1749e-003  2.6832e-001 - 8.02
shaw 1.3466e-001 2.0832e-003 - 5.8343e+001 6.71
shaw (W) 1.4767e-001 3.6720e-003 - 5.1928e+001 8.18
shaw 2.0162e-001 - 1.8871e-001  2.9227e+000 9.59
shaw (W) 2.0445e-001 - 1.8076e-001  4.0254e+000 10.85
shaw 1.3631e-001 3.1890e-003  2.6252e-001  1.7495e+001 7.71
shaw (W) 1.3297e-001 3.6163e-003  2.2794e-002  9.6222e+000 15.36
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TABLE A.6

Given solution with noise levél= 5 - 102,

Relative Errors A1 A2 A3 Iterations
baart 2.5915e-001 5.5184e-003 - - 3.88
baart 3.5281e-001 - 4.1254e+001 - 22.62
baart 1.4907e-001 - - 7.8514e+001 3.90
baart 3.1181e-001 1.0697e-002  1.6995e+000 - 5.41
baart (W) 3.1079e-001 1.0679e-002  1.8720e+001 - 6.17
baart 2.5738e-001 7.0589e-003 - 1.4668e+003 4.04
baart (W) 2.4875e-001 6.3857e-003 - 1.8854e+003 4.16
baart 3.6233e-001 - 4.2956e+001  6.7892e+005 11.53
baart (W) 3.6189e-001 - 4.2750e+001  9.5807e+005 12.31
baart 3.0971e-001 1.2027e-002  9.7625e-001  8.6695e+002 6.34
baart (W) 3.0669e-001 1.4359e-002 5.6894e+000 2.7463e+006 22.44
gravity 2.0667e-001 7.6931e-002 - - 4.20
gravity 7.1581e-002 - 6.4767e+001 - 5.00
gravity 6.5899e-002 - - 1.0511e+002 4.96
gravity 7.0950e-002 1.5823e-001  2.6622e+000 - 5.89
gravity (W) 6.9396e-002  9.8279e-002  2.2876e+001 - 5.08
gravity 6.7248e-002 1.4980e-001 - 1.3094e+003 5.15
gravity (W) 6.5526e-002  9.7083e-002 - 2.3641e+003 5.03
gravity 8.9110e-002 - 1.5691e+002  7.3888e+003 7.24
gravity (W) 9.2507e-002 - 1.5515e+002 9.6310e+003 8.28
gravity 6.7490e-002 3.0044e-001  7.9010e+000 4.7311e+002 8.24
gravity (W) 6.6388e-002 3.1555e-001  7.0614e-001  1.0583e+003 16.10
phillips 1.7706e-001 5.4795e-002 - - 4.00
phillips 5.2064e-002 - 2.7421e+001 - 4.86
phillips 4.9188e-002 - - 1.2585e+002 4.79
phillips 5.1560e-002 2.2233e-001  3.0768e+000 - 8.89
phillips (W) 4.5868e-002  9.5929e-002 1.1118e+001 - 5.33
phillips 5.0609e-002 2.1969e-001 - 3.3818e+002 7.30
phillips (W) 5.3031e-002 8.1022e-002 - 3.5514e+003 5.04
phillips 6.2712e-002 - 6.8085e+001  3.2822e+002 7.74
phillips (W) 6.2458e-002 - 6.7112e+001  3.4593e+002 8.65
phillips 4.9898e-002 2.5948e-001 1.8172e+000 5.1243e+001 10.62
phillips (W) 4.9975e-002 2.6521e-001  2.4459e-001  9.0852e+001 16.69
shaw 1.8119e-001 7.5811e-003 - - 5.00
shaw 2.0664e-001 - 1.2412e+001 - 6.91
shaw 2.0299e-001 - - 1.9892e+003 6.81
shaw 1.8248e-001 2.9196e-002 1.1667e+000 - 9.45
shaw (W) 1.7661e-001  2.9472e-002  1.3307e+000 - 8.14
shaw 1.7095e-001  3.2668e-002 - 3.7580e+002 8.77
shaw (W) 1.7345e-001  3.0384e-002 - 2.4513e+002 9.91
shaw 3.6022e-001 - 1.9433e+001  2.1029e+002 8.31
shaw (W) 4.1838e-001 - 1.6601e+001 6.2015e+002 9.97
shaw 1.6869e-001  2.7108e-002  1.3957e+000 6.2512e+001 8.53
shaw (W) 1.7007e-001  2.9894e-002  1.6217e-001  6.3068e+001 15.61
REFERENCES

[1] F. BAUER, S.V. PEREVERZEYV, An utilization of a rough approximation of a noise covarianwithin the
framework of multi-parameter regularizatipint. J. Tomogr. Stat., 4 (2006), pp. 1-12.
[2] M. BELGE, M.E. KILMER, E.L. MILLER, Efficient determination of multiple regularization paratees in a
generalized L-curve framewarkaverse Probl., 18 (2002), pp. 1161-1183.
[3] A. BIORCK, A bidiagonalization algorithm for solving large and spatigposed systems of linear equations
BIT, 28 (1988), pp. 659-670.
[4] C. BREZINSKI, M. REDIVO-ZAGLIA, G. RODRIGUEZ, S. EEATzU, Multi-parameter regularization tech-
niques for ill-conditioned linear systemdumer. Math., 94 (2003), pp. 203-228.
[5] D. CALVETTI, S. MORIGI, L. REICHEL, F. SGALLARI, Tikhonov regularization and the L-curve for large
discrete ill-posed problemd. Comput. Appl. Math., 123 (2000), pp. 423-446.

25



[6] M. HANKE, P.C. HANSEN, Regularization methods for large-scale probler8arv. Math. Ind., 3 (1993), pp.
253-315.

[7] S. GazzoLA, P. NovATI, Automatic parameter setting for Arnoldi-Tikhonov methc@isbmitted, 2012.

[8] P.C.HANSEN,Regularization Tools: A Matlab package for analysis andioh of discrete ill-posed problems
Numer. Alg., 6 (1994), pp. 1-35.

[9] , Rank-Deficient and Discrete lll-Posed Problems. Numerigapects of Linear InversionSIAM,
Philadelphia, 1998.

[10] M.E. KILMER, D.P. O’LEARY, Choosing regularization parameters in iterative methaafsilf-posed prob-
lems SIAM J. Matrix Anal. Appl., 22 (2001), pp. 1204-1221.

[11] B. LEwis, L. REICHEL, Arnoldi-Tikhonov regularization method3. Comput. Appl. Math., 226 (2009), pp.
92-102.

[12] S. Lu, S.V. PEREVERZER Multi-parameter regularization and its numerical realtzan, Numer. Math., 118
(2011), pp. 1-31.

[13] S. MoRIGI, L. REICHEL, F. SGALLARI, Orthogonal Projection Regularization Operatofdumer. Alg., 44
(2007), pp. 99-114.

[14] V.A. MoRozov, On the solution of functional equations by the method oflee@ation, Soviet Math. Dokl.,
7 (1966), pp. 414-417.

[15] D.P. O’LEARY, J.A. SMMONS, A bidiagonalization-regularization procedure for largeale discretizations
of ill-posed problemsSIAM J. Sci. Statist. Comput., 2 (1981), pp. 474 489.

[16] L. REICHEL, A. SHYSHKOV, A new zero-finder for Tikhonov regularizatioBIT, 48 (2008), pp. 627-643.

[17] L. REICHEL, G. RODRIGUEZ Old and new parameter choice rules for discrete ill-poseabgms Submitted,
2012.

[18] Y. SAAD, Iterative methods for Sparse Linear Systegrsl edition, SIAM, Philadelphia, 2003.

26



