MULTI-PARAMETER ARNOLDI-TIKHONOV METHODS

S. GAZZOLA ${ }^{\dagger}$ AND P. NOVATI ${ }^{\dagger}$

Abstract

For the solution of linear ill-posed problems, in this paper we introduce a simple algorithm for the choice of the regularization parameters when performing multi-parameter Tikhonov regularization through an iterative scheme. More specifically, the new technique is based on the use of the Arnoldi-Tikhonov method and the discrepancy principle. Numerical experiments arising from the discretization of integral equations are presented.

Key words. multi-parameter regularization, Arnoldi-Tikhonov method, discrepancy principle.

AMS subject classifications. 65F22

1. Introduction. In the framework of Tikhonov regularization for the solution of illposed linear systems $A x=b, A \in \mathbb{R}^{N \times N}$, the use of the multi-parameter regularization (even called multiple penalty regularization) has been basically introduced with the aim of acting simultaneously on different frequency bands of the solution, in the hope of reproducing all the basic features of the unknown solution with a good accuracy. Due to the wide range of applications, there is a growing interest in this kind of regularization, and many numerical schemes has been recently presented in various contexts (we cite [12] and the references therein for an overview).

In this paper we mainly focus the attention on linear discrete ill-posed problems (see [9], Chapter 1, for a background) and we assume that the available right-hand side vector b is affected by noise, caused by measurement or discretization errors. Therefore, throughout the paper we suppose that

$$
\begin{equation*}
b=\bar{b}+e \tag{1.1}
\end{equation*}
$$

where \bar{b} represents the unknown noise-free right-hand side, and we denote by \bar{x} the solution of the error-free system $A x=\bar{b}$.

In the multi-parameter Tikhonov regularization setting, denoting by $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)^{T}$ the vector of the regularization parameters $\left(\lambda_{i} \geq 0, i=1, \ldots, k, \Lambda \neq 0\right)^{\ddagger}$ and by $\mathcal{L}=$ $\left\{L_{1}, \ldots, L_{k}\right\}$ the set of regularization matrices, a regularized solution $x_{\Lambda, \mathcal{L}}$ is defined as

$$
\begin{equation*}
x_{\Lambda, \mathcal{L}}=\arg \min _{x \in \mathbb{R}^{N}} J(x, \Lambda, \mathcal{L}), \text { where } J(x, \Lambda, \mathcal{L})=\|A x-b\|^{2}+\sum_{i=1}^{k} \lambda_{i}\left\|L_{i} x\right\|^{2} \tag{1.2}
\end{equation*}
$$

Here and in the sequel, the norm used is always the Euclidean norm.
While the multi-parameter regularization is theoretically superior to any single-parameter regularization which uses one of the matrices L_{i} in (1.2), the main problem is that in practice it may be quite difficult to work simultaneously with more than one regularization matrix and to define suitably the regularization parameters λ_{i}. The existing methods for the automatic choice of the parameters are essentially based on the generalized L-curve criterium (see e.g. [2]) and on the generalization of the GCV criterium (see [4]). More recently an algorithm based on the knowledge of the noise structure has been introduced in [1].

In many real applications, the noisy data b is known to satisfy

$$
\|b-\bar{b}\| \leq \varepsilon,
$$

[^0]so that the use of the discrepancy principle [14] may be considered even in the case of the multi-parameter regularization. Indeed, in [12] the authors introduce an algorithm for the definition of the regularization parameters based on the numerical solution with respect to Λ of the equation
\[

$$
\begin{equation*}
\left\|A x_{\Lambda, \mathcal{L}}-b\right\|=\eta \varepsilon, \quad \eta \geq 1 \tag{1.3}
\end{equation*}
$$

\]

Up to now, to the best of our knowledge, such technique seems to be the only existing one based on the discrepancy principle in the framework of the multi-parameter regularization.

In this paper we solve (1.2) using an iterative scheme called Arnoldi-Tikhonov (AT) method, first proposed in [5] in the case of the single-parameter regularization with $\mathcal{L}=$ $\left\{I_{N}\right\}$, where I_{N} denotes the identity matrix of order N. This method has proved to be particularly efficient when dealing with large scale problems, as for instance the ones arising from image restoration. Indeed, it is based on the projection of the original problem (1.2) onto Krylov subspaces of smaller dimensions computed by the Arnoldi algorithm.

Using an iterative method for (1.2) we automatically introduce a new parameter to be determined, that is, the number of iterations. Let us denote by $x_{\Lambda}^{(m)}$ the m-th approximation arising from the Arnoldi-Tikhonov process (from now we omit the notations which show the dependency on \mathcal{L}, since this set is assumed to be fixed). The algorithm here proposed for the definition of Λ and to arrest the procedure, is based on the solution of

$$
\left\|A x_{\Lambda}^{(m)}-b\right\|=\eta \varepsilon
$$

at each step, by means of a linear approximation (with respect to each parameter $\lambda_{i}, i=$ $1, \ldots, k$) of the function

$$
\phi^{(m)}(\Lambda)=\left\|A x_{\Lambda}^{(m)}-b\right\|
$$

This method generates a sequence of regularization vectors $\Lambda^{(m)}, m \geq 1$, whose components $\lambda_{i}^{(m)}$ are automatically defined. The idea extends the one studied in [7] for the singleparameter case, which has been shown to be really competitive with the existing ones for Krylov type solvers (see e.g. [16], [11], [5]).

The paper is organized as follows. In Section 2 we explain the use of the AT method for the solution of (1.2). In Section 3 we describe our scheme for the choice of the parameter vector Λ. In Section 4 we explain the algorithm associated to the new method along with a computationally cheaper variant. In Section 5 we display the main results obtained performing common test problems. Finally, in Section 6, we propose some concluding remarks. We also include an Appendix in which we report some tables that summarize various meaningful results related to the experiments described in Section 5.
2. The Arnoldi-Tikhonov method. Let us work in the single parameter case with $\Lambda=$ $\{\lambda\}$ and $\mathcal{L}=\{L\}$. The Arnoldi-Tikhonov (AT) method was introduced in [5] with the basic aim of reducing the problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{N}}\left\{\|A x-b\|^{2}+\lambda\|L x\|^{2}\right\}, \quad \text { where } \lambda>0 \text { and } L=I_{N} \tag{2.1}
\end{equation*}
$$

to a problem of much smaller dimension. The idea is to project the matrix A onto the Krylov subspaces generated by A and the vector b, i.e., $\mathcal{K}_{m}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{m-1} b\right\}$, with $m \ll N$. The method was also introduced to avoid the matrix-vector multiplication with
A^{T} required by Lanczos type schemes (see e.g [3], [5], [10], [15]). To construct the Krylov subspaces, the AT method employs the Arnoldi algorithm, which yields the decomposition

$$
\begin{equation*}
A V_{m}=V_{m+1} \bar{H}_{m} \tag{2.2}
\end{equation*}
$$

where $V_{m+1}=\left[v_{1}, \ldots, v_{m+1}\right] \in \mathbb{R}^{N \times(m+1)}$ has orthonormal columns which span the Krylov subspace $\mathcal{K}_{m+1}(A, b)$ and v_{1} is defined as $b /\|b\|$. The matrix $\bar{H}_{m} \in \mathbb{R}^{(m+1) \times m}$ is an upper Hessenberg matrix. Denoting by $h_{i, j}$ the entries of \bar{H}_{m}, in exact arithmetics the Arnoldi process arrests whenever $h_{m+1, m}=0$, which means $\mathcal{K}_{m+1}(A, b)=\mathcal{K}_{m}(A, b)$.

The AT method searches for approximations of the solution of the problem (2.1) belonging to $\mathcal{K}_{m}(A, b)$. In this sense, replacing $x=V_{m} y_{m}\left(y_{m} \in \mathbb{R}^{m}\right)$ into (2.1), yields the reduced minimization problem

$$
\begin{equation*}
\min _{y_{m} \in \mathbb{R}^{m}}\left\{\left\|\bar{H}_{m} y_{m}-V_{m+1}^{T} b\right\|^{2}+\lambda\left\|y_{m}\right\|^{2}\right\} \tag{2.3}
\end{equation*}
$$

since $V_{m+1}^{T} V_{m+1}=I_{m+1}$. Remembering that $v_{1}=b /\|b\|$ we also have

$$
V_{m+1}^{T} b=\|b\| e_{1} \quad \text { where } e_{1}=(1,0, \ldots, 0)^{T} \in \mathbb{R}^{m+1}
$$

Looking at (2.3), we can say that the AT method can be regarded to as a regularized version of the GMRES.

The method considered in this paper is an extension of the AT method in order to work with one or more regularization operators not necessary equal to the identity matrix. In details, replacing, as before, $x=V_{m} y_{m}\left(y_{m} \in \mathbb{R}^{m}\right)$ into (1.2) and using (2.2), we have that

$$
\begin{align*}
\min _{x \in \mathcal{K}_{m}(A, b)} J(x, \Lambda, \mathcal{L}) & =\min _{y_{m} \in \mathbb{R}^{m}}\left\{\left\|\bar{H}_{m} y_{m}-\right\| b\left\|e_{1}\right\|^{2}+\sum_{i=1}^{k} \lambda_{i}\left\|L_{i} V_{m} y_{m}\right\|^{2}\right\} \tag{2.4}\\
& =\min _{y_{m} \in \mathbb{R}^{m}}\left\|\left(\begin{array}{c}
\bar{H}_{m} \\
\sqrt{\lambda_{1}} L_{1} V_{m} \\
\vdots \\
\sqrt{\lambda_{k}} L_{k} V_{m}
\end{array}\right) y_{m}-\left(\begin{array}{c}
\|b\| e_{1} \\
0 \\
\vdots \\
0
\end{array}\right)\right\|^{2} \tag{2.5}
\end{align*}
$$

In the sequel we will refer to (2.5) as least squares formulation of the multi-parameter ArnoldiTikhonov method. We emphasize that the above strategy can be applied even when the regularization matrices are rectangular, as for instance when considering scaled finite differences approximations of the derivative operators. However we remark that, contrary to (2.3), the original dimension of the problem is only partially reduced, since $L_{i} V_{m} \in \mathbb{R}^{(N-p) \times m}$ if $L_{i} \in \mathbb{R}^{(N-p) \times N}$.

Anyway, since $\bar{H}_{m}=V_{m+1}^{T} A V_{m}$, if $L_{i} \in \mathbb{R}^{N \times N}, i=1, \ldots, k$, one may even consider the projected operators

$$
\begin{equation*}
K_{i}^{(m)}=V_{m+1}^{T} L_{i} V_{m} \tag{2.6}
\end{equation*}
$$

and hence the reduced minimization

$$
\begin{equation*}
\min _{y_{m} \in \mathbb{R}^{m}}\left\{\left\|\bar{H}_{m} y_{m}-\right\| b\left\|e_{1}\right\|^{2}+\sum_{i=1}^{m} \lambda_{i}\left\|K_{i}^{(m)} y_{m}\right\|^{2}\right\} \tag{2.7}
\end{equation*}
$$

The problem (2.7) is not equivent to the original one (2.4), but many numerical experiments have revealed that the use of (2.6) is worth of further investigation. However, it is important to
point out that, in fact, the computational cost associated to the solution of (2.7) is comparable with the one of (2.5), because of the operation (2.6).

Finally, we remark that if an initial approximation x_{0} of the solution \bar{x} is available, then we can incorporate it into the Arnoldi-Tikhonov scheme by defining the initial residual $r_{0}=b-A x_{0}$ and by considering the Krylov subspaces $\mathcal{K}_{m}\left(A, r_{0}\right)$. Consequently, the approximate solution of the problem (1.2) is of the form $x_{m}=x_{0}+V_{m} y_{m}$ and in the expressions (2.3), (2.4), (2.5), (2.7) we simply have to substitute b with r_{0} (cf. [7]).
3. The parameter selection strategy. As already said in the Introduction, if we assume to know the quantity $\varepsilon=\|b-\bar{b}\|$, it turns out that a successful strategy to define Λ, as well as a stopping criterium, is the discrepancy principle (1.3) adapted to the iterative setting of the AT method. At each iteration we can define the function $\phi^{(m)}(\Lambda)=\left\|b-A x_{\Lambda}^{(m)}\right\|$, and we say that the discrepancy principle is satisfied as soon as

$$
\phi^{(m)}(\Lambda) \leq \eta \varepsilon, \quad \text { where } \quad \eta \gtrsim 1
$$

We remark that, if we rather know the noise level $\widetilde{\varepsilon}=\|e\| /\|\bar{b}\|$, then the discrepancy principle reads

$$
\begin{equation*}
\phi^{(m)}(\Lambda)=\eta \widetilde{\varepsilon}\|b\| . \tag{3.1}
\end{equation*}
$$

We immediately note that, since for the AT method the approximations are of the form $x_{\Lambda}^{(m)}=$ $V_{m} y_{\Lambda}^{(m)} \in \mathcal{K}_{m}(A, b)$, where $y_{\Lambda}^{(m)}$ solves (2.5), the discrepancy can be rewritten as

$$
\begin{equation*}
\phi^{(m)}(\Lambda)=\left\|b-A V_{m} y_{\Lambda}^{(m)}\right\|=\left\|c-\bar{H}_{m} y_{\Lambda}^{(m)}\right\|, \tag{3.2}
\end{equation*}
$$

where $c=\|b\| e_{1} \in \mathbb{R}^{m+1}$.
Now we briefly focus on the case $k=1$, since the strategy derived to choose the components of the regularization vector Λ in the multi-parameter case is a generalization of the algorithm adopted in the single-parameter case.
3.1. The one-parameter case. As in Section 2, here we denote the unique regularization parameter and operator simply by λ and L, respectively. We underline that the method that we are going to describe has been introduced in [7], and is able to simultaneously determine suitable values for λ and m. Our basic hypothesis is that the discrepancy can be well approximated by

$$
\begin{equation*}
\phi^{(m)}(\lambda) \approx \alpha^{(m)}+\lambda \beta^{(m)} \tag{3.3}
\end{equation*}
$$

i.e., by a linear function with respect to λ, in which $\alpha^{(m)}, \beta^{(m)} \in \mathbb{R}$ can be easily computed or approximated.

Since $y_{\lambda}^{(m)}$ solves the normal equations

$$
\left(\bar{H}_{m}^{T} \bar{H}_{m}+\lambda V_{m}^{T} L^{T} L V_{m}\right) y_{\lambda}^{(m)}=\bar{H}_{m}^{T} c
$$

associated to the least square problem (2.5) with $k=1$, by (3.2) we obtain

$$
\begin{equation*}
\phi^{(m)}(\lambda)=\left\|\bar{H}_{m}\left(\bar{H}_{m}^{T} \bar{H}_{m}+\lambda V_{m}^{T} L^{T} L V_{m}\right)^{-1} \bar{H}_{m}^{T} c-c\right\| . \tag{3.4}
\end{equation*}
$$

For what concerns the computation of $\alpha^{(m)}$ in (3.3), the Taylor expansion of (3.4) suggests to chose

$$
\begin{equation*}
\alpha^{(m)}=\phi^{(m)}(0)=\left\|\bar{H}_{m}\left(\bar{H}_{m}^{T} \bar{H}_{m}\right)^{-1} \bar{H}_{m}^{T} c-c\right\| \tag{3.5}
\end{equation*}
$$

which is just the norm of the residual of the GMRES, which can be evaluated working in reduced dimension, by solving the least squares problem

$$
\begin{equation*}
\min _{y \in \mathbb{R}^{m}}\left\|\bar{H}_{m} y-c\right\| . \tag{3.6}
\end{equation*}
$$

For what concerns $\beta^{(m)}$, suppose that, at step m, we have used the parameter $\lambda^{(m-1)}$ (obtained at the previous step or, if $m=1$, given by the user) to compute $y_{\lambda(m-1)}^{(m)}$ by solving (2.5) with $\lambda=\lambda^{(m-1)}$. The corresponding discrepancy is

$$
\begin{equation*}
\phi^{(m)}\left(\lambda^{(m-1)}\right)=\left\|c-\bar{H}_{m} y_{\lambda(m-1)}^{(m)}\right\|, \tag{3.7}
\end{equation*}
$$

and consequently, using the approximation (3.3), we obtain

$$
\begin{equation*}
\beta^{(m)}=\frac{\phi^{(m)}\left(\lambda^{(m-1)}\right)-\alpha^{(m)}}{\lambda^{(m-1)}} . \tag{3.8}
\end{equation*}
$$

To select $\lambda^{(m)}$ for the next step of the Arnoldi-Tikhonov algorithm we impose

$$
\begin{equation*}
\phi^{(m)}\left(\lambda^{(m)}\right)=\eta \varepsilon \tag{3.9}
\end{equation*}
$$

and we force the approximation

$$
\begin{equation*}
\phi^{(m)}\left(\lambda^{(m)}\right)=\alpha^{(m)}+\lambda^{(m)} \beta^{(m)} ; \tag{3.10}
\end{equation*}
$$

Hence, by (3.8) and (3.9), we define

$$
\begin{equation*}
\lambda^{(m)}=\frac{\eta \varepsilon-\alpha^{(m)}}{\phi^{(m)}\left(\lambda^{(m-1)}\right)-\alpha^{(m)}} \lambda^{(m-1)} . \tag{3.11}
\end{equation*}
$$

The method (3.11) has a simple geometric interpretation which allows to see it as a zero finder. Indeed, with this choice of $\alpha^{(m)}$ and $\beta^{(m)}$, the function $\phi^{(m)}(\lambda)$ is linearly interpolated at $\left(0, \alpha^{(m)}\right)$ and $\left(\lambda^{(m-1)}, \phi^{(m)}\left(\lambda^{(m-1)}\right)\right)$; looking at (3.10), we understand that, at each iteration of the Arnoldi-Tikhonov method, a step of a secant-like zero-finder for the solution of (3.9) is performed (see again [7]).

We remark that in the very first iterations of (3.11) instability can occur, due to the fact that we may have $\alpha^{(m)} \gg \eta \varepsilon$. In this situation the result of (3.11) may be negative (recall that the function $\phi^{(m)}(\lambda)$ is increasing and is only defined for $\lambda>0$); therefore we consider

$$
\begin{equation*}
\lambda^{(m)}=\left|\frac{\eta \varepsilon-\alpha^{(m)}}{\phi^{(m)}\left(\lambda^{(m-1)}\right)-\alpha^{(m)}}\right| \lambda^{(m-1)} . \tag{3.12}
\end{equation*}
$$

Numerically, formula (3.12) is very stable, in the sense that after the discrepancy principle is satisfied, $\lambda^{(m)} \approx$ const for growing values of m. We address the fact that this parameter choice technique can also be used together with the Range-Restricted approach [11] and even in the case of Krylov methods based on the Lanczos unsymmetric process [5].

Finally we note that, with respect to the strategies used so far in connection with the AT method, the present one is intrinsically simpler and cheaper; indeed it essentially involves quantities that are strictly connected to the projected problem and the only additional computations are performed in reduced dimension. More specifically, the computation of the GMRES residual requires $O\left(m^{2}\right)$ operations (if the QR update is not employed, otherwise in just $O(m)$).
3.2. The multi-parameter case. As pointed out by many works in literature (cf. for example [4] and [12]), the most natural way to face a multi-parameter problem is to first solve some single-parameter problems, one for each regularization matrix, and then to find a connection between all the problems. In our case, at the m-th step of the Arnoldi-Tikhonov algorithm and for a given $j, 1 \leq j \leq k$, we consider the problem

$$
\min _{y_{m} \in \mathbb{R}^{m}}\left\|\left(\begin{array}{c}
\bar{H}_{m} \tag{3.13}\\
\sqrt{\lambda_{1}^{(m)}} L_{1} V_{m} \\
\vdots \\
\sqrt{\lambda_{j-1}^{(m)}} L_{j-1} V_{m} \\
\sqrt{\lambda} L_{j} V_{m}
\end{array}\right) y_{m}-\left(\begin{array}{c}
\|b\| e_{1} \\
0 \\
\vdots \\
0 \\
0
\end{array}\right)\right\|^{2}
$$

which is a j-parameter Arnoldi-Tikhonov scheme; it can also be regarded as a reduced version of the system (2.5), where the corresponding regularization vector is

$$
\begin{equation*}
\Lambda=\left(\left(\Lambda_{j-1}^{(m)}\right)^{T}, \lambda, 0, \ldots, 0\right)^{T}, \quad \text { where } \quad \Lambda_{j-1}^{(m)}=\left(\lambda_{1}^{(m)}, \ldots, \lambda_{j-1}^{(m)}\right)^{T} \tag{3.14}
\end{equation*}
$$

According to the notation that we have used in the one-parameter case, this means that we have already solved, in a sequential way, $(j-1)$ reduced problems obtained adding to the original projected problem (3.6) a new regularization term and that we have determined the suitable regularization parameters $\lambda_{1}^{(m)}, \ldots, \lambda_{j-1}^{(m)}$, for the problems so far considered. Therefore, now the task is to determine the parameter $\lambda_{j}^{(m)}$; since we only have to update one parameter, we can resume the strategy employed for the single parameter AT method. We define the function

$$
\begin{equation*}
\phi_{j}^{(m)}(\lambda)=\phi^{(m)}(\Lambda)=\left\|c-\bar{H}_{m} y_{\Lambda, j}^{(m)}\right\|, \quad \Lambda=\left(\left(\Lambda_{j-1}^{(m)}\right)^{T}, \lambda, 0, \ldots, 0\right)^{T} \tag{3.15}
\end{equation*}
$$

where $y_{\Lambda, j}^{(m)}$ is the solution of (3.13). In this framework, the normal equations associated to the problem (3.13) are

$$
\left(\bar{H}_{m}^{T} \bar{H}_{m}+\sum_{i=1}^{j-1} \lambda_{i}^{(m)} V_{m}^{T} L_{i}^{T} L_{i} V_{m}+\lambda V_{m}^{T} L_{j}^{T} L_{j} V_{m}\right) y_{\Lambda, j}^{(m)}=\bar{H}_{m}^{T} c .
$$

As before, we are looking for a linear approximation, with respect to the parameter λ, of the discrepancy associated to the reduced multi-parameter problem so far considered, i.e.,

$$
\begin{equation*}
\phi_{j}^{(m)}(\lambda) \approx \alpha_{j}^{(m)}+\lambda \beta_{j}^{(m)} . \tag{3.16}
\end{equation*}
$$

Analogously to the one-parameter case, to obtain $\alpha_{j}^{(m)}$ we consider $\lambda=0$, that is

$$
\begin{equation*}
\alpha_{j}^{(m)}=\phi_{j}^{(m)}(0)=\left\|\bar{H}_{m}\left(\bar{H}_{m}^{T} \bar{H}_{m}+\sum_{i=1}^{j-1} \lambda_{i}^{(m)} V_{m}^{T} L_{i}^{T} L_{i} V_{m}\right)^{-1} \bar{H}_{m}^{T} c-c\right\| . \tag{3.17}
\end{equation*}
$$

Observing the above expression we see that now we have to deal with the discrepancy associated to the $(j-1)$-parameter method with vector of the regularization parameters given by $\Lambda_{j-1}^{(m)}$. Using the definition (3.15) we also have

$$
\begin{equation*}
\alpha_{j}^{(m)}=\phi_{j-1}^{(m)}\left(\lambda_{j-1}^{(m)}\right) . \tag{3.18}
\end{equation*}
$$

We emphasize that, to obtain the quantity $\alpha_{j}^{(m)}$, we have to solve again the $(j-1)$-parameter problem with the regularization vector given by $\Lambda_{j-1}^{(m)}$. Of course, when $j=1$, the determination of $\lambda_{1}^{(m)}$ again requires the computation of the solution of the problem (3.6) as in the mono-parameter case, i.e., $\alpha_{1}^{(m)}=\phi_{1}^{(m)}(0)$ is still the residual of the GMRES.

For what concerns the quantity $\beta_{j}^{(m)}$, once we have solved (3.13) for $\lambda=\lambda_{j}^{(m-1)}$, we obtain

$$
\begin{equation*}
\phi_{j}^{(m)}\left(\lambda_{j}^{(m-1)}\right)=\left\|c-\bar{H}_{m} y_{\Lambda, j}^{(m)}\right\|, \quad \Lambda=\left(\left(\Lambda_{j-1}^{(m)}\right)^{T}, \lambda_{j}^{(m-1)}, 0, \ldots, 0\right)^{T}, \tag{3.19}
\end{equation*}
$$

and consequently, using the approximation (3.16), we get

$$
\beta_{j}^{(m)}=\frac{\phi_{j}^{(m)}\left(\lambda_{j}^{(m-1)}\right)-\alpha_{j}^{(m)}}{\lambda_{j}^{(m-1)}} .
$$

Finally, imposing $\phi_{j}^{(m)}\left(\lambda_{j}^{(m)}\right)=\eta \varepsilon$ and forcing again (3.16), we compute the new j-th component of the regularization vector as

$$
\lambda_{j}^{(m)}=\frac{\eta \varepsilon-\alpha_{j}^{(m)}}{\phi_{j}^{(m)}\left(\lambda_{j}^{(m-1)}\right)-\alpha_{j}^{(m)}} \lambda_{j}^{(m-1)} .
$$

As in the one-parameter case, the computation of each $\lambda_{j}^{(m)}, j=1, \ldots, k$ can be meaningless for the first few iterations, since $\eta \varepsilon$ is above $\alpha_{j}^{(m)}$ and the values of $\lambda_{j}^{(m)}$ are therefore negative. For this reason we actually consider

$$
\begin{equation*}
\lambda_{j}^{(m)}=\left|\frac{\eta \varepsilon-\alpha_{j}^{(m)}}{\phi_{j}^{(m)}\left(\lambda_{j}^{(m-1)}\right)-\alpha_{j}^{(m)}}\right| \lambda_{j}^{(m-1)} . \tag{3.20}
\end{equation*}
$$

At this point, if $j<k$ we add a regularization term and we repeat the previous computation considering $(j+1)$ instead of j; otherwise, if $j=k$, the solution $y_{\Lambda, k}^{(m)}$ of (3.13) is indeed the solution of the complete multi-parameter problem (2.5). We stop the iterations as soon as $\phi^{(m)}(\Lambda) \leq \eta \varepsilon$.
3.3. Geometric interpretation. We close this section suggesting a geometric interpretation of the above proposed scheme. For simplicity we treat the case $k=2$, but the ideas exposed can be generalized to an arbitrary number of regularization terms. We fix an index m and a Cartesian coordinate system $\left(\lambda_{1}, \lambda_{2}, z\right)$. Considering $z=\phi^{(m)}\left(\lambda_{1}, \lambda_{2}\right)$ we obtain a differentiable surface in \mathbb{R}^{3}; solving (1.3) means finding the intersections between the just mentioned surface and the horizontal plane $z=\eta \varepsilon$ (see Figure 3.1, upper frame). The strategy described above prescribes to initially take $\lambda_{2}=0$; in this way we actually work on the plane $\left(\lambda_{1}, z\right)$ and the approximate solution $\lambda_{1}^{(m)}$ of $\phi^{(m)}\left(\lambda_{1}, 0\right)=\phi_{1}^{(m)}\left(\lambda_{1}\right)=\eta \varepsilon$ is the intersection between $z=\alpha_{1}^{(m)}+\lambda_{1} \beta_{1}^{(m)}$ and $z=\eta \epsilon$ if this scalar is positive, otherwise its absolute value (see Figure 3.1, lower leftmost frame). At this point we take $\lambda_{1}=\lambda_{1}^{(m)}$, that is, we work on the plane $\left(\lambda_{1}^{(m)}, \lambda_{2}, z\right)$; the new value $\lambda_{2}^{(m)}$ the approximate solution $\lambda_{2}^{(m)}$ of $\phi^{(m)}\left(\lambda_{1}^{(m)}, \lambda_{2}\right)=\phi_{2}^{(m)}\left(\lambda_{2}\right)=\eta \varepsilon$ is the intersection between $z=\alpha_{2}^{(m)}+\lambda_{2} \beta_{2}^{(m)}$ and $z=\eta \epsilon$ if this scalar is positive, otherwise its absolute value (see Figure 3.1, lower rightmost frame; in this case we display what happens when the quantity $\alpha_{2}^{(m)}$ is above the noise level $\eta \varepsilon)$.

FIG. 3.1. Geometric interpretation of the strategy proposed to find the values of the regularization parameters when performing Arnoldi-Tikhonov multi-parameter method in the case $k=2$.
4. Algorithms. In this section we summarize the above described method and we propose a computationally cheaper variant of the following algorithm.

Algorithm 4.1. Multi-parameter Arnoldi-Tikhonov

1. Input: $A, b, \mathcal{L}=\left\{L_{1}, \ldots, L_{k}\right\}, \Lambda=\left(\lambda_{1}^{(0)}, \ldots, \lambda_{k}^{(0)}\right), x_{0}, \varepsilon, \eta$
2. For $m=1,2, \ldots$ until $\left\|c-\bar{H}_{m} y_{\Lambda}^{(m)}\right\| \leq \eta \varepsilon$
(a) Update V_{m}, \bar{H}_{m} by the Arnoldi algorithm (2.2).
(b) For $j=1, \ldots k-1$
i. Solve (3.13) with the parameters $\left(\left(\Lambda_{j-1}^{(m)}\right)^{T}, \lambda_{j}^{(m-1)}\right)^{T}$ and evaluate $\phi_{j}^{(m)}\left(\lambda_{j}^{(m-1)}\right)$ by (3.19).
ii. Solve (3.13) with the parameters $\left(\left(\Lambda_{j-1}^{(m)}\right)^{T}, 0\right)^{T}$ and evaluate $\phi_{j}^{(m)}(0)$ by (3.19).
iii. Compute the new parameter $\lambda_{j}^{(m)}$ by (3.20) and then $\Lambda_{j}^{(m)}$ (cf. (3.14)).
(c) Compute the vector $y_{\Lambda}^{(m)}:=y_{\Lambda, k}^{(m)}$ by solving the complete problem (2.5), with $\Lambda=\left(\left(\Lambda_{k-1}^{(m)}\right)^{T}, \lambda_{k}^{(m-1)}\right)^{T}$.
(d) Compute the new parameter $\lambda_{k}^{(m)}$ by (3.20) and then update Λ.

3. Compute the approximate solution $x=V_{m} y_{\Lambda}^{(m)}$.

Algorithm 1 follows the lines of previous section, and hence requires to solve twice each reduced system (that is, for ech $j=1, \ldots, k$), in order to sequentially update the values of the components of the regularization vector Λ. There is however a cheaper alternative that consist in not using the updated values of the parameter. In other words, for $j=1, \ldots k-1$, we do not need to refresh $\lambda_{j}^{(m-1)}$ with $\lambda_{j}^{(m)}$, but we can work with the regularization vector $\left(\left(\Lambda_{j-1}^{(m-1)}\right)^{T}, \lambda_{j}^{(m-1)}\right)^{T}=\left(\lambda_{1}^{(m-1)}, \ldots, \lambda_{j-1}^{(m-1)}, \lambda_{j}^{(m-1)}\right)^{T}$ at Step 2bi. The new expression of $\alpha_{j}^{(m)}$ is now (cf. (3.18))

$$
\begin{equation*}
\alpha_{j}^{(m)}=\phi_{j-1}^{(m)}\left(\lambda_{j-1}^{(m-1)}\right) . \tag{4.1}
\end{equation*}
$$

This alternative approach, described by Algorithm 4.2, needs only one solution of (3.13), for $j=1, \ldots, k$, at each step.

Algorithm 4.2. Multi-parameter Arnoldi-Tikhonov without update

1. Input: $A, b, \mathcal{L}=\left(L_{1}, \ldots, L_{k}\right), \Lambda=\left(\lambda_{1}^{(0)}, \ldots, \lambda_{k}^{(0)}\right), x_{0}, \varepsilon, \eta$
2. For $m=1,2, \ldots$ until $\left\|c-\bar{H}_{m} y_{\Lambda}^{(m)}\right\| \leq \eta \varepsilon$
(a) Update V_{m}, \bar{H}_{m} by the Arnoldi algorithm (2.2).
(b) For $j=1, \ldots k$
i. Solve (3.13) with the parameters $\left(\Lambda_{j-1}^{(m-1)}\right)^{T}$ and evaluate $\phi_{j}^{(m)}\left(\lambda_{j}^{(m-1)}\right)$ by (3.19).
ii. Take $\alpha_{j}^{(m)}$ as in (4.1).
iii. Compute the new parameter $\lambda_{j}^{(m)}$ by (3.20).
(c) Update the vector $\Lambda=\left(\lambda_{1}^{(m)}, \ldots, \lambda_{k}^{(m)}\right)$.
3. Compute the approximate solution $x=V_{m} y_{\Lambda^{(m-1)}}^{(m)}$.

The numerical tests reported in the Appendix show that this strategy can compute regularized solutions whose relative error is still comparable to the one of the solutions obtained running Algorithm 4.1. However, the number of iterations required to return the solution is, on average, higher than the one related to the former method.

REMARK 4.3. In our computations both Algorithm 4.1 and Algorithm 4.2 have been implemented with some minor changes regarding the stopping criterium. Indeed we have employed a sort of weakened discrepancy principle, that is, we arrest the iterations as soon as

$$
\begin{equation*}
\phi^{(m)}(\lambda)-\eta \widetilde{\varepsilon}\|b\|<10^{\theta}, \tag{4.2}
\end{equation*}
$$

where $\theta<0$ is automatically determined as the sum of the order of the noise level $\widetilde{\varepsilon}$ and of the order of the last significant digit of η. In this way, when applying the discrepancy principle, we neglect any quantity coming after the last significant digit of the product $\widetilde{\varepsilon} \eta$. For instance, if $\widetilde{\varepsilon}=10^{-2}$ and $\eta=1.01$ then $\theta=-4$ and we stop the iterations as soon as

$$
\phi^{(m)}(\lambda) /\|b\| \leq 1.01 \cdot 10^{-2}+9 . \overline{9} \cdot 10^{-5} .
$$

We remark that, if the "classical"discrepancy principle (3.1) is fulfilled, then also (4.2) is satisfied. We introduced this weakened version of the discrepancy principle because, while executing the numerical experiments, we noted that very often the discrepancy stagnates slightly above the prescribed threshold without crossing it and, performing too many iterations, the quality of the approximate solution deteriorates.

At the same time we decide to enforce the stopping criterium in order to assure that not only the solution $y_{\Lambda}^{(m)}$ of the complete problem but also all the solutions of the reduced regularization problems satisfy the weakened discrepancy principle (4.2), that is, $\phi_{j}^{(m)}\left(\lambda_{j}^{(m-1)}\right)$ $\eta \widetilde{\varepsilon}\|b\|<10^{\theta} \forall j=1, \ldots, k-1$. This is a quite natural choice, since the solution of the multiparameter problem is built taking into account the k solutions of the associated one-parameter problems.
5. Numerical Experiments. In this section we test the behavior of Algorithm 4.1 to solve the multi-parameter problem. We believe that the best way to validate the method just described is to make suitable comparisons with what happens in the one-parameter case; in the sequel we will explain the details and the goal of each experiment. We will exclusively focus on the two-parameter and the three-parameter cases. All the test problems are taken from Hansen's package Regularization Tools [8].

In all the examples we suppose to know the exact solution \bar{x} and the exact right-hand side vector is either given in [8] or constructed taking $\bar{b}=A \bar{x}$. The elements of the noise vector e are normally distributed with zero mean and the standard deviation is chosen such that $\|e\| /\|\bar{b}\|$ is equal to a prescribed level $\widetilde{\varepsilon}$. Moreover we always consider the initial guess $x_{0}=0$, we set $\eta=1.01$ and $\Lambda=(1, \ldots, 1)^{T} \in \mathbb{R}^{k}$. Each test problem is generated 100 times, to reduce the dependence of the results on the random components of the vector e. All the computations have been executed using Matlab 7.10 with 16 significant digits on a single processor computer Intel Core i3-350M.

Before describing each test, we list the regularization matrices that we have employed:

- the identity matrix $I_{N} \in \mathbb{R}^{N \times N}$.
- Scaled finite difference approximations of the first and second order derivatives, i.e.

$$
\begin{align*}
& D_{1}:=\left(\begin{array}{cccc}
1 & -1 & & \\
& \ddots & \ddots & \\
& & 1 & -1
\end{array}\right) \in \mathbb{R}^{(N-1) \times N}, \tag{5.1}\\
& D_{2}:=\left(\begin{array}{ccccc}
1 & -2 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & -2 & 1
\end{array}\right) \in \mathbb{R}^{(N-2) \times N}, \tag{5.2}
\end{align*}
$$

whose null-spaces are given by $\mathcal{N}\left(D_{1}\right)=\operatorname{span}\left\{(1,1, \ldots, 1)^{T}\right\} \subset \mathbb{R}^{N}$ and $\mathcal{N}\left(D_{2}\right)=$ $\operatorname{span}\left\{(1,1, \ldots, 1)^{T},(1,2, \ldots, N)^{T}\right\} \subset \mathbb{R}^{N}$.

- Square projection matrices built using the strategy suggested in [13]: given $M \in$ $\mathbb{R}^{N \times \ell}$ we compute the "skinny" QR factorization $M=W R$ (where $W \in \mathbb{R}^{N \times \ell}$ and $R \in \mathbb{R}^{\ell \times \ell}$) and we take, as regularization matrix,

$$
\begin{equation*}
L:=I_{N}-W W^{T} \in \mathbb{R}^{N \times N} . \tag{5.3}
\end{equation*}
$$

In this way the null space of L is spanned by the orthonormal columns of W. This kind of matrix is particularly useful when we want to consider a regularization operator with a given null-space different from the ones of the commonly used operators (5.1) and (5.2).
5.1. Results obtained considering particular solutions. The aim of the first set of performed experiments is to show that, when applying the multi-parameter method to a problem whose exact solution \bar{x} lies in the null space of the regularization operator L_{i}, the parameter selection strategy correctly weights the i-th component of the regularization vector Λ, by
assigning to λ_{i} a value dominating the other components. Indeed, in this situation, the regularization operator L_{i} is the most suitable one, since the important features of the solution are not damped. Therefore we start to consider two particular exact solutions: the constant one, $\bar{x}_{c}:=(1,1, \ldots, 1)^{T} \in \mathbb{R}^{N}$, and the linear one, $\bar{x}_{l}:=(1,2, \ldots, N)^{T} \in \mathbb{R}^{N}$; as recalled in the above list, $\bar{x}_{c} \in \mathcal{N}\left(D_{1}\right) \cap \mathcal{N}\left(D_{2}\right)$, while $\bar{x}_{l} \in \mathcal{N}\left(D_{2}\right)$. For this reason we will employ both the two and three-parameter methods with different combinations of the regularization matrices I_{N}, D_{1} and D_{2}.

First of all we take the solution \bar{x}_{c} and we consider the matrix of size $N=200$ associated to the problem i_laplace. The noise level involved is $\widetilde{\varepsilon}=10^{-2}$ and we determine a regularized solution by using the $\left(I_{200}, D_{1}\right)$ two-parameter method. To be aware of what

FIG. 5.1. Comparisons of the relative errors and the regularization parameters obtained applying the I_{200} one-parameter (circle), the D_{1} one-parameter (square) and the $\left(I_{200}, D_{1}\right)$ two-parameter method (asterisk) to the test problem i_laplace with the particular solution \bar{x}_{c}.
happens using the single parameter Tikhonov method, for each test we also report the results obtained considering exclusively $L=I_{200}$ and $L=D_{1}$. We display the results in Figure 5.1. We can clearly see that, with very few exceptions, the components of the regularization vector associated to I_{200} and D_{1} replicate the behavior of the parameter of the Tikhonov method with $L=I_{200}$ and $L=D_{1}$, respectively. This means that, in the regularization process, the most appropriate regularization operator, in this case D_{1}, weights more than the others. In almost all cases, the solutions of the I_{200} and D_{1} one-parameter method belong to Krylov subspaces of dimension 5 and 6, respectively, while most of the solutions associated to the two-parameter method belong to Krylov subspaces of dimension 6 or 7. In Figure 5.2 we focus on a single test and we display the course of the relative error, the regularization parameters and the discrepancies of the examined methods at each step of the Arnoldi algorithm. Looking at both figures we can see that the quality of the solutions computed by the multi-parameter method do not improve with respect to the results associated to the D_{1} mono-parameter method. However this is quite reasonable since, as said in the Introduction,

FIG. 5.2. Behavior of the relative errors, regularization parameters and discrepancies versus the number of iterations for the test problem i_laplace with solution \bar{x}_{c}. Upper box: we consider the multi-parameter method (asterisk), the I_{200} one-parameter method (circle) and of the D_{1} one-parameter method (square); middle box: we display the parameters λ_{1} (asterisk with dashed line) and λ_{2} (asterisk with dash-dot line) and the parameters of two one-parameter methods considered above (with the same marker listed above); lower box: the norm of the residual of the GMRES over $\|b\|$ (circle) and the discrepancies $\phi_{1}^{(m)} /\|b\|$ (square), $\phi_{2}^{(m)} /\|b\|$ (diamond).

FIG. 5.3. Comparisons of the relative errors and the regularization parameters obtained applying the oneparameter methods and the three-parameter method to the test problem phillips with the particular solution \bar{x}_{l}.

Fig. 5.4. Behavior of the relative errors, regularization parameters and discrepancies versus the number of iterations for the test problem shaw with solution \bar{x}_{l}. The displayed quantities are the same as in Figure 5.2 and are denoted by the same markers; in addition, in the upper box we visualize the D_{2} mono-parameter method (diamond), in the middle box the parameter λ_{3} (asterisk with solid line) of the multi-parameter method and the parameter of D_{2} mono-parameter method (diamond) and in the lower box the discrepancy $\phi_{3}^{(m)} /\|b\|$ (hexagram).
the task of the multi-parameter methods is to preserve many different features of the solution; when, as in this case, the solution belongs to the null space of one of the considered operator, the mono-parameter method with that regularization operator is the one that works better. Now we consider the matrix associated to the problem phillips with $N=200$ and we take, as exact solution, the linear one \bar{x}_{l}; the noise level is again $\widetilde{\varepsilon}=10^{-2}$. We compute the regularized solution employing the three-parameter method with regularization matrices $L_{1}=I_{200}, L_{2}=D_{1}$ and $L_{3}=D_{2}$. We display the results in Figure 5.3, together with what we have obtained treating the same problem with the I_{200}, D_{1}, D_{2} one-parameter methods. Even in this case the parameter selection strategy can still automatically weight the regularization matrices, assigning the highest parameter to the matrix whose null space contains the exact solution (in this case, D_{2}). Regarding the number of iterations required to satisfy the weakened discrepancy principle, the three-parameter method needs in most of the cases 8,11 or 13 iterations, the I_{200} mono-parameter method needs 7 or 8 iterations while both the D_{1} and D_{2} mono-parameter methods require 8 or 9 iterations. As in the two-parameter case, in Figure 5.4 we show the values of the relative errors, of the regularization parameters and of the discrepancy versus the number of iterations.

The method has been experimented on the most popular test problems of [8], all of dimension $N=200$, using the two particular solutions \bar{x}_{C} and \bar{x}_{L}. We also consider two different noise levels ($\widetilde{\varepsilon}=10^{-2}$ and $\widetilde{\varepsilon}=5 \cdot 10^{-2}$) and several combinations of regularization operators. We summarize the obtained results in Table A.1, Table A.2, Table A. 3 and Table A. 4 reported in the Appendix.

Finally we propose the results of a couple of experiments built considering the artificial solutions

$$
\begin{gather*}
\bar{x}_{\sin }=x^{(a)}+x^{(b)}:=10 \sin \left(\frac{x}{2}\right)+x \in \mathbb{R}^{N}, \tag{5.4}\\
\bar{x}_{\mathrm{tan}}=x^{(a)}+x^{(b)}:=\frac{1}{10} \tan \left(\frac{x}{N+1} \frac{\pi}{2}\right)+x \in \mathbb{R}^{N} . \tag{5.5}
\end{gather*}
$$

$\bar{x}_{\text {sin }}$ is oscillating while $\bar{x}_{\text {tan }}$ is quickly increasing. This test is motivated by the fact that the so far considered couple of matrices (5.1) and (5.2) indeed represents a particular situation, since $\mathcal{N}\left(D_{1}\right) \subset \mathcal{N}\left(D_{2}\right)$. Taking instead the solution (5.4) or (5.5), by (5.3) we can build two particular regularization matrices $L^{(a)}$ and $L^{(b)}$ such that $x^{(a)} \in \mathcal{N}\left(L^{(a)}\right), x^{(b)} \in \mathcal{N}\left(L^{(b)}\right)$ and $\mathcal{N}\left(L^{(a)}\right) \cap \mathcal{N}\left(L^{(b)}\right)=\{0\}$. As consequence, both $\bar{x}_{\text {sin }}$ and $\bar{x}_{\text {tan }}$ don't belong to the null space of the matrices $L^{(a)}$ or $L^{(b)}$. In this way we can really appreciate the essence of the multi-parameter methods, that is, as said in the Introduction, to preserve many different features of the solution of the original problem that may be distorted imposing only one regularization operator. For both solutions we consider the matrix $A \in \mathbb{R}^{200 \times 200}$ associated to the test problem foxgood, a noise level $\widetilde{\varepsilon}=10^{-2}$ and the regularization matrices $L_{1}=$ $L^{(a)}, L_{2}=L^{(b)}$. We display the results relative to (5.4) and (5.5) in Figure 5.5.
5.2. Results obtained considering more general solutions. In the second set of computed experiments we simply consider the most common test problems in [8] with their appropriate solution. We are just going to display some graphs that compare the performances of the new multi-parameter method and the usual Arnoldi-Tikhonov method. We will only consider the regularization matrices I_{N}, D_{1} and D_{2}.

In Figure 5.6 we display the behavior of the relative errors and the values of the regularization parameters obtained solving the test problem i_laplace of dimension $N=200$ with a noise of level $\widetilde{\varepsilon}=10^{-2}$ that affects the right-hand-side vector; we consider the I_{200} and D_{1} one-parameter methods and the $\left(D_{1}, I_{200}\right)$ two-parameter method. We remark that,

FIG. 5.5. Relative errors and values of the regularization parameters obtained employing the mono-parameter and multi-parameter methods with projection operator of the form (5.3) for the test problem foxgood. In the first and second frames the exact solution is $\bar{x}_{\sin }$ and in the third and fourth frames is $\bar{x}_{\tan }$.

FIG. 5.6. Relative errors and regularization parameters associated to the solution of the test problem i_laplace. We employ the mono-parameter method with regularization matrices $L=D_{1}$ and $L=I_{200}$ and we consider the two-parameter method with $L_{1}=D_{1}$ and $L_{2}=I_{200}$.
when performing the multi-parameter method, the results can be affected by the order in which the regularization matrices appear. Indeed, looking at the parameters selection strategy described in subsection 3.2, we can understand that the first matrix L_{1} is weighted similarly to in the one-parameter case, while the following ones work as correction. This is a consequence of the fact that many reduced problems are solved sequentially and each one is based on the solution and on the parameters associated to the previous ones; in this sense the first regularization operator is somehow advantaged with respect to the others. Therefore, if one has some intuition about the regularity of the solution, we suggest to put in the first place the most suitable regularization matrix. In Table A. 5 and in Table A. 6 reported in the Appendix we collect the results obtained considering the mono-parameter and the two and three-parameter methods with various combinations of the usual regularization matrices and two different noise levels.
5.3. Further considerations. In this subsection we highlight a couple of important features of the new method that we noted while performing the numerical experiments just described.

The first property is that the AT multi-parameter method is very robust with respect to the initial choice of the regularization vector Λ, that is, considering different values of the component of Λ, the accuracy of the results and the number of iterations are basically stable. In Figure 5.7 we display the values of the regularization parameters obtained by solving the test problem shaw of dimension $N=200$ and taking as exact solution the one given in [8]; the noise level is $\widetilde{\varepsilon}=10^{-2}$. We have employed the (I_{200}, D_{1}, D_{2}) three-parameter method and we have executed four tests considering the vector Λ whose three entries are all equal to $0.5,1,10$ or 100 . We can see that, except in the very first iterations, the behavior of

Fig. 5.7. Values of the components of the regularization vector Λ versus the number of iterations. The initial values considered are $\Lambda=(0.5,0.5,0.5)^{T}$ (diamond), $\Lambda=(1,1,1)^{T}$ (asterisk), $\Lambda=(10,10,10)^{T}($ circle $)$, $\Lambda=(100,100,100)^{T}($ square $)$.
each $\lambda_{i}, i=1,2,3$ is very similar independently on the value of $\lambda_{i}^{(0)}$. We have also tried to consider different components of the vector Λ and the results, even if not shown, are identical to the ones just described.

The second property is about the performance of the method when many extra iterations are executed after the stopping criterium is fulfilled. Despite we had to review the stopping criterium introducing the weakened discrepancy principle (cf. Section 4), we can appreciate

FIG. 5.8. Values of the relative error, of the discrepancies and of the regularization parameters versus the number of iterations for the problem shaw. In the second and third box, the circle denotes the quantities associated to the first regularization matrix, I_{200}, the diamond denotes the quantities associated to the second regularization matrix, D_{1}, and the square denotes the quantities associated to the third regularization matrix, D_{2}. This method would stop at the 9th iteration (denoted by the big asterisk), but we decide to run it till the 30th iteration.
that in many cases the behavior of the method is very stable even when we decide to go on with an arbitrary number of iterations. For instance, in Figure 5.8 we display what happens solving the problem shaw by the three-parameter method and considering, as before, $N=$ 200, $\widetilde{\varepsilon}=10^{-2}, L_{1}=I_{200}, L_{2}=D_{1}$ and $L_{3}=D_{2}$. Similar results have been obtained also for phillips and foxgood.
6. Conclusion. We have described a new strategy to work with multi-parameter Tikhonov method when an iterative scheme based on the Arnoldi algorithm is adopted. The parameters selection method is founded on the discrepancy principle and the algorithm to determine the suitable regularization parameters at each step of the Arnoldi algorithm is computationally very cheap, since it exclusively involves computations in reduced dimension. We have verified that the new method is able to automatically weight the regularization matrices, assigning to the most suitable ones a higher regularization parameter. The numerical experiments performed also show that, in many cases, the new method is able to improve the solution computed by means of the mono-parameter Arnoldi-Tikhonov method.

Appendix.

We report some tables that complete the results described in Section 5. The results shown are obtained performing, for each problem, 100 tests and taking the average of the relative errors, the average of each regularization parameter that appears in the method and the average of the number of iterations. The parameters λ_{1}, λ_{2} and λ_{3} are always associated to the regularization matrices I_{N}, D_{1} and D_{2}, respectively. When the multi-parameter method is concerned we report the results obtained applying both Algorithm 4.1 and Algorithm 4.2 (we mark the latter with the abbreviation WU within brackets next to the test name). The dimension of the problem is always $N=200$. Table A.1, Table A.2, Table A. 3 and Table A. 4 are referred to the test concerning particular solutions (constant and linear), while Table A. 5 and Table A. 6 are referred to the solution given in the routines of [8]. We consider different noise levels and we highlight the most interesting results using boldface.

Table A. 1
Constant solution \bar{x}_{c} with noise level $\widetilde{\varepsilon}=10^{-2}$.

	Relative Errors	λ_{1}	λ_{2}	λ_{3}	Iterations
baart	$1.0378 \mathrm{e}-001$	$6.7818 \mathrm{e}-004$	-	-	3.00
baart	$3.1941 \mathrm{e}-002$	-	$2.9526 \mathrm{e}+002$	-	3.36
baart	$4.6184 \mathrm{e}-002$	-	-	$1.5322 \mathrm{e}+003$	3.08
baart	$3.3079 \mathrm{e}-002$	$4.1362 \mathrm{e}-003$	$2.3190 \mathrm{e}+003$	-	3.40
baart (WU)	$3.8475 \mathrm{e}-002$	$2.3079 \mathrm{e}-003$	$1.0314 \mathrm{e}+003$	-	4.31
baart	$3.5972 \mathrm{e}-002$	5.8633e-003	-	$8.8528 \mathrm{e}+004$	3.34
baart (WU)	$4.6334 \mathrm{e}-002$	6.8556e-004	-	$1.5115 \mathrm{e}+004$	3.01
baart	$5.4689 \mathrm{e}-003$	-	$3.9761 \mathrm{e}+002$	$1.5605 \mathrm{e}+005$	4.01
baart (WU)	$6.3468 \mathrm{e}-003$	-	$3.3345 \mathrm{e}+002$	$6.4547 \mathrm{e}+005$	4.00
baart	$3.2744 \mathrm{e}-002$	$3.9987 \mathrm{e}-003$	$2.7437 \mathrm{e}+003$	$8.9722 \mathrm{e}+007$	3.48
baart (WU)	$2.5777 \mathrm{e}-003$	$3.7114 \mathrm{e}-003$	$8.3275 \mathrm{e}+003$	$2.0124 \mathrm{e}+009$	5.30
gravity	$7.6927 \mathrm{e}-002$	$2.7235 \mathrm{e}-002$	-	-	4.05
gravity	$3.5608 \mathrm{e}-002$	-	$1.2120 \mathrm{e}+002$	-	4.89
gravity	$3.7409 \mathrm{e}-002$	-	-	$7.5008 \mathrm{e}+003$	5.01
gravity	$3.6233 \mathrm{e}-002$	$4.3953 \mathrm{e}-002$	$5.0042 \mathrm{e}+001$	-	5.06
gravity (WU)	$3.6591 \mathrm{e}-002$	$3.5814 \mathrm{e}-002$	$9.1060 \mathrm{e}+001$	-	4.82
gravity	$3.7397 \mathrm{e}-002$	$4.6282 \mathrm{e}-002$	-	$1.8640 \mathrm{e}+002$	4.94
gravity (WU)	$3.7525 \mathrm{e}-002$	$3.7270 \mathrm{e}-002$	-	$2.6912 \mathrm{e}+003$	4.92
gravity	$3.0131 \mathrm{e}-002$	-	$2.9360 \mathrm{e}+002$	$1.8309 \mathrm{e}+004$	6.08
gravity (WU)	2.7768e-002	-	$3.8358 \mathrm{e}+002$	$2.3200 \mathrm{e}+004$	7.08
gravity	$3.1157 \mathrm{e}-002$	$5.7598 \mathrm{e}-002$	$4.7711 \mathrm{e}+001$	$3.1995 \mathrm{e}+003$	6.50
gravity (WU)	$2.6016 \mathrm{e}-002$	$6.3788 \mathrm{e}-002$	$2.6957 \mathrm{e}+002$	$7.3402 \mathrm{e}+003$	8.02
shaw	$1.9111 \mathrm{e}-001$	$8.2282 \mathrm{e}-004$	-	-	11.96
shaw	$1.0719 \mathrm{e}-001$	-	$9.6939 \mathrm{e}-001$	-	6.82
shaw	$1.4307 \mathrm{e}-001$	-	-	$1.7511 \mathrm{e}+002$	7.12
shaw	$1.2701 \mathrm{e}-001$	$1.1500 \mathrm{e}-003$	$6.5296 \mathrm{e}+000$	-	6.91
shaw (WU)	$9.5561 \mathrm{e}-002$	$8.9523 \mathrm{e}-004$	1.2847 e 1	-	7.65
shaw	$1.1748 \mathrm{e}-001$	$9.5530 \mathrm{e}+000$	-	$1.3175 \mathrm{e}+003$	7.44
shaw (WU)	$1.2813 \mathrm{e}-001$	$6.1538 \mathrm{e}+000$	-	$2.2507 \mathrm{e}+003$	7.82
shaw	$1.1748 \mathrm{e}-001$	-	$9.5530 \mathrm{e}+000$	$1.3175 \mathrm{e}+003$	7.44
shaw (WU)	$1.2813 \mathrm{e}-001$	-	$6.1538 \mathrm{e}+000$	$2.2507 \mathrm{e}+003$	7.82
shaw	$1.7063 \mathrm{e}-001$	$1.0023 \mathrm{e}-003$	$3.0629 \mathrm{e}+000$	$1.2808 \mathrm{e}+003$	7.65
shaw (WU)	$1.0891 \mathrm{e}-001$	$9.5358 \mathrm{e}-004$	$7.0005 \mathrm{e}+000$	$1.5660 \mathrm{e}+003$	8.38

Table A. 2
Constant solution \bar{x}_{c} with noise level $\widetilde{\varepsilon}=5 \cdot 10^{-2}$.

	Relative Errors	λ_{1}	λ_{2}	λ_{3}	Iterations
baart	$4.7271 \mathrm{e}-002$	$1.8289 \mathrm{e}-002$	-	-	3.03
baart	$4.6467 \mathrm{e}-002$	-	$2.6946 \mathrm{e}+002$	-	3.00
baart	$4.8727 \mathrm{e}-002$	-	-	$3.1295 \mathrm{e}+001$	3.00
baart (WU	$\mathbf{2 . 8 2 9 9 e - 0 0 2}$	$3.5002 \mathrm{e}-002$	$2.8047 \mathrm{e}+003$	-	3.81
baart (WU	$\mathbf{4 . 5 3 9 6 e - 0 0 2}$	$1.8319 \mathrm{e}-002$	$3.1644 \mathrm{e}+002$	-	3.01
baart	$5.6287 \mathrm{e}-002$	$3.5177 \mathrm{e}-002$	-	$6.1848 \mathrm{e}+004$	3.81
baart (WU)	$\mathbf{4 . 5 5 9 5 e - 0 0 2}$	$1.8319 \mathrm{e}-002$	-	$2.0673 \mathrm{e}+004$	3.01
baart (WU)	$\mathbf{4 . 1 1 8 6 e - 0 0 2}$	-	$2.6891 \mathrm{e}+003$	$3.5107 \mathrm{e}+006$	3.12
baart (WU)	$\mathbf{4 . 2 8 4 3 e - 0 0 2}$	-	$1.2127 \mathrm{e}+003$	$4.1811 \mathrm{e}+006$	3.09
baart (WU)	$\mathbf{2 . 9 6 8 4 e - 0 0 2}$	$3.4540 \mathrm{e}-002$	$2.8129 \mathrm{e}+003$	$7.0676 \mathrm{e}+006$	3.95
baart (W433e-002	$1.8319 \mathrm{e}-002$	$3.1644 \mathrm{e}+002$	$1.4420 \mathrm{e}+005$	3.01	
gravity	$1.4412 \mathrm{e}-001$	$6.2068 \mathrm{e}-002$	-	-	3.00
gravity	$7.3863 \mathrm{e}-002$	-	$1.0178 \mathrm{e}+003$	-	3.38
gravity	$7.6596 \mathrm{e}-002$	-	-	$5.8340 \mathrm{e}+002$	3.30
gravity	$7.5657 \mathrm{e}-002$	$8.9338 \mathrm{e}-002$	$2.6968 \mathrm{e}+001$	-	3.52
gravity (WU)	$\mathbf{5 . 9 1 4 7 e - 0 0 2}$	$1.7299 \mathrm{e}-001$	$1.4920 \mathrm{e}+003$	-	4.61
gravity	$7.6178 \mathrm{e}-002$	$9.4794 \mathrm{e}-002$	-	$7.9399 \mathrm{e}+002$	3.41
gravity (WU)	$7.7175 \mathrm{e}-002$	$6.9617 \mathrm{e}-002$	-	$1.6570 \mathrm{e}+003$	3.23
gravity	$\mathbf{5 . 6 4 4 3 e - 0 0 2}$	-	$3.4291 \mathrm{e}+003$	$1.0032 \mathrm{e}+005$	5.13
gravity (WU)	$\mathbf{5 . 7 0 9 6 e - 0 0 2}$	-	$2.1291 \mathrm{e}+003$	$1.7057 \mathrm{e}+005$	5.14
gravity (WU)	$7.5426 \mathrm{e}-002$	$1.1257 \mathrm{e}-001$	$3.4710 \mathrm{e}+001$	$1.6360 \mathrm{e}+004$	3.90
gravity (WU	$\mathbf{5 . 5 6 3 1 e - 0 0 2}$	$3.2129 \mathrm{e}-001$	$7.2494 \mathrm{e}+002$	$5.6887 \mathrm{e}+004$	10.39
shaw		$3.8658 \mathrm{e}-001$	$1.1241 \mathrm{e}-002$	-	-
shaw	$3.7087 \mathrm{e}-001$	-	$1.0679 \mathrm{e}+001$	-	4.73
shaw		$3.7499 \mathrm{e}-001$	-	-	$1.1396 \mathrm{e}+002$

TABLE A. 3
Linear solution \bar{x}_{l} with noise level $\widetilde{\varepsilon}=10^{-2}$.

	Relative Errors	λ_{1}	λ_{2}	λ_{3}	Iterations
gravity	$9.1882 \mathrm{e}-002$	$9.9070 \mathrm{e}-003$	-	-	5.88
gravity	$4.3925 \mathrm{e}-002$	-	$6.2429 \mathrm{e}+000$	-	6.60
gravity	$4.4210 \mathrm{e}-002$	-	-	$8.3509 \mathrm{e}+002$	6.60
gravity	$4.8555 \mathrm{e}-002$	$3.0927 \mathrm{e}-002$	-	$1.5557 \mathrm{e}+001$	6.32
gravity (WU)	$4.5759 \mathrm{e}-002$	$2.1120 \mathrm{e}-002$	-	$2.0771 \mathrm{e}+003$	6.85
gravity	4.0287e-002	-	$3.9018 \mathrm{e}+001$	$7.2829 \mathrm{e}+003$	7.96
gravity (WU)	$\mathbf{3 . 5 8 1 0 e - 0 0 2}$	-	$6.9289 \mathrm{e}+001$	$7.7211 \mathrm{e}+003$	9.39
gravity	$\mathbf{4 . 0 7 4 2 e - 0 0 2}$	$3.3236 \mathrm{e}-002$	$5.2950 \mathrm{e}+000$	$1.8860 \mathrm{e}+003$	8.15
gravity (WU)	$\mathbf{3 . 6 2 7 3 e - 0 0 2}$	$4.3565 \mathrm{e}-002$	$6.7350 \mathrm{e}+000$	$2.0170 \mathrm{e}+003$	12.37
phillips	$8.3395 \mathrm{e}-002$	$7.5351 \mathrm{e}-004$	-	-	3.88
phillips	$5.1312 \mathrm{e}-002$	-	$6.0850 \mathrm{e}+000$		4.79
phillips	$2.5810 \mathrm{e}-002$	-	-	$1.0223 \mathrm{e}+004$	3.70
phillips	$4.9806 \mathrm{e}-002$	$1.1568 \mathrm{e}-003$	-	$1.5404 \mathrm{e}+002$	3.76
phillips (WU)	$2.9860 \mathrm{e}-002$	$7.8084 \mathrm{e}-004$	-	$1.1637 \mathrm{e}+005$	3.73
phillips (WU)	$\mathbf{2 . 0 1 2 1 e - 0 0 2}$	-	$1.3793 \mathrm{e}+001$	$3.0215 \mathrm{e}+005$	5.34
phillips (WU37	$\mathbf{7 . 3 6 3 7 e - 0 0 3}$	-	$1.0211 \mathrm{e}+001$	$7.1454 \mathrm{e}+007$	5.82
phillips	$\mathbf{2 . 1 2 4 5 e - 0 0 2}$	$1.1547 \mathrm{e}-003$	$5.1765 \mathrm{e}+000$	$7.0991 \mathrm{e}+005$	4.03
phillips (WU)	$\mathbf{4 . 9 5 5 5 e - 0 0 3}$	$1.0063 \mathrm{e}-003$	$2.6263 \mathrm{e}+000$	$1.3782 \mathrm{e}+009$	6.12
shaw	$1.6558 \mathrm{e}-001$	$5.6169 \mathrm{e}-004$	-	-	8.04
shaw	$9.8639 \mathrm{e}-002$	-	$2.0738 \mathrm{e}+000$	-	7.05
shaw	$1.1969 \mathrm{e}-001$	-	-	$2.8091 \mathrm{e}+002$	7.90
shaw (WU)	$1.6111 \mathrm{e}-001$	$9.4367 \mathrm{e}-004$	-	$2.4475 \mathrm{e}+002$	7.60
shaw (WU)	$1.4970 \mathrm{e}-001$	$6.4663 \mathrm{e}-004$	-	$3.0588 \mathrm{e}+002$	8.65
shaw	$1.8624 \mathrm{e}-001$	-	$1.4567 \mathrm{e}+003$	$7.5914 \mathrm{e}+003$	10.66
shaw (WU)	$1.8275 \mathrm{e}-001$	-	$1.6192 \mathrm{e}+003$	$6.4621 \mathrm{e}+004$	12.87
shaw	$1.5545 \mathrm{e}-001$	$7.2387 \mathrm{e}-004$	$1.1118 \mathrm{e}+000$	$3.0236 \mathrm{e}+002$	8.34
shaw (WU)	$\mathbf{8 . 5 4 9 2 \mathrm { e } - 0 0 2}$	$6.8840 \mathrm{e}-004$	$2.3488 \mathrm{e}-001$	$9.2377 \mathrm{e}+002$	10.08

Table A. 4
Linear solution \bar{x}_{l} with noise level $\widetilde{\varepsilon}=5 \cdot 10^{-2}$.

	Relative Errors	λ_{1}	λ_{2}	λ_{3}	Iterations
gravity	$2.8768 \mathrm{e}-001$	$5.5438 \mathrm{e}-002$	-	-	4.05
gravity	$7.9760 \mathrm{e}-002$	-	$8.3692 \mathrm{e}+001$	-	4.99
gravity	$9.9241 \mathrm{e}-001$	-	-	$2.0821 \mathrm{e}+003$	6.47
gravity	$9.9263 \mathrm{e}-001$	$3.0098 \mathrm{e}-002$	-	$3.0273 \mathrm{e}+002$	8.08
gravity (WU)	$9.9256 \mathrm{e}-001$	$3.0199 \mathrm{e}-002$	-	$3.9649 \mathrm{e}+002$	9.23
gravity	$7.0756 \mathrm{e}-002$	-	$5.1613 \mathrm{e}+002$	$5.8957 \mathrm{e}+004$	6.88
gravity (WU)	$6.9625 \mathrm{e}-002$	-	$5.1480 \mathrm{e}+002$	$8.2787 \mathrm{e}+004$	7.32
gravity	$7.1772 \mathrm{e}-002$	$2.7579 \mathrm{e}-001$	$3.3161 \mathrm{e}+001$	$3.5037 \mathrm{e}+003$	8.09
gravity (WU)	$6.9084 \mathrm{e}-002$	$2.8820 \mathrm{e}-001$	$1.6383 \mathrm{e}+001$	$2.2734 \mathrm{e}+003$	15.31
phillips	$1.3393 \mathrm{e}-001$	$6.9273 \mathrm{e}-003$	-	-	4.98
phillips	$4.6177 \mathrm{e}-002$	-	$1.9380 \mathrm{e}+001$	-	4.00
phillips	$6.2626 \mathrm{e}-002$	-	-	$1.5541 \mathrm{e}+002$	3.00
phillips	$5.9475 \mathrm{e}-002$	$1.2138 \mathrm{e}-002$	-	$3.8318 \mathrm{e}+003$	3.04
phillips (WU)	$4.4428 \mathrm{e}-002$	$7.1280 \mathrm{e}-003$	-	$7.3170 \mathrm{e}+005$	3.96
phillips	$4.4724 \mathrm{e}-002$	-	$8.0428 \mathrm{e}+001$	$2.8338 \mathrm{e}+006$	5.74
phillips (WU)	$3.0147 \mathrm{e}-002$	-	$4.9414 \mathrm{e}+001$	$9.6469 \mathrm{e}+006$	5.51
phillips	$5.9309 \mathrm{e}-002$	$1.1927 \mathrm{e}-002$	$1.9741 \mathrm{e}+001$	$2.6932 \mathrm{e}+004$	3.15
phillips (WU)	$5.1288 \mathrm{e}-002$	$8.9332 \mathrm{e}-003$	$5.1621 \mathrm{e}+000$	$2.0490 \mathrm{e}+007$	6.68
shaw	$4.2575 \mathrm{e}-001$	5.0157e-003	-	-	5.40
shaw	$3.3582 \mathrm{e}-001$	-	$9.5404 \mathrm{e}+000$	-	5.81
shaw	$3.8572 \mathrm{e}-001$	-	-	$1.2562 \mathrm{e}+003$	5.41
shaw	$3.7063 \mathrm{e}-001$	$1.6175 \mathrm{e}-002$	-	$5.2509 \mathrm{e}+002$	6.60
shaw (WU)	$3.3534 \mathrm{e}-001$	$1.8732 \mathrm{e}-002$	-	$1.0808 \mathrm{e}+003$	8.03
shaw	$1.9170 \mathrm{e}-001$	-	$3.4898 \mathrm{e}+001$	$1.0244 \mathrm{e}+003$	7.64
shaw (WU)	1.5476e-001	-	$3.7043 \mathrm{e}+001$	$3.9485 \mathrm{e}+003$	8.22
shaw	$3.3859 \mathrm{e}-001$	$1.8235 \mathrm{e}-002$	$5.7642 \mathrm{e}+000$	$5.6926 \mathrm{e}+002$	7.68
shaw (WU)	$3.1797 \mathrm{e}-001$	$2.1206 \mathrm{e}-002$	$3.7208 \mathrm{e}+000$	$2.1282 \mathrm{e}+003$	12.32

TABLE A. 5
Given solution with noise level $\widetilde{\varepsilon}=10^{-2}$.

	Relative Errors	λ_{1}	λ_{2}	λ_{3}	Iterations
baart	$5.0485 \mathrm{e}-002$	$5.9453 \mathrm{e}-004$	-	-	4.00
baart	$9.6425 \mathrm{e}-002$	-	4.2167e-001	-	6.00
baart	$6.2569 \mathrm{e}-002$	-	-	$1.0876 \mathrm{e}+003$	5.01
baart	$1.5099 \mathrm{e}-001$	$1.0683 \mathrm{e}-003$	$6.3735 \mathrm{e}-002$	-	5.50
baart (WU)	$1.5135 \mathrm{e}-001$	$1.0854 \mathrm{e}-003$	$1.0809 \mathrm{e}-001$	-	6.10
baart	$8.8097 \mathrm{e}-002$	$8.3136 \mathrm{e}-004$	-	$1.3274 \mathrm{e}+002$	4.38
baart (WU)	$1.2243 \mathrm{e}-001$	$1.0936 \mathrm{e}-003$	-	$2.3528 \mathrm{e}+002$	5.67
baart	$1.2223 \mathrm{e}-001$	-	$8.5082 \mathrm{e}-001$	$1.6022 \mathrm{e}+002$	7.57
baart (WU)	$1.2907 \mathrm{e}-001$	-	$8.9299 \mathrm{e}-001$	$1.1968 \mathrm{e}+002$	8.93
baart	$1.4903 \mathrm{e}-001$	$1.1395 \mathrm{e}-003$	$1.5122 \mathrm{e}-002$	$9.7826 \mathrm{e}+001$	6.63
baart (WU)	$2.0029 \mathrm{e}-001$	$1.2088 \mathrm{e}-003$	$2.5714 \mathrm{e}-003$	$3.3557 \mathrm{e}+001$	15.88
gravity	$1.2013 \mathrm{e}-001$	$9.7765 \mathrm{e}-003$	-	-	5.27
gravity	$4.0751 \mathrm{e}-002$	-	$3.4584 \mathrm{e}+000$	-	6.24
gravity	$4.0657 \mathrm{e}-002$	-	-	$5.4844 \mathrm{e}+002$	6.19
gravity	$4.3901 \mathrm{e}-002$	$3.3339 \mathrm{e}-002$	7.3607e-001	-	6.15
gravity (WU)	$4.2829 \mathrm{e}-002$	$2.7101 \mathrm{e}-002$	$3.6701 \mathrm{e}+000$	-	6.50
gravity	$4.2992 \mathrm{e}-002$	$4.1944 \mathrm{e}-002$	-	$9.7444 \mathrm{e}+001$	6.04
gravity (WU)	$4.1431 \mathrm{e}-002$	$2.8425 \mathrm{e}-002$	-	$2.3548 \mathrm{e}+003$	6.60
gravity	$4.5887 \mathrm{e}-002$	-	$1.1104 \mathrm{e}+001$	$2.0749 \mathrm{e}+003$	7.92
gravity (WU)	$4.6282 \mathrm{e}-002$	-	$1.2389 \mathrm{e}+001$	$2.5341 \mathrm{e}+003$	8.83
gravity	$3.7745 \mathrm{e}-002$	$4.0109 \mathrm{e}-002$	$8.4321 \mathrm{e}-001$	$4.1857 \mathrm{e}+002$	7.80
gravity (WU)	$3.5941 \mathrm{e}-002$	$5.1580 \mathrm{e}-002$	$6.8753 \mathrm{e}-001$	$8.0771 \mathrm{e}+002$	13.03
phillips	$2.8920 \mathrm{e}-002$	$1.8711 \mathrm{e}-002$	-	-	5.00
phillips	$2.5621 \mathrm{e}-002$	-	$5.2041 \mathrm{e}+000$	-	5.05
phillips	$2.5663 \mathrm{e}-002$	-	-	$5.5949 \mathrm{e}+002$	5.00
phillips	$2.5654 \mathrm{e}-002$	5.5102e-002	$2.2946 \mathrm{e}+000$	-	7.52
phillips (WU)	$2.5428 \mathrm{e}-002$	$4.2635 \mathrm{e}-002$	$2.2588 \mathrm{e}+000$	-	8.06
phillips	$2.6108 \mathrm{e}-002$	$5.0990 \mathrm{e}-002$	-	$2.7694 \mathrm{e}+002$	7.48
phillips (WU)	$2.6021 \mathrm{e}-002$	$4.1527 \mathrm{e}-002$	-	$3.0252 \mathrm{e}+002$	8.05
phillips	$2.7134 \mathrm{e}-002$	-	$1.0548 \mathrm{e}+001$	$1.4744 \mathrm{e}+002$	7.54
phillips (WU)	$2.7043 \mathrm{e}-002$	-	$9.1030 \mathrm{e}+000$	$1.3533 \mathrm{e}+002$	8.43
phillips	$2.5571 \mathrm{e}-002$	$4.6571 \mathrm{e}-002$	$9.4471 \mathrm{e}-001$	$4.5558 \mathrm{e}+001$	9.71
phillips (WU)	$2.5307 \mathrm{e}-002$	$5.1642 \mathrm{e}-002$	$3.8008 \mathrm{e}-001$	$5.2265 \mathrm{e}+001$	12.56
shaw	$1.3445 \mathrm{e}-001$	$7.5858 \mathrm{e}-004$	-	-	5.85
shaw	$1.2074 \mathrm{e}-001$	-	5.4351e-001	-	6.29
shaw	$1.2074 \mathrm{e}-001$	-	-	$1.2207 \mathrm{e}+002$	6.01
shaw	$1.3477 \mathrm{e}-001$	$1.8739 \mathrm{e}-003$	$2.5149 \mathrm{e}-001$	-	6.73
shaw (WU)	$1.4452 \mathrm{e}-001$	$3.1749 \mathrm{e}-003$	$2.6832 \mathrm{e}-001$	-	8.02
shaw	$1.3466 \mathrm{e}-001$	$2.0832 \mathrm{e}-003$	-	$5.8343 \mathrm{e}+001$	6.71
shaw (WU)	$1.4767 \mathrm{e}-001$	$3.6720 \mathrm{e}-003$	-	$5.1928 \mathrm{e}+001$	8.18
shaw	$2.0162 \mathrm{e}-001$	-	$1.8871 \mathrm{e}-001$	$2.9227 \mathrm{e}+000$	9.59
shaw (WU)	$2.0445 \mathrm{e}-001$	-	1.8076e-001	$4.0254 \mathrm{e}+000$	10.85
shaw	$1.3631 \mathrm{e}-001$	$3.1890 \mathrm{e}-003$	$2.6252 \mathrm{e}-001$	$1.7495 \mathrm{e}+001$	7.71
shaw (WU)	$1.3297 \mathrm{e}-001$	$3.6163 \mathrm{e}-003$	$2.2794 \mathrm{e}-002$	$9.6222 \mathrm{e}+000$	15.36

TABLE A. 6
Given solution with noise level $\widetilde{\varepsilon}=5 \cdot 10^{-2}$.

	Relative Errors	λ_{1}	λ_{2}	λ_{3}	Iterations
baart	$2.5915 \mathrm{e}-001$	$5.5184 \mathrm{e}-003$	-	-	3.88
baart	$3.5281 \mathrm{e}-001$	-	$4.1254 \mathrm{e}+001$	-	22.62
baart	$1.4907 \mathrm{e}-001$	-	-	$7.8514 \mathrm{e}+001$	3.90
baart	$3.1181 \mathrm{e}-001$	$1.0697 \mathrm{e}-002$	$1.6995 \mathrm{e}+000$	-	5.41
baart (WU)	$3.1079 \mathrm{e}-001$	$1.0679 \mathrm{e}-002$	$1.8720 \mathrm{e}+001$	-	6.17
baart	$2.5738 \mathrm{e}-001$	$7.0589 \mathrm{e}-003$	-	$1.4668 \mathrm{e}+003$	4.04
baart (WU)	$2.4875 \mathrm{e}-001$	$6.3857 \mathrm{e}-003$	-	$1.8854 \mathrm{e}+003$	4.16
baart	$3.6233 \mathrm{e}-001$	-	$4.2956 \mathrm{e}+001$	$6.7892 \mathrm{e}+005$	11.53
baart (WU)	$3.6189 \mathrm{e}-001$	-	$4.2750 \mathrm{e}+001$	$9.5807 \mathrm{e}+005$	12.31
baart	$3.0971 \mathrm{e}-001$	$1.2027 \mathrm{e}-002$	$9.7625 \mathrm{e}-001$	$8.6695 \mathrm{e}+002$	6.34
baart (WU)	$3.0669 \mathrm{e}-001$	$1.4359 \mathrm{e}-002$	$5.6894 \mathrm{e}+000$	$2.7463 \mathrm{e}+006$	22.44
gravity	$2.0667 \mathrm{e}-001$	$7.6931 \mathrm{e}-002$	-	-	4.20
gravity	$7.1581 \mathrm{e}-002$	-	$6.4767 \mathrm{e}+001$	-	5.00
gravity	$6.5899 \mathrm{e}-002$	-	-	$1.0511 \mathrm{e}+002$	4.96
gravity	$7.0950 \mathrm{e}-002$	$1.5823 \mathrm{e}-001$	$2.6622 \mathrm{e}+000$	-	5.89
gravity (WU)	$6.9396 \mathrm{e}-002$	$9.8279 \mathrm{e}-002$	$2.2876 \mathrm{e}+001$	-	5.08
gravity	$6.7248 \mathrm{e}-002$	$1.4980 \mathrm{e}-001$	-	$1.3094 \mathrm{e}+003$	5.15
gravity (WU)	$6.5526 e-002$	$9.7083 \mathrm{e}-002$	-	$2.3641 \mathrm{e}+003$	5.03
gravity	$8.9110 \mathrm{e}-002$	-	$1.5691 \mathrm{e}+002$	$7.3888 \mathrm{e}+003$	7.24
gravity (WU)	$9.2507 \mathrm{e}-002$	-	$1.5515 \mathrm{e}+002$	$9.6310 \mathrm{e}+003$	8.28
gravity	$6.7490 \mathrm{e}-002$	$3.0044 \mathrm{e}-001$	$7.9010 \mathrm{e}+000$	$4.7311 \mathrm{e}+002$	8.24
gravity (WU)	$6.6388 \mathrm{e}-002$	$3.1555 \mathrm{e}-001$	$7.0614 \mathrm{e}-001$	$1.0583 \mathrm{e}+003$	16.10
phillips	$1.7706 \mathrm{e}-001$	$5.4795 \mathrm{e}-002$	-	-	4.00
phillips	$5.2064 \mathrm{e}-002$	-	$2.7421 \mathrm{e}+001$	-	4.86
phillips	$4.9188 \mathrm{e}-002$	-	-	$1.2585 \mathrm{e}+002$	4.79
phillips	$5.1560 \mathrm{e}-002$	$2.2233 \mathrm{e}-001$	$3.0768 \mathrm{e}+000$	-	8.89
phillips (WU)	4.5868e-002	$9.5929 \mathrm{e}-002$	$1.1118 \mathrm{e}+001$	-	5.33
phillips	$5.0609 \mathrm{e}-002$	$2.1969 \mathrm{e}-001$	-	$3.3818 \mathrm{e}+002$	7.30
phillips (WU)	$5.3031 \mathrm{e}-002$	$8.1022 \mathrm{e}-002$	-	$3.5514 \mathrm{e}+003$	5.04
phillips	$6.2712 \mathrm{e}-002$	-	$6.8085 \mathrm{e}+001$	$3.2822 \mathrm{e}+002$	7.74
phillips (WU)	$6.2458 \mathrm{e}-002$	-	$6.7112 \mathrm{e}+001$	$3.4593 \mathrm{e}+002$	8.65
phillips	$4.9898 \mathrm{e}-002$	$2.5948 \mathrm{e}-001$	$1.8172 \mathrm{e}+000$	$5.1243 \mathrm{e}+001$	10.62
phillips (WU)	$4.9975 \mathrm{e}-002$	$2.6521 \mathrm{e}-001$	$2.4459 \mathrm{e}-001$	$9.0852 \mathrm{e}+001$	16.69
shaw	$1.8119 \mathrm{e}-001$	$7.5811 \mathrm{e}-003$	-	-	5.00
shaw	$2.0664 \mathrm{e}-001$	-	$1.2412 \mathrm{e}+001$	-	6.91
shaw	$2.0299 \mathrm{e}-001$	-	-	$1.9892 \mathrm{e}+003$	6.81
shaw	$1.8248 \mathrm{e}-001$	$2.9196 \mathrm{e}-002$	$1.1667 \mathrm{e}+000$	-	9.45
shaw (WU)	1.7661e-001	$2.9472 \mathrm{e}-002$	$1.3307 \mathrm{e}+000$	-	8.14
shaw	1.7095e-001	$3.2668 \mathrm{e}-002$	-	$3.7580 \mathrm{e}+002$	8.77
shaw (WU)	1.7345e-001	$3.0384 \mathrm{e}-002$	-	$2.4513 \mathrm{e}+002$	9.91
shaw	$3.6022 \mathrm{e}-001$	-	$1.9433 \mathrm{e}+001$	$2.1029 \mathrm{e}+002$	8.31
shaw (WU)	$4.1838 \mathrm{e}-001$	-	$1.6601 \mathrm{e}+001$	$6.2015 \mathrm{e}+002$	9.97
shaw	$1.6869 \mathrm{e}-001$	$2.7108 \mathrm{e}-002$	$1.3957 \mathrm{e}+000$	$6.2512 \mathrm{e}+001$	8.53
shaw (WU)	$1.7007 \mathrm{e}-001$	$2.9894 \mathrm{e}-002$	$1.6217 \mathrm{e}-001$	$6.3068 \mathrm{e}+001$	15.61

REFERENCES

[1] F. Bauer, S.V. Pereverzev, An utilization of a rough approximation of a noise covariance within the framework of multi-parameter regularization, Int. J. Tomogr. Stat., 4 (2006), pp. 1-12.
[2] M. Belge, M.E. Kilmer, E.L. Miller, Efficient determination of multiple regularization parameters in a generalized L-curve framework, Inverse Probl., 18 (2002), pp. 1161-1183.
[3] Å. BJÖRCK, A bidiagonalization algorithm for solving large and sparse ill-posed systems of linear equations, BIT, 28 (1988), pp. 659-670.
[4] C. Brezinski, M. Redivo-Zaglia, G. Rodriguez, S. Seatzu, Multi-parameter regularization techniques for ill-conditioned linear systems, Numer. Math., 94 (2003), pp. 203-228.
[5] D. Calvetti, S. Morigi, L. Reichel, F. Sgallari, Tikhonov regularization and the L-curve for large discrete ill-posed problems, J. Comput. Appl. Math., 123 (2000), pp. 423-446.
[6] M. Hanke, P.C. Hansen, Regularization methods for large-scale problems, Surv. Math. Ind., 3 (1993), pp. 253-315.
[7] S. Gazzola, P. Novati, Automatic parameter setting for Arnoldi-Tikhonov methods. Submitted, 2012.
[8] P.C. HANSEN, Regularization Tools: A Matlab package for analysis and solution of discrete ill-posed problems, Numer. Alg., 6 (1994), pp. 1-35.
[9] ——, Rank-Deficient and Discrete Ill-Posed Problems. Numerical Aspects of Linear Inversion, SIAM, Philadelphia, 1998.
[10] M.E. Kilmer, D.P. O'LEARY, Choosing regularization parameters in iterative methods for ill-posed problems, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 1204-1221.
[11] B. Lewis, L. Reichel, Arnoldi-Tikhonov regularization methods, J. Comput. Appl. Math., 226 (2009), pp. 92-102.
[12] S. Lu, S.V. Pereverzer, Multi-parameter regularization and its numerical realization, Numer. Math., 118 (2011), pp. 1-31.
[13] S. Morigi, L. Reichel, F. Sgallari, Orthogonal Projection Regularization Operators, Numer. Alg., 44 (2007), pp. 99-114.
[14] V.A. Morozov, On the solution of functional equations by the method of regularization, Soviet Math. Dokl., 7 (1966), pp. 414-417.
[15] D.P. O'LeAry, J.A. Simmons, A bidiagonalization-regularization procedure for large-scale discretizations of ill-posed problems, SIAM J. Sci. Statist. Comput., 2 (1981), pp. 474489.
[16] L. Reichel, A. Shyshkov, A new zero-finder for Tikhonov regularization, BIT, 48 (2008), pp. 627-643.
[17] L. Reichel, G. Rodriguez, Old and new parameter choice rules for discrete ill-posed problems. Submitted, 2012.
[18] Y. SAAD, Iterative methods for Sparse Linear Systems, 2nd edition, SIAM, Philadelphia, 2003.

[^0]: \dagger Department of Mathematics, University of Padova, Italy. Email: \{gazzola, novati\}@math. unipd.it.
 ${ }^{\ddagger}$ When treating multi-parameter methods, one usually requires that each component of the vector Λ is different from zero. However we prefer to present the analysis just like a generalization of the one-parameter case.

