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Abstract

A rational Arnoldi method, for computing the action of a matrix func-
tion, is applied in the construction of a numerical scheme for solving time-
periodic linear differential problems arising from the semidiscretization of
parabolic problems. Theoretical and computational results illustrate the
effectiveness of the approach.

1 Introduction

Restricted denominator (RD) rational forms of the type

Rj,k(x; ρ) =
pj(x)

(1 + ρx)k
,

where ρ is a real parameter and pj is a polynomial of degree j, were introduced
by S. P. Nørsett in [24]. They are particularly attractive for the approximation
of matrix functions, since all the needed inversions involve the same matrix. In
[22], dealing with the computation of exponentials of large and sparse matrices,
the authors studied approximations of this type obtained via projections onto
Krylov subspaces. This approach has been discussed also by J. van den Eshof
and M. Hochbruck in [9]. The fact that such methods turn out to be effective for
initial value problems (cf. [25]) motivates the investigation on their application
to the treatment of time-periodic problems, that is, systems of the type

dy

dt
+ Ay = F (t), t ∈ [0, T ], F (t) ∈ RN , (1)

y(0) = y(T ),
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where F (t) is a vector valued function and A is a N ×N real matrix, which is
noncritical with respect to T , that is

inω /∈ σ(A), for every n ∈ Z, ω =
2π

T
,

where σ(A) denotes the spectrum of A. This assumption on A ensures that
system (1) has a unique solution for any F ∈ L1(0, T ) [28]. Moreover, we
assume that, as it occurs in several important applications, all the eigenvalues
of A have positive real part. Referring to models by which various physical
phenomena can be described, we can think to (1) as the semidiscretization of a
parabolic boundary value problem.

For solving (1), when A is of large dimension, the classical methods based on
shooting or on global discretization (cf. [7]) are usually considered inadequate.
Multigrid strategies [13] and waveform relaxation methods [28], [5], possibly
combined together [19], [28], may be also adopted. Yet, they often present
convergence problems as well as complexities in their implementation. An al-
ternative procedure, here considered, can be built up employing the explicit
formula of the solution of (1) that is

y(t) = exp(−tA)(I − exp(−TA))−1

∫ T

0

exp((s− T )A)F (s)ds

+
∫ t

0

exp((s− t)A)F (s)ds,

which suggests the following scheme:
Step 1. Compute v(T ), where v(t) solves the IVP

dv

dt
+ Av = F (t), t ∈ (0, T ], (2)

v(0) = 0.

Step 2. Compute
y0 = v(T ) + w(T ), (3)

where, by the periodicity of y(t),

w(T ) = g(A)v(T ),

with g defined by

g(a) = exp(−Ta)(1− exp(−Ta))−1. (4)

Step 3. Solve the IVP

dy

dt
+ Ay = F (t), t ∈ (0, T ], (5)

y(0) = y0.
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Because of its simplicity the scheme is attractive. Indeed, besides the com-
putation of w(T ), it requires only to solve two IVPs. Clearly, the crucial point
lies in the effective computation of w(T ). In this paper we focus the attention
mainly on this problem. For our goal, taking into account that only the ac-
tion of the matrix g(A) on a vector is required, Krylov subspaces methods are
surely well suited. In the recent years, several studies have been devoted to
such kind of methods for approximating the action of matrix functions. Con-
cerning the standard polynomial Krylov methods, we quote here, among the
others, the papers [18], [26], [14], [23], [1], [21]. Although such methods appear
suitable for large and sparse matrices, to work on Krylov subspaces generated
by discretizations of unbounded operators presents some fundamental difficul-
ties, which involve the own definition of such subspaces, given, in general, for
bounded operators. Such structural problems are displayed by the convergence
of the arising approximations. Infact it deteriorates as the discretizations are
refined, even dealing with entire functions (see [14]). By the way, we point out
that the case here treated presents further problems due to the presence of a sin-
gularity in the function g, so that, as it is well known (see [18]), the convergence
of polynomial approximations may be very slow.

The remedy proposed in [22] and [9] consists in considering subspaces gen-
erated by an auxiliary matrix obtained by a suitable rational form. So doing,
a sort of preconditioning of the problem is introduced (cf. [9]). In the applica-
tions of our interest, the auxiliary matrix reflects the properties of an underlying
compact operator so that the associated Krylov subspaces are well defined.

The paper is organized as follows. In section 2 we introduce the RD-rational
Krylov method for the computation of w(T ). In section 3 we analize the con-
vergence and we give some error estimates which will be useful in the control
of the procedure. Finally, in Section 4 we present some numerical experiments
which illustrate various features of the method.

2 The Rational Krylov method

Let Πk be the set of the algebraic polynomials of degree ≤ k. The Euclid-
ean scalar product is denoted by 〈·, ·〉 and ‖.‖ represents the Euclidean vector
norm as well as the corresponding induced matrix norm. The notation W (M)
indicates the numerical range of a square matrix M , i.e.,

W (M) :=
{

< x, Mx >

< x, x >
, x ∈ C, x 6= 0

}
.

For 0 < ϑ < π
2 and β ≥ 0, let us define the set

Σϑ,β = {λ ∈ C : |arg(λ− β)| ≤ ϑ} ,

and assume that
W (A) ⊂ Σϑ,β , (6)

for some β > 0.
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Let us introduce the matrix

Z = (I + hA)−1, (7)

where h > 0 is a real parameter. For 0 < γ < 1/2 , let Dγ be the disk centered
at (γ, 0) with radius γ, i.e.,

Dγ =
{
λ : <(λ)2 + =(λ)2 − 2γ<(λ) ≤ 0

}
.

Then, we define the set
Sϑ,γ = Σϑ,0 ∩Dγ . (8)

The following statements can be easily proved.

Lemma 1 For any h > 0 let us set γ(β) = 1
2(1+hβ) and β(γ) = h−1((2γ)−1−1).

We have:

1. the function z(a) = (1 + ha)−1 maps any set Σϑ,β (β > 0) into Sϑ,γ(β)

and the inverse function a(z) = h−1(z−1 − 1) maps Sϑ,γ (0 < γ < 1/2)
into Σϑ,β(γ);

2. if W (A) ⊂ Σϑ,β (β > 0), then W (Z) ⊂ Sϑ,γ(β).

We seek for approximations, to w(T ) = g(A)v(T ), belonging to the Krylov
subspaces

Km(Z, v) = span
{
v, Zv, Z2v, ..., Zm−1v

}
,

where
v = v(T ).

Such approximations have the form Rm−1,(A; h)v, where

Rm−1(a; h) =
pm−1(a)

(1 + ha)m−1
, pm−1 ∈ Πm−1, m ≥ 1, <(a) > 0.

For building up the spaces Km(Z, v) we employ the classical Arnoldi’s method
(cf. [27]) which provides an orthonormal sequence of vectors {v1, v2, ..., vj , ...},
with v1 = v

‖v‖ , such that, for each m ≥ 1, Km(Z, v) = span {v1, v2, ..., vm} . As
it is well known we have

ZVm = VmHm + hm+1,mvm+1e
T
m, (9)

where Vm = [v1, v2, ..., vm] and Hm = V H
m ZVm with entries hi,j Here and below

ej is the j-th vector of the canonical basis of Rm.
Let us go back to Step 2 in our scheme, namely to the computation of

w(T ) = g(A)v. For a ∈ Σϑ,β (β > 0), in light of Lemma 1, setting z = (1+ha)−1

and τ = T
h we can write

g(a) = f(z), (10)

where

f(z) =
exp(−τ(z−1 − 1))

1− exp(−τ(z−1 − 1))
. (11)
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By statement 2 in Lemma 1 the function f(z) is well defined in any set Sϑ,γ .
Accordingly, in Km(Z, v) we define the m-th RD-rational approximation to

w(T ) as
wm(T ) = p(Z)v,

where p ∈ Πm−1 interpolates in the Hermite sense the function f in the eigen-
values of Hm. Using (9) one can see that

wm(T ) = Vmf(Hm) ‖v‖ e1,

that is
wm(T ) = Vmg(Bm) ‖v‖ e1, (12)

where the matrix Bm satisfies

Hm(I + hBm) = I. (13)

The following result can easily be proved, with the help of Lemma 1 and by
the fact that W (Hm) ⊆ W (Z).

Lemma 2 Let assumption (6) hold. For any m ≥ 1, let the matrices Vm and
Hm be generated by Arnoldi’s method as above and let Bm be defined by (13).
Then

<(W (Bm)) ≥ β.

Owing to this result, Bm is noncritical with respect to T , for every T > 0 and
hence g(Bm) is well defined. Assuming that m is not large, the computation of
g(Bm)e1 can be carried out as follows. If A is symmetric then Bm is symmetric
too and the Schur decomposition can be employed. In the general case, we
can adopt one of the existing algorithms for the computation of the matrix
exponential, as for instance the Matlab routine expm, based on the scaling and
squaring process. This is what we did in our numerical tests. Anyhow, the
computation of g(Bm)e1 requires a certain amount of work, so that, in order
to control the approximation process, error estimates which do not imply this
computation are clearly welcome. Some of these will be obtained in the next
section.

Remark 3 Formally equivalent alternatives to the scheme presented in the in-
troduction can be considered. At first we note that, rather than to use (3), one
can obtain y0 as y0 = (1 − exp(−TA))−1v(T ). For our purposes we prefer
to use (3) because, in order to give the convergence statements, it allows us
to use some known results (cf. [22]). We point out that the two representa-
tions yield equivalent numerical results, for both our RD-rational method and
the polynomial Krylov method considered, for comparison, in the numerical tests
of Section 4. Observe that, having computed the m-th approximation to y0, say
y0,m = v(T )+wm(T ), one can evaluate the residual v(T )− (1−exp(−TA))y0,m

using again the RD-rational Krylov method, dealing now with the exponential
function (see [22], [9]). Such method applies also when the solution v(t) of
(2) is maintained at disposal, so that, in alternative to Step 3, we can get
y(t) = v(t) + exp(−tA)y0, for t ∈ (0, T ].
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Remark 4 The approach extends easily to more general cases. For instance
when A is replaced by a time-dependent matrix of type A(t) = α(t)A + β(t)I,
where α and β are scalar functions, or even when the left-hand side of equation
(1) has the more general form M dy

dt + Ny, with M invertible. In this case Z
can be taken as Z = (M + hN)−1M . It is easy to realize that in this way we
obtain again a reformulation of the type (10). Applications to this and other
more general situations will be discussed in a forthcoming paper.

3 Error estimates

In this section we give convergence results and error estimates for the approxi-
mations wm(T ), with the aim of determining also suitable choices for the para-
meter h in (7). In order to do this, some of the arguments used in [22], for the
exponential function, can still be employed. Yet, now, dealing with the function
g, because of the presence of the singularity (at a = 0), their application needs
some care and some additional considerations are in order.

Referring to (9), we introduce the polynomial

q(0)
m (z) = det(zI −Hm).

One easily realizes that

∥∥∥q(0)
m (Z)v

∥∥∥ = ‖v‖
m∏

j=1

hj+1,j . (14)

We start our convergence analysis giving some statements which generalize
Proposition 3.2 in [22].

Theorem 5 Let G be a bounded domain (in the complex plane) whose boundary
is a rectifiable Jordan curve Γ. Assume that W (Z) ⊂ G and that there exixts
dΓ > 0 such that

dist(λ, W (Z)) ≥ |λ| dΓ, for every λ ∈ Γ.

Let f(z) be a function such that f(z)/z is analytic in G and continuous on Γ,
then setting

εk(Γ, f) = min
pk∈Πk

max
λ∈Γ

∫

Γ

∣∣∣∣
f(λ)− pk(λ)

λ

∣∣∣∣ |dλ| ,

we have, by the Cauchy integral formula,

‖f(Z)v − Vmf(Hm) ‖v‖ e1‖ ≤ εm−1(Γ, f) ‖v‖
πdΓ

(→ 0 as m →∞).

Moreover, the following bound holds

‖f(Z)v − Vmf(Hm) ‖v‖ e1‖ ≤

∥∥∥q
(0)
m (Z)v

∥∥∥
2πdΓ

∫

Γ

|f(λ)|
|λ|

∣∣∣q(0)
m (λ)

∣∣∣
|dλ| . (15)
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In order to apply this results to our case, we need the following lemma.

Lemma 6 Let W (Z) ⊆ Sϑ,γ(β), with γ(β) = (1 + hβ)−1/2. Let h > 0 and
ϑ < ϑ∗ < π

2 be such that

2γ∗ := (1 + hβ)−1 cosϑ∗ + sin(ϑ∗ − ϑ)
cos ϑ∗ cos2(ϑ∗ − ϑ)

< 1. (16)

Then
dist(λ,W (Z)) ≥ |λ| sin(ϑ∗ − ϑ), (17)

for every λ ∈ Γ , where Γ is the the contour of the set Sϑ∗,γ∗ (cf. (8)).

Proof. If λ ∈ Γ belongs to the lines λ = |λ| (cos ϑ∗ ± i sin ϑ∗), then clearly
(17) holds. Now consider λ(6= 0) ∈ Γ ∩Dγ∗ and observe that

|λ| > 2γ∗ cosϑ∗. (18)

Let us set γ = γ(β). By geometric arguments one can see that

dist(λ,W (Z)) ≥
(

γ2 +
(γ∗ − γ)

γ∗
|λ|2

) 1
2

− γ.

By this relation, using (18) one realizes that (16) implies (17).
It is easy to see that, since β > 0, for every ϑ there are h and ϑ∗ which verify

the assumptions of the previous lemma and moreover that, for every given ϑ
and h, there is ϑ∗ which fulfils (16). Therefore that taking G = Sϑ∗,γ∗ , with ϑ∗

and γ∗ as in Lemma 6, for the function f defined in (11), the assumptions of
Theorem 5 are fulfilled with dΓ = sin(ϑ∗ − ϑ).

Moreover, from the bound (15) we are able to derive error estimates as
follows..

Proposition 7 Let W (Z) ⊆ Sϑ,γ(β). Taking any ϑ∗ and γ∗ as in Lemma 6,
the following error bound holds

‖w(T )− wm(T )‖ ≤ ‖v‖ exp(τ)CΓ(m− 1)!
πτm(sin(ϑ∗ − ϑ) cos ϑ∗)m sin(ϑ∗ − ϑ)

m∏

j=1

hj+1,j . (19)

where
CΓ = (1− exp (−Tβ∗))−1

,

with
β∗ = h−1

(
(2γ∗)−1 − 1

)
. (20)

Proof. Take G = Sϑ∗,γ∗ , with ϑ∗ and γ∗ as in Lemma 6. From (15) we
obtain

‖w(T )− wm(T )‖ ≤

∥∥∥q
(0)
m (Z)v

∥∥∥
2π sin(ϑ∗ − ϑ)

∫

Γ

|f(λ)|
|λ|

∣∣∣q(0)
m (λ)

∣∣∣
|dλ| , (21)
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where Γ is the contour of Sϑ∗,γ∗ . Setting β∗ as in (20) we have

max
λ∈Γ

∣∣∣∣
1

1− exp(−τ(λ−1 − 1))

∣∣∣∣ = (1− exp (−Tβ∗))−1 = CΓ,

and from (21) we get
∫

Γ

|f(λ)|
|λ|

∣∣∣q(0)
m (λ)

∣∣∣
|dλ| ≤ CΓ

∫

Γ

∣∣exp(−τ(λ−1 − 1))
∣∣

|λ|
∣∣∣q(0)

m (λ)
∣∣∣

|dλ| .

Since W (Hm) ⊆ W (Z) and recalling that the zeros of the (monic) polynomial
q
(0)
m are the eigenvalues of Hm, by Lemma 6 we have, for λ ∈ Γ,

∣∣∣q(0)
m (λ)

∣∣∣ ≥ (|λ| sin(ϑ∗ − ϑ))m.

Therefore
∫

Γ

∣∣exp(−τ(λ−1 − 1))
∣∣

|λ|
∣∣∣q(0)

m (λ)
∣∣∣

|dλ| ≤ exp(τ)
(sin(ϑ∗ − ϑ))m

∫

Γ

exp(−τ |λ|−1 cosϑ∗)
|λ|m+1 |dλ| .

One proves that (cf. [22] Corollary 3.4)
∫

Γ

exp(−τ |λ|−1 cos ϑ∗)
|λ|m+1 |dλ| ≤ 2

∫ ∞

0

exp(−τx−1 cosϑ∗)
xm+1

dx =
2(m− 1)!
(τ cosϑ∗)m

.

(22)
Hence by (14) and (21) we obtain the desired result.

We emphasize the fact that (19) gives an error estimate which is computable
without knowing the approximation wm(T ). The quantities involved in (19) are
τ , ϑ∗, CΓ and

∏m
j=1 hj+1,j . These values depend on the parameter h. In general,

the optimal value of h is not easy to find. As a consequence each case under
consideration must be examined separately, taking into account that the basic
requirement for a good choice of h is to satisfy (16) with a suitable ϑ∗.

For instance, the minimization of the term

exp(τ)
τm(sin(ϑ∗ − ϑ) cos ϑ∗)m

,

in the right-hand side of (19), suggests the values h = T
m , and ϑ∗ = (π + 2ϑ)/4.

If β is sufficienly large, values around these are well suited. In light of various
numerical experiments, we point out that, in this case and when T is no too
small, the method maintains a fast convergence for all the values of h into
the interval [ T

10 , T ]. Otherwise, if β is small, in order to satisfy (16), a larger
h must be taken. The values of β and ϑ can be obtained from informations
on the location of the numerical range W (Z). In several important situations
such informations are available by theoretical results (see e.g., [10]). Otherwise,
numerical techniques can be adopted. On this topics we refer to the book [12].
As it is well known, in general, for m sufficiently large, the extreme eigenvalues
of Hm match sufficiently well the ones of Z. This suggests that, in practice, one
could get the required informations by simply investigating W (Hm).
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4 Numerical experiments

In our numerical experiments the matrix A is obtained by discretizing 1-D or
2-D second order differential operators by finite differences. Besides to stress
the effectiveness of the proposed rational method (the RA (Rational Arnoldi)-
method in the sequel) we want also to compare it with the classical polynomial
method which seeks approximations to w(T ) in the Krylov subspaces Km(A, v)
constructed by the Arnoldi method (the PA (Polynomial Arnoldi)-method) [18].
All methods are implemented in Matlab. In the examples, we consider the errors
with respect to a reference solution.

The PA-method does not require any inversion, however, as we already
pointed out, if A arises from the discretization of an elliptic operator its conver-
gence deteriorates refining the discretization (cf. [14]). The previous theoretical
results, as well as the numerical experiences, emphasize that this does not occur
for the RA method, which furthermore presents, in all the cases treated, a fast
convergence. On the other hand, the rational method needs to solve a certain
number of linear systems, which involve the same matrix (I + hA), so that a
factorization or a good preconditioner must be computed only once. There are
various important cases in the applications where such systems can be solved
cheaply, owing to the particular structure of A (cf. [8]). In all our experiments
we use the LU (or Cholesky) factorization. We refer to [9] for an ad-hoc use of
iterative methods.

Furthermore we stress the fact that this preliminary work can turn out to
be useful even in the solution of the initial value problems in our scheme, where
methods that require the solution of linear systems involving matrices of the
type (I + δA), with δ close to h, are employed. For details on this point we
refer to the recent paper [2]. This situation occurs both if we use an implicit
method and if we adopt one of the various exponential integrators proposed
in the recent literature (cf. [11], [15], [16], [6], [17], [20], [3], [25] ). As it is
well known, the latter methods require several applications of exp(−tA) and of
other related matrix functions. Such computations can be performed by the RD-
Krylov rational method (cf. [22], [9] and [25]) working again on the subspaces
Km(Z, w), as explained in Example 3 below.

The first two examples refer simply to the computation of g(A)v, with g
defined by (4).

Example 1. We begin by considering the one dimensional operator

L = − ∂2

∂x2
+ c

∂

∂x
, c ∈ R,

in the interval (0, 1), with Dirichlet boundary conditions. It is discretized on
a uniform meshgrid, with meshsize δ = 1/(N + 1) using central differences.
Accordingly an usual tridiagonal matrix A arises. Table 1 shows the fast con-
vergence of the RA-method and the drastic work-reduction with respect to the
PA-method. There we report the values of m (number of iterations) and the re-
lated computational costs with respect to the dimension of the problem ops/N ,
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required for getting an Euclidean error norm less than 10−6. The LU factoriza-
tion of (I+hA) can be done very cheaply and we do not consider this in the costs
reported in Table 1. The vector v is taken as the (normalized) discretization of
the function v(x) = x(1− x).

RA PA
N m ops/N m ops/N
100 5 76 74 5994
200 6 96 150 23550
300 6 96 227 53118

Table 1 - 1D- test with T = 0.1, c = 5, h = T/10.

Example 2. In 2-D we consider the second order differential operator

L = −∆ + c1
∂

∂x
+ c2

∂

∂y
, c1, c2 ∈ R

where ∆ is the Laplacian on the unit square (0, 1)× (0, 1), again with Dirichlet
boundary conditions. The spatial meshsize is δ = 1/(n + 1) in both directions.
Central differences are used for all the derivatives, obtaining a block-tridiagonal
N ×N (N = n2) matrix A.

For the selected values of n and h, the LU (or Cholesky) factorization of
(I+hA) has been computed. The vector v is now the (normalized) discretization
of the function v(x, y) = x(1−x)y(1−y). We have performed various numerical
tests with values of h in the interval [ T

10 , T ], obtaining similar results. Some of
them are reported in Tables 2-5.

Figure 1 shows a comparison between the true errors and the error estimates
(19), in the case c1 = c2 = 0, T = 0.1, N = 2500. We notice that β ≈ 19 because
in this case the eigenvalues of A are λi,j = 4

δ2 (sin2 iπδ
2 + sin2 jπδ

2 ), 1 ≤ i, j ≤ n.
Accordingly, we can take h = T and ϑ∗ = π/5, so that condition (16), with
ϑ = 0, remains fulfilled with 2γ∗ ≈ 0.9.

In Tables 2-5 we compare the computational costs of the RA and the PA
methods on a PC 3.5GHz. We report therein the values of m in order to achieve
a relative error less than 10−4, together with the speed-up (SU = CPU time
of PA / CPU time of RA), for two nonsymmetric cases, with different values
of T . For the RA method the CPU time comprehends also the cost of the
LU factorization, which could be used also in solving problems (2) and (5),
as we do in the next example. For both methods the CPU time considered
includes the cost of the evaluation of the approximation wm(T ) only at the final
step. It is worth while nothing that this is a clear advantage for the polynomial
method, for which the usual way for monitoring the error (cf. [15], [21]) requires
several evaluations of the approximations.wm(T ). Moreover, in light of the long
recursions required, there are other facts which do not speak in favour of the
PA-method, that is, the need of a large storage and the possible necessity of
re-orthogonalization.
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Figure 1: Example 2- Error and error bound in a 2-D symmetric case with
T = h = 0.1, and N = 2500.

.

PA RA
h = T/10 h = T

N m m SU m SU
400 38 9 4.8 6 5.0
900 55 9 5.8 6 6.1
1600 72 9 4.5 6 4.9
2500 90 9 5.3 6 5.9

Table 2 - 2D-test with T = 0.1, c1 = 10, c2 = 5.

PA RA
h = T/10 h = T

N m m SU m SU
400 52 9 6.7 8 7.1
900 76 9 10.3 8 10.8
1600 89 9 7.1 8 7.6
2500 111 9 8.3 8 8.9

Table 3 - 2D-test with T = 0.5, c1 = 10, c2 = 5.
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PA RA
h = T/10 h = T

N m m SU m SU
400 34 9 4.6 7 4.9
900 49 9 5.4 7 5.8
1600 64 9 4.3 7 4.7
2500 79 9 4.8 7 5.2

Table 4 - 2D-test with T = 0.1, c1 = 20, c2 = 0.

PA RA
h = T/10 h = T

N m m SU m SU
400 43 11 4.2 10 4.3
900 50 11 4.0 10 4.2
1600 75 11 3.7 10 4.0
2500 92 11 4.1 10 4.5

Table 5 - 2D-test with T = 0.3, c1 = 20, c2 = 0.

Example 3. Finally we present a numerical test where we solve a periodic
problem (1) completely, making a comparison between the polynomial and the
rational Arnoldi methods into the framework of an exponential integrator. Here
we briefly describe such method. Let us consider (2) (or (5)) and assume that

F (t) =
p∑

j=0

tjbj , for t ∈ [t0, t0 + ∆t], where bj ∈ RN , j = 0, 1, .., p. Then

v(t0 + ∆t) can be expressed as

v(t0 + ∆t) = ϕ0(−∆tA)v(t0) +
p+1∑

j=1

(j − 1)!(∆t)jϕj(−∆tA)bj−1, (23)

where

ϕ0(−∆ta) = exp(−∆ta),

ϕj(−∆ta) =
1

(j − 1)!tj

∆t∫

0

exp(−(∆t− s)a)sj−1ds, for j = 1, 2, ...

These functions can be represented in the recursive form

ϕk+1(u) =
ϕk(u)− 1

k!

u
, ϕk(0) =

1
k!

, for k = 0, 1, 2, ...

Accordingly we can employ the RD-rational Krylov method even for the com-
putation of all the vectors ϕj(−∆tA)bj−1.

In our example A is the N × N (with N = n2) block-tridiagonal matrix
obtained by discretizing, as before in both the directions, the operator

L = −k1
d2

dx2
− k2

d2

dy2
, k1, k2 ∈ R,
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on the square (0, 1) × (0, 1), with homogeneous Dirichlet conditions in x and
homogeneous Neumann conditions in y. We consider the values k1 = 1, k2 = 10,
N = 900.

We take F as the ”sawtooth” function, namely the periodic function whose
restriction to [0, T ) is F (t) = te, where e = (1, ..., 1)T and T = 0.5. Problem (1)
is solved following the three steps explained in the introduction. Because of the
particular choice of F (t), following (23) we compute

v(T ) = T 2ϕ2(−TA)e,

and then
w(T ) = g(A)v(T ),

where g is defined by (4). Observe that, in this particular case, one could work
with a single matrix function.

The exact solution is given by

y(t) = exp(−tA)y0 + t2ϕ2(−tA)e, (24)

where y0 = v(T ) + w(T ) (see (3)). We choose to compute y(t) also at the
points tj = j∆t, where ∆t = 0.1 and j = 1, ..., 4, using formula (24). In Fig.2
we consider a work-precision diagram obtained applying the PA- and the RA-
method for the numerical approximation of of v(T ), w(T ) and y(tj), j = 1, ..., 4.
The diagram is obtained increasing the values of m for the computation of all
the matrix functions involved (actually for the rational method m ≤ 6). The
error considered is

err = max
j
‖y(tj)− y(tj)‖ , j = 0, ..., 4,

where y is the numerical solution. Here, Z is defined with h = T/10.
As expected, although the RA-method initially suffers because of the cost

of the LU decomposition, it can rapidly achieve a great accuracy with respect
to the PA-method, that requires a large number of iterations in order to reach
the superlinear convergence (cf. [14]) and hence an accurate approximation of
the solution.
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