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SUMMARY

The paper deals with Krylov methods for approximating functions of matrices via interpolation. In
this frame residual smoothing techniques based on quasi-kernel polynomials are considered. Theoretical
results as well as numerical experiments illustrate the e�ectiveness of our approach. Copyright ? 2004
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The computation of functions of matrices is a classical topic in numerical linear algebra. In the
recent years research in this area has received new impulse due to the introduction of Krylov
subspace techniques for the treatment of functions of large and sparse matrices, in particular
in the context of the solution of di�erential problems. Such techniques are projective in nature,
since they resort to computing functions of matrices in lower dimensions, but, at the same
time, they can also be viewed as polynomial interpolation methods. More precisely, for the
computation of y=f(A)v, where f is a function analytic in a domain containing the spectrum
of the square matrix A, and v is a given vector, these methods produce approximations of the
type ym=pf;m−1(A)v, where the polynomial pf;m−1, of degree m− 1, interpolates f (in the
Hermite sense) in suitably chosen points. Therefore a great attention must be payed to the
choice of such points, with the aim of re�ecting the eigenvalue distribution of the argument
matrix and maintaining at the same time a limited cost for the arising algorithm. The Ritz
values associated to Krylov subspace methods (see References [1–4]) are of course natural
candidates to this task. If some information on the spectrum is available, it turns out also to
be e�ective the use of zeros of Chebychev or Faber polynomials (see Reference [5]), or of
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other types of special points employed in complex approximation, such as Fejer [6] or Lejia
points [7].
Several error analyses for various speci�c methods can be found in the literature. Some of

them are contained in the papers quoted above. Hence we see that the convergence of the
approximations depends on the regularity of the function, on the spectral properties of the
argument matrix and on the choice of the interpolation points. Roughly speaking we can say
that the regularity of the function characterizes the asymptotic behaviour (cf. Reference [8]),
while, when m is not too large, which is the case of practical interest, the others two factors
take a more crucial role.
In this paper we are mainly interested to discuss the third factor, that is the choice of the

interpolation points, in correspondence with some well-known procedures used for building
up Krylov subspaces, such as the incomplete orthogonalization method (IOM) and the un-
symmetric Lanczos algorithm, which are popular cost-reducing alternatives to the classical
Arnoldi method. In fact, in the practical use of these procedures, dealing with functions with
non-removable singularities and with non-normal matrices, we have often observed unstable
behaviours with a very oscillating error-curve and in several cases the breakdown of the
convergence. In the case of the inverse function, that is dealing with the solution of linear
systems, these di�culties are usually overcome by resorting to minimization techniques, which
lead to the so-called quasi-minimal residual (QMR) methods [9]. As shown by several nu-
merical experiments, the introduction of such strategies in our more general context produces
substantial improvements. In the next section, we present a theoretical analysis which can aid
to explain this fact. In Section 3, we revisit the idea of the QMR methods and the underlying
concept of quasi-kernel polynomials (cf. [10]). In Section 4, we give a brief description of
the algorithms adopted. The numerical results are reported in Section 5.

2. KRYLOV METHODS AND ERROR ESTIMATES

At �rst let us introduce some notations. In what follows we denote by 〈; 〉 the Euclidean scalar
product. The norms of vectors and matrices are the 2-norms. We denote by �j the set of
the algebraic polynomials of degree 6j. The maximum-norm of a function f analytic in a
set � is represented by ‖f‖�. The spectrum of a matrix A is �(A). The mth Krylov subspace
generated by A and v (‖v‖=1) is denoted by Km(A; v). This is the space of all the vectors
which can be expressed as p(A)v, where p∈�m−1. Accordingly, we associate to the vector v,
the grade of v, with respect to A, that is the degree of the non-zero monic polynomial p of
lowest degree such that p(A)v=0. Let m∗ (6N ) be the grade of v. As well known Km(A; v)
has dimension m if and only if m∗¿m.
Let us consider the computation of y=f(A)v, where A is an N×N square matrix A and v

a given N -dimensional vector. Here and in the sequel, we assume that ‖v‖=1. We start
by considering a sequence of polynomials {q0; q1; : : : ; qj; : : :}; q0 = 1; qj ∈�j for each j,
de�ned by

zqj−1(z)=
j+1∑
i=1
hi; jqi−1(z) for j¿1 (1)
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where the hi; j’s are scalars, with hj+1; j �=0 for any j of interest. Furthermore, we consider the
sequence of vectors {v1; v2; : : : ; vj; : : :} de�ned by

vj= qj−1(A)v∈Kj(A; v)
Introducing the matrix Vm=[v1; v2; : : : ; vm], for m¿1, we easily obtain the fundamental rela-
tionship

AVm=VmHm + hm+1; mvm+1eHm (2)

where here and below, ej ∈Cm is the jth unit vector and Hm is the m×m upper Hessenberg
matrix with entries hi; j, for i; j=1; 2; : : : ; m (hi; j=0, for i¿j + 1). The eigenvalues of Hm,
which is non-derogatory, are the zeros of the polynomial qm(z). More precisely,

q(0)m (z)= (�
m
j=1hj+1; j)qm(z)

where

q(0)m (z)=det(zI −Hm)
Let G⊂C be a Cauchy domain which contains both �(A) and �(Hm) and let the function f be
analytic in G and continuous on the boundary �G. Let pf;m−1 ∈�m−1 be the polynomial that
interpolates f (in the Hermite sense) in the zeros of q(0)m (z). Then we approximate y=f(A)v
by ym=pf;m−1(A)v. By (2) one realizes that

ym=Vmf(Hm)e1 (3)

This means that the ym can be obtained, without knowing explicitly the interpolation points,
by performing a matrix-function evaluation on a lower dimensional space. This re�ects the
underlying projective nature of the approach.
As mentioned before, we are particularly interested to functions having a critical point,

possibly close to the spectrum of A. For simplicity we put this point at zero and accordingly,
from now on, we suppose that both A and Hm are non-singular, and that 0 =∈G ∪ �G.
In order to estimate the error,

Em=(f(A)− pf;m−1(A))v

various approaches can be adopted. As well known, for normal matrices one can work directly
on �(A). For non-normal ones, the so-called departure from normality (cf. Reference [11,
Chaper 11]) takes a crucial role. In these cases the study must consider sets larger than �(A),
like the numerical range or �-pseudospectra. The starting point is the integral representation,

Em=(f(A)− pf;m−1(A))v=
1
2�i

∫
�
(f(�)− pf;m−1(�))(�I − A)−1v d� (4)

where � (⊂G) is a suitable contour, chosen in such a way that the resolvent (�I − A)−1, as
well as (f(�)− pf;m−1(�)), for �∈�, can be estimated.
We recall that the �-pseudospectrum of A, here denoted by �”(A), is the set of all �∈C

such that ‖(�−A)−1‖¿�−1, with ‖(�−A)−1‖=∞ i� �∈�(A). In other words any eigenvalue
of A+ E with ‖E‖6� belongs to �”(A). For a general discussion and for references on this
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topic see Reference [12]. Accordingly, taking � as the contour of �”(A)⊂G and denoting
by l� the length of �, from (4) we have

‖Em‖= l�
2��

‖f − pf;m−1‖��(A) (5)

The practical evaluation of �-pseudospectra is not, in general, simple to carry out. Various
numerical methods have been considered and discussed in Reference [13]. Here, we notice
that, as shown in References [10, 14], good approximations to pseudospectra can be obtained
from lemniscates associated to the quasi-kernel polynomials later introduced.
Concerning the position of the spectrum of Hm with respect to the pseudospectra of A, we

observe what follows. Let � be an eigenvalue of Hm and assume that Um=[u1; u2; : : : ; um] is
a matrix such that UH

m Vm= I . Then, either �∈�(A) or, since by (2) it is
(A− hm+1; mvm+1uHm )Vm=VmHm

� is an eigenvalue of (A− hm+1; mvm+1uHm ) and thus
‖(�− A)−1‖¿‖hm+1; mum‖−1

This generalizes results given in Reference [15] (Proposition 5.2), [16, 17] (Theorem 16).
Estimates of the resolvent norm in (4) can be obtained also referring to the numerical range

of A, denoted by W (A). In practice, this set can be estimated by the Bendixon–Hirsch theorem
(see Reference [18]). Methods for Toeplitz matrices are illustrated in Reference [19]. Among
the various interesting properties of W (A), the following well-known inequality relates it to
the growth of the resolvent

‖(�− A)−1‖6 1
dist(�;W (A))

(6)

for � =∈W (A). Thus, if � strictly surrounds W (A), then (6) can be used for getting norm
estimates for Em as done in Reference [5]. Connections between W (A) and �-pseudospectra
can be found in Reference [17].
Other integral representations can be employed for getting estimates of Em. Following Ref-

erence [3], in light of (3), we express the error as

Em=
1
2�i

∫
�
f(�)[(�I − A)−1v− Vm(�I −Hm)−1e1] d� (7)

Moreover, since the approximation turns out to be exact when f is a polynomial of degree
6m− 1, we have

Em=(f(A)− pm−1(A))v− Vm(f(Hm)− pm−1(Hm))e1

for every polynomial pm−1 ∈�m−1. Thus we write (7) as

Em=
1
2�i

∫
�
(f(�)− pm−1(�))[(�I − A)−1v− Vm(�I −Hm)−1e1] d� (8)

This expression is particularly meaningful. It shows that the error depends on how well f(�)
can be approximated by polynomials and on how well the interpolatory method works on the
resolvent (�I−A)−1, for �∈�. Here below, this latter aspect will be discussed more in detail.
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We start by rewriting (8) as

Em=
1
2�i

∫
�
[f(�)− pm−1(�)](�I − A)−1rm(�) d� (9)

for any pm−1 ∈�m−1, where

rm(�)= [v− (�I − A)Vm(�I −Hm)−1e1]
By (2), one can see that

rm(�)= hm+1; m(eHm (�I −Hm)−1e1)vm+1 (10)

from which, by the properties of Hm, one gets (cf. Reference [5]),

rm(�)=
q(0)m (A)v

q(0)m (�)
(11)

Then, let us consider the polynomial

�m(�)=
q(0)m (�)

q(0)m (0)

This is the canonical residual-polynomial associated to (2), in the sense that �(A)v= rm(0).
Noticing that rm(�)=�m(�)−1rm(0), from (9), by simple algebra one obtains the following
result, which relates Em to rm(0).

Proposition 1
Let � be the contour of an �-pseudospectrum �”(A)⊂G, and let l� be the length of �. Assume
that, for some 0¡�m¡1, the set

��m = {� : |�m(�)|¡�m} (12)

is contained in �”(A), then, for any pm−1 ∈�m−1,

‖Em‖6 l�
2���m

‖f − pm−1‖�‖rm(0)‖ (13)

An analogous result can be obtained, with the obvious changes, when (6) can be employed.
For a discussion on sets enclosed by lemniscates see Reference [20].
A norm-relationship between Em and the error A−1rm(0) can be obtained from (8) by a

trivial use of the triangular inequality.

Corollary 2
Under the assumptions of the proposition above, then, for any pm−1 ∈�m−1,

‖Em − A−1rm(0)‖6 l�
2���m

‖�− pm−1‖��(A)‖rm(0)‖

where �(z)=f(z)− z−1.
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For monitoring the approximations, some authors (see Reference [21]) have proposed the
so-called generalized residual, de�ned as

Rm=
1
2�i

∫
�
f(�)rm(�) d�

which is obtained from (7) by replacing the error [(�I − A)−1v − Vm(�I − Hm)−1e1] with the
corresponding residual rm(�). By (10) it is

Rm= hm+1; m(eHmf(Hm)e1)vm+1 (14)

so that stopping criteria based on Rm can be easy introduced. Numerical experiments show
the e�ectiveness of such criteria.

Remark 3
We notice that, because of the projective nature of the approximations, in various interesting
cases Rm is in fact the residual of an equation we are actually solving. For instance suppose
that f(A)v represents a solution, at t¿0, of a di�erential system of the type

Ly + Ay=0

where L=d=dt, or L=d2=dt2. Then what we actually do is to consider the reduced problem

Lum +Hmum=0

and to approximate y by Vmum where um is a solution to this. So, by (2), the residual is
given by

VmLum + AVmum= hm+1; mvm+1eHmum

Observe that, since Hm is upper Hessenberg, we also have, for m¿1

Rm= hm+1; m(eHm [(f(Hm)− pm−2(Hm)]e1)vm+1 (15)

for every pm−2 ∈�m−2.
Analyses based on the study of Rm have the advantage of taking into account only of Hm

moreover it is easy to compare Rm with the residual rm(0), as we do here below, giving the
counterparts of the results stated above for Em.

Proposition 4
Let �⊂G be a contour enclosing the set ��m de�ned in (12). Then for every pm−2 ∈�m−2
it is

‖Rm‖
‖rm(0)‖6

l�
2��m

‖f − pm−2‖� (16)

where l� is the length of �.
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Proof
Write f(Hm)− pm−2(Hm) in the integral form, obtaining, by (15) and (10),

Rm=
1
2�i

∫
�
[f(�)− pm−2(�)]rm(�) d�

Finally use the identity rm(�)=�m(�)−1rm(0).

Corollary 5
Under the assumptions of proposition (4), for any pm−2 ∈�m−1, we have

‖Rm − rm(0)‖
‖rm(0)‖ 6

l�
2��m

‖�− pm−2‖�

where �(�)=f(�)− �−1.

3. QUASI-KERNEL POLYNOMIALS

The relationships stated in the previous section stress the fact, con�rmed by several numerical
applications, that when a ‘good’ decay of the residuals rm(0) occurs it is reasonable to expect
a ‘good’ behaviour of the approximations. This suggest to choose the interpolation points in
accordance to residual-smoothing strategies adopted in the context of the solution of linear
systems. In order to do this we employ the basic ideas of the well-known quasi-minimal
residual methods (cf. Reference [9]). Here below we revisit that approach.
At �rst, let us consider the general process for transforming bases of Km(A; v). Let {w1;

w2; : : : ; wj; : : :} be a sequence of vectors, such that w1 = v, and ‖wj‖=1 for every j, to
which, for m¿1, we now associate the matrix

Wm=[w1; w2; : : : ; wm]

Assume that Sm=[si; j] (with s1;1 = 1) is an m×m non-singular upper triangular matrix such
that,

Wm=VmSm

Let us represent Sm+1 in the partitioned form,

Sm dm

0 sm+1; m+1
(17)

Proposition 6
Under the above assumptions and notation we have,

AWm=WmS−1
m H

(1)
m Sm + km+1; mwm+1e

H
m (18)

where

H (1)
m =Hm − hm+1; mbmeHm
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with

bm =
dm

sm+1; m+1

sm+1; m+1 = ‖Vmbm + vm+1‖−1

and

km+1; m=
hm+1; msm;m
sm+1; m+1

(19)

Proof
By our assumptions we get

AWm=WmS−1
m HmSm + hm+1; mvm+1e

H
mSm

Since

wm+1 =Vm+1Sm+1em+1 =Vmdm + sm+1; m+1vm+1 (20)

the results follows by simple computation.

It is easy to see that both the matrices H (1)
m and S−1

m H
(1)
m Sm are upper Hessenberg. The

Sherman–Morrison formula leads to the following result.

Proposition 7
If Hm is non-singular, then H

(1)
m is non-singular provided that

1 + hm+1; meHmH
−1
m bm �=0

Now, the mth approximation to f(A)v, associated to the new basis de�ned by (18),
i.e. that obtained by interpolating in the eigenvalues of H (1)

m (assuming that f is analytic
there) is

Wmf(S−1
m H

(1)
m Sm)e1 =Vmf(H

(1)
m )e1 (21)

Thus, the explicit knowledge of Wm is not required. In other words, now, instead of (2), we
use

AVm=VmH (1)
m +

hm+1; m
sm+1; m+1

wm+1eHm (22)

which is a reformulation of (18).
Assume that Hm is non-singular and that bm is chosen in such a way that H

(1)
m is non-singular

too. Then consider the residual,

	r (1)m (0)= v− AVmH (1)−1
m e1 (23)

By the usual argument (cf. (11)), referring now to the polynomial

	q (0)m (z)=det(zI − S−1
m H

(1)
m Sm)=det(zI −H (1)

m )
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we have

	r (1)m (0)=
	q (0)m (A)

	q (0)m (0)
v

Since,

	q (0)m (A)v=


 m∏
j=1

kj+1; j


wm+1

we have

‖ 	q (0)m (A)v‖=
∣∣∣∣∣∣
m∏
j=1

hj+1; j

∣∣∣∣∣∣ ‖Vmbm + vm+1‖

and thus

‖ 	rm(0)‖=
|∏m

j=1 hj+1; j|‖Vmbm + vm+1‖
|det(Hm)(1− hm+1; meHmHm−1bm)| (24)

= ‖rm(0)‖ ‖Vmbm + vm+1‖
|(1− hm+1; meHmHm−1bm)| (25)

Clearly the ideal choice of bm comes from minimizing


(bm)=
‖Vmbm + vm+1‖

|(1− hm+1; meHmHm−1bm)| (26)

In the case of orthonormal basis, this minimization problem is solvable without any substantial
extra cost and we get the popular GMRES method. In the general case one usually resorts to
the so-called quasi-minimization. In our framework this consists in minimizing the functional,

	
(bm)=
‖ 	bm‖

|(1− hm+1; meHmHm−1bm)|
where

	bm=
bm

1

instead of 
. More in general one could take 	bm=D 	bm, with D a suitable weight diagonal
matrix (cf. Reference [9]).
A standard minimization technique shows that 	
 is minimized by

bm= − hm+1; mHm−Hem (27)

We can now consider the new matrix,

H (1)
m =Hm + h2m+1; mH

−H
m emeHm =H

−H
m (H̃

H
m H̃m) (28)
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and the corresponding approximation (21), which we denote by the acronymus QK, in ac-
cordance with the term Quasi-Kernel polynomial used in Reference [10] for denoting the
corresponding residual polynomial

	�m(�)=
	q 0m(z)
	q 0m(0)

As previously mentioned, it has been observed that in several cases the corresponding sets
��m , de�ned by (12), that is sets enclosed by lemniscates of 	�m, represent good approximations
to pseudospectra of A. Concerning the location of eigenvalues of matrix (28), the following
result generalizes that given in Reference [22] for orthonormal bases.

Proposition 8
Let � be any eigenvalue of the matrix H (1)

m de�ned by (28). Assume that Um+1 is a matrix
such that UH

m+1Vm+1 = I . Then �
−1 ∈W (UH

m+1A
−1Vm+1).

Proof
Let H (1)

m x=�x; x �=0. Recall that bm minimizes 	
(bm) that is ‖UH
m+1 	r

(1)
m (0)‖ (cf. (23)). This

means that wm+1 must be orthogonal to UH
m+1AVmx (which is �=0).

From (22) we get,

UH
m+1AVm=U

H
m+1VmH

(1)
m + km+1; mUH

m+1wm+1e
T
m

Hence we get,

〈UH
m+1AVm+1x; U

H
m+1AVm+1x〉=�〈UH

m+1AVm+1x; U
H
m+1Vmx〉

Then, setting y=UH
m+1AVm+1x, since AVm=Vm+1U

H
m+1AVm, we obtain

〈y; y〉=�〈y;UH
m+1A

−1Vm+1y〉

4. THE BASIC METHODS

The commonly adopted procedures for building up Krylov subspaces, in absence of particular
informations on the spectrum, are based on Arnoldi or Lanczos algorithms.
For our purposes, we have implicitly supposed that the algorithms ful�ll exactly the funda-

mental formula (2). Actually instabilities may occur and may in�uence important properties,
such as orthogonality or biorthogonality. Fortunately, this possible drawbacks can be often
substantially reduced by resorting to clever implementations. Analyses which take into ac-
count of the errors due to computer arithmetic can be found in References [1, 4, 23].
The (full) Arnoldi method (cf. Reference [24]) constitutes our reference algorithm. It gener-

ates a sequence of orthonormal vectors {v1; v2; : : : ; vj; : : :} such that, for m6m∗; Km(A; v)= span
{v1; v2; : : : ; vm}. The entries of the matrices Hm are

hi; j= 〈vi; Avj〉
For a collection of various implementations of the Arnoldi method, as well as for a discus-

sion about, we refer to Reference [25]. A stable implementation ensures that W (Hm)⊆W (A).
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The eigenvalues of Hm are usually called the Arnoldi–Ritz values. The QK-Arnoldi method
applied to f(z)= z−1 corresponds to GMRES. If we denote by � any eigenvalue of the ma-
trix H (1)

m de�ned by (28), Proposition 8 says that �−1 ∈W (A−1). For the functions we have
considered, we observed that the two interpolatory methods (Arnoldi and QK-Arnoldi) give
substantially very similar numerical results. They often perform well in terms of speed of
convergence, but due to the growth of the work required, they become less e�ective, in terms
of computational costs, with respect to other procedures.
As �rst alternative to Arnoldi method we have considered the incomplete orthogonaliza-

tion method (IOM). We refer to References [26, 27], for a detailed discussion. This method
consists in performing the orthogonalization of the vector vj+1 only against the previous p
vectors vj−p; vj−p+1; : : : ; vj. Usually it is denoted by IOM(p). This technique is suggested by
the (heuristic) observation that, for �xed i, the elements hi; j, produced by the Arnoldi al-
gorithm, are decreasing as the column index j increases. In the IOM(p) the matrix Hm has
a band structure, with possible non-zero elements only for i − 16j6i + p. Dealing with
various functions, we performed several numerical experiments using IOM(p), with di�er-
ent reasonable values of p. In most of the cases we observed an instable behaviour of the
approximations (as illustrated by the examples below). Yet, we were able to eliminate such
instabilities by resorting to the corresponding QK variant (QK-IOM(p)), getting so a very
e�ective algorithm.
We arrived to the same conclusion even dealing with the non-symmetric Lanczos process,

which represents the classical alternative to Arnoldi type algorithms. As well known, given
v1 = v and u1 = u; 〈u; v〉 �=0, this method produces two biorthogonal sequences of vectors,
{v1; v2; : : : ; vj; : : :} and {u1; u2; : : : ; uj; : : :}, such that, for each m; Km(A; v)= span{v1; v2; : : : ; vm}
and Km(AT; u)= span{u1; u2; : : : ; um}. The sequence {v1; v2; : : : ; vj; : : :} ful�lls (2) and the matrix
Hm is now tridiagonal. It is known that the Lanczos process could have ‘breakdowns’, that
is it may have a premature stop. This can be overcome by resorting to variants based on the
so-called look-ahead technique. In this case Hm will have a block tridiagonal structure. For
computational schemes, details and references we refer to Reference [28]. Some numerical
experiments in the next section will be dedicated to illustrate the advantages of considering
the QK counterpart of Lanczos method.

5. NUMERICAL EXPERIMENTS

In our experiments we consider two types of matrices which are often adopted in the numerical
tests.
The matrix A1 is the GRCAR matrix, a Toeplitz matrix with sensitive eigenvalues,

de�ned as

A1 =




1 1 1 1 0 · · ·
−1 1 1 1 1 0 · · ·

0 −1 1 1 1 1
. . .

. . . . . . . . . . . . . . . . . . . . .
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This test matrix is interesting because A1 is non-normal and �(A1) is located in a curve,
symmetric with respect to the real axis, close to the origin. It was used in References [10, 14]
for illustrating the dependence of Krylov methods on pseudospectra and for showing that
pseudospectra can be well approximated by sets enclosed by lemniscates of quasi-kernel poly-
nomials.
The second matrix, we denote by A2, is obtained by discretizing on the unit square

(0; 1)×(0; 1), with Dirichelet boundary conditions, the second-order di�erential operator,

−�+ c1 @@x + c2
@
@y
; c1; c2 ∈R

where � denotes the Laplacian. We introduce a uniform meshgrid with meshsize h=1=(n+1)
and we employ the central di�erences for discretizing the Laplacian. Since we will consider
only cases where the grid-P�eclet numbers are greater than 1, we use the upwind di�erences
for the advection terms (cf. Reference [29]). So doing we get the N×N (N = n2) matrix

A2 =
1
h2
[(In ⊗ B) + (C ⊗ In)]∈Rn2×n2

where In is the identity matrix of order n; B and C are tridiagonal matrices de�ned as

B=




4 + c1h+ c2h −1
−(1 + c1h) 4 + c1h+ c2h−1

−(1 + c1h) . . . . . .

. . . . . .




C =




0 −1
−(1 + c2h) 0 −1

−(1 + c2h) . . . . . .
. . . . . .




For a discussion on spectra of such matrices we refer to Reference [7].
In all the experiments we have set v=[1; 1; : : : ; 1]T=N 1=2. The approximations are evaluated

via formula (3) and the computation of f(Hm)e1 is performed by a standard MatLab routine.
In the �gures we report the behaviour (as m increases) of the Euclidean norm of the error
Em versus the computational cost measured in terms of scalar products. Actually a similar
behaviour has been observed for the generalized residuals Rm. We must point out that the
cost of a matrix by vector product is considered in terms of a certain number of scalar
products, that depends on the sparsity pattern of the matrix.
In all examples we consider a comparison between the IOM(p) or the Lanczos method

and their QK versions. The numerical results (Figures 1–7) show the e�ectiveness of the QK
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Figure 2.

approach especially in terms of stability. Moreover, regarding the IOM(p), it is possible to
observe (see Example 2) that using small values of p the QK version converges even when
the basic version does not. For comparison, in the pictures, the error curve of the Arnoldi
method is also shown. As already mentioned, it represents approximately also the error curve
of its QK version.

Example 1
In this �rst example we consider the function f(z)= exp(−tz−1), for t¿0, which has an
essential singularity at z=0. In Figure 1 we give a comparison between the IOM(14) and
QK-IOM(14) when applied to the computation of f(A1)v, with t=0:1. The dimension of the
problem is N =200.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:in press



I. MORET AND P. NOVATI

0 200 400 600 800 1000 1200
−10

−8

−6

−4

−2

0

2

inner products

lo
g1

0(
no

rm
2(

er
ro

r)
)

Arnoldi 

Lanczos 

QK−Lanczos 

Figure 3.
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Figure 4.

Example 2
We consider the function f(z)= z1=2. We recall that the function square root denotes the
single-valued branch of the many-valued function z1=2 that is de�ned in a domain not con-
taining the origin (cf. References [30, p. 77], [31, vol. 1, p. 114]). We take the square root
on the branch such that 11=2 = 1.
The problem examined in this example is the computation of f(sA2)v, with s¿0. As well-

known (see Reference [32]) A1=22 is well de�ned.
Fixed n=30; s=0:01; c1 = 50; c2 = 50, in Figure 2 the error curves of the IOM(6) with

respect to its QK version are shown, whereas in Figure 3, we test the Lanczos and the
QK-Lanczos methods on the same problem.
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Example 3
The function considered in this example is f(z)= sin(tz1=2). In Figures 4 and 5 we test our
methods for the computation of f(A2)v. In both the tests we have chosen n=30; t=0:1; c1 =
60; c2 = 50.

Example 4
Now consider f(z)= (1 − exp(−z))−1. This function has a pole of order 1 at z=0. In fact
its Laurent expansion is

f(z)= z−1 +
∞∑
k=0
akzk
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for some constants a0; a1; : : : : We are interested to compute f(	A2)v, for 	¿0. It represents
the vector y(0), being y(t) the solution of the di�erential problem

y′ + A2y=0

y(0) = y(	) + v

The following two pictures, Figures 6 and 7, show the results obtained taking c1 = c2 = 100
and c1 = c2 = 50, respectively. In both cases n=30 and 	=0:01.
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