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Abstract

In this paper we consider the practical construction of exponential W-
methods for the solution of large stiff nonlinear initial value problems,
based on the Restricted-Denominator rational approach for the compu-
tation of the functions of matrices required. This approach is employed
together with the Krylov subspace method based on the Arnoldi algo-
rithm. Two integrators are constructed and tested on some classical stiff
equations arising from the semidiscretization of parabolic problems.

1 Introduction

In recent years much interest has been devoted to the study of exponential
integrators for initial value problems (IVPs). These integrators are based on the
computation of the exponential function (or related functions) of the Jacobian
or an approximation to it, inside the numerical method (see e.g. [12] for a wide
survey). For large and stiff problems, such methods are commonly considered
effective alternative to the classical implicit schemes and this is substantially
due to the improvements in the efficient computation of the matrix exponential.
Indeed, the most efficient iterative algorithms for the computation of f(A)v,
where A ∈ RN×N and v ∈ RN , such as the Krylov expansion methods [18],
converge superlinearly if f is an entire function, but only linearly in the contrary
case. In this sense, the computation of exp(A)v is generally less expensive
than the solution of a linear system. Actually, when solving IVPs, because
of the large number of steps generally performed, it is not so clear if (and
in which cases) an exponential integrator can outperform the most effective
implicit solvers, that are able to exploit the sparsity pattern of the Jacobian
(or an approximation to it) and consequently to use the sparse factorization
techniques for the linear algebra problems inside the method. Up to now, the
only exponential integrator implemented with stepsize selection is exp4 [6], and
hence few numerical comparisons between exponential integrators and classical
implicit solvers are available.
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The recent work on exponential integrators is mainly concerned with semi-
linear problems of the type

y′(t) = Ly(t) + g(t, y(t)), y(t0) = y0, (1)

where L ∈ RN×N and g is a given function. Indeed, after spatial discretization,
many parabolic problem can be well represented by (1), where the difficult part
(stiff or oscillatory) is in the linear part. The main idea is to treat the linear
part exactly, using the matrix exponential (or related matrix functions), whereas
the remaining part of the integrator can be explicit (see e.g. [3], [7], [8], [11],
[12]). Anyway, since many IVPs arising from spatial discretization of parabolic
problems are well represented by (1) only locally, in this paper we want to
consider the construction of exponential integrators for the general autonomous
problem

y′ = f(y), y(t0) = y0. (2)

We consider exponential integrators of the type

ki = ϕ(γhW )
(
f

(
u

(i)
m

)
+ hW

∑i−1
j=1 γijkj

)
, i = 1, ..., s,

u
(i)
m = ym + h

∑i−1
j=1 αijkj ,

ym+1 = ym + h
∑s

i=1 biki,

(3)

where W is an approximation of the Jacobian f ′(ym) and the function ϕ is

ϕ(z) =
ez − 1

z
. (4)

In [6], the method (3) has been called Exponential W-method, since the only
basic difference with respect to W- or ROW-methods (see [10] or [21] for a wide
background) is the presence of ϕ(γhW ) instead of (I − γhW )−1. The scheme
(3) reduces to an explicit Runge-Kutta method for ϕ(z) ≡ 1 and γij ≡ 0.

In [6] the authors use the Krylov expansion method for the computation of
ki, i = 1, ..., s, based on the Arnoldi or Lanczos algorithms. Krylov methods are
commonly considered as a powerful tool for the computation of functions of large
dimensional matrices times a vector, but they also present some disadvantages.
Even in the case of entire functions such as (4), the theoretical superlinear
convergence does not start immediately but depends on the spectral properties
of the matrix involved in the computation. For instance, using the Arnoldi
method for the computation of exp(A)v in which A is a sectorial matrix, the
superlinear convergence starts after a phase whose length is proportional to ‖A‖
(cf. [5]). However, it is worthwhile noting that a similar behavior (and hence a
similar drawback), also regards all the existing iterative methods for functions
of matrices, such as the methods based on the complex approximation of the
function involved by series expansion or interpolation (see e.g. [1], [13]). In this
sense, if we consider differential equations in which the Jacobian arises from the
semidiscretization of unbounded operators the computation of ϕ(γhW )v can
constitute a not negligible problem.
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In order to partially overcome this kind of problems, that are particularly
relevant in the context of the solution of (2) where a lot of function of matri-
ces have to be computed, our idea is to use the Restricted-Denominator (RD)
rational approach for the computation of ki, i = 1, ..., s. This approach, firstly
introduced in [17], is based on the approximation of ϕ(z) by rational forms of
the type

Rn−1(z; δ) =
pn−1(z)

(1− δz)n−1
, pn−1 ∈ Πn−1, n ≥ 1, (5)

where Πn is the space of the algebraic polynomials of degree ≤ n and δ > 0 is
a suitable parameter. Setting

Z = (I − δW )−1,

the use of (5) means that ϕ(γhW )v is approximated by elements of the Krylov
subspaces

Kn(Z, v) = span
{
v, Zv, Z2v, ..., Zn−1v

}
, n ≥ 1.

The aim of this paper is to construct an efficient integrator for (2) based
on the scheme (3), in which the operations ϕ(γhW )v are performed using the
RD approach together with the Krylov subspace approximation based on the
Arnoldi method as described in [14], and already employed in [9] and [16] in
the case of the exponential function. Indeed, even if this approach requires a
matrix inversion, it is generally very fast, and moreover, as we explain in Section
5, such inversion can be reused many times during the integration. We construct
two embedded method of order p = 4 and s = 6 internal stages: RDE43S that
is A(α)-stable with α ≈ 87.1o with 6 function evaluations at each step, and
RDE43L, an L-stable method with 4 function evaluation at each step.

The paper is structured as follows. In Section 2 we make some considera-
tions about the linear stability of the exponential W-methods. In Section 3 we
describe the construction of the methods RDE43s and RDE43L, whose com-
plete sets of coefficients are given in the Appendix. In Section 4 we explain
the Restricted-Denominator rational Arnoldi method for the computation of ki,
i = 1, ..., s. Section 5 is devoted to the numerical implementation of the two
methods proposed. Finally in Section 6 we present some numerical experiments.

2 Linear stability

Looking at the general formula (3) and working as with a ROW-method, we set

αi =
i−1∑

j=1

αij , βij = αij + γij , βi =
i−1∑

j=1

βij , i, j = 1, ..., s.
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Defining b = (b1, ..., bs)
T , β = (βij)i,j=1,...,s, e = (1, ..., 1)T , after some compu-

tation by (3) we get the relation

ym+1 =

(
I +

s−1∑

k=0

bT βkewk+1

)
ym +

h

s−1∑

k=0

s∑

j=1

bT βkejw
k (I + γw)

(
f

(
u(i)

m

)
−Wu(i)

m

)
,

where w = ϕ(γhW )hW [22]. Applying the method to the scalar test equation

y′ = λy, λ ∈ C,

with W = λ we get
ym+1 = R(z)ym, z = hλ,

where

R(z) = 1 +
s−1∑

k=0

bT βkewk+1, (6)

is a sum of exponentials. Clearly, the A-stability is not ensured for an arbitrary
choice of the coefficients of the method.

Theorem 1 For an s-stage exponential W-method the conditions

bT βke =
1

(k + 1)!
γk+1

k∏

j=0

(
1
γ
− j

)
, k = 0, ...p− 1, (7)

are necessary for having consistency order p ≤ s.

Proof. By (6) we have

R(z) = 1 +
s−1∑

k=0

bT βke

γk+1
(exp(γz)− 1)k+1

= 1 +
s−1∑

k=0

bT βke

γk+1
(k + 1)!

∞∑
n=1

S(n, k + 1)γn zn

n!

= 1 +
∞∑

n=1

(
s−1∑

k=0

bT βke

γk+1
(k + 1)!S(n, k + 1)γn

)
zn

n!
,

where

S(n, k + 1) =
1

(k + 1)!

k+1∑

j=1

(−1)k+1−j

(
k + 1

j

)
jn,

are the Stirling numbers of the second kind (see e.g. [2]). Hence, for having
order p ≤ s it is necessary that

γn
n−1∑

k=0

bT βke

γk+1
(k + 1)!S(n, k + 1) = 1, n = 1, ..., p,
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since S(n, k + 1) = 0 for k + 1 > n. Defining bT βke as in (7) we get

γn
n−1∑

k=0

bT βke

γk+1
(k + 1)!S(n, k + 1) = γn

n−1∑

k=0

k∏

j=0

(
1
γ
− j

)
S(n, k + 1).

By [2] p.85 we know that

n−1∑

k=0

k∏

j=0

(
1
γ
− j

)
S(n, k + 1) =

1
γn

, n ≥ 1,

and hence the Theorem is proved.

Theorem 2 Assume that an s-stage exponential W-method satisfies (7) for k =
1, ..., s− 1. If γ = 1/k for k ∈ {1, 2..., s− 1} then R(z) = exp(z).

Proof. Let 1 ≤ k ≤ s− 1, and γ = 1/k. By (7) we clearly have bT βne = 0
for n = k, ..., s− 1. Then

R(z) = 1 +
k−1∑
n=0

bT βnekn+1
(
exp

( z

k

)
− 1

)n+1

.

Since for 1 ≤ n ≤ k − 1

bT βne =
1

n + 1
1
kn

(
k − 1

n

)
,

we get

R(z) = 1 +
k−1∑
n=0

k

n + 1

(
k − 1

n

) (
exp

( z

k

)
− 1

)n+1

= 1 +
k∑

m=1

(
k

m

) (
exp

( z

k

)
− 1

)m

= exp(z).

The above theorem explains how to choose γ and the entries of b and β in
order to get an L-stable method. This result will be used in the next section.

3 The construction of two embedded methods
of order 4

The construction of an embedded exponential W-method of order 4(3) requires
21 conditions for the basic method to get p = 4 and 8 conditions for the em-
bedded one to achieve p = 3, if the Jacobian is approximated by an arbitrary
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matrix [6]. However, since our idea is to start with the exact Jacobian, keep it
constant for a certain number of steps and than recompute it, the approxima-
tions we consider are of the type W = J + O(h). In this situation some of the
order conditions can be shifted to higher order and some can be omitted since
we assume to work with autonomous systems.

Hence, in our case there are 11 conditions for having order p = 4 (see [6]
and [21]):

p = 1 (R1) bT e = 1
p = 2 (R2) bT βe = 1/2 (1− γ)
p = 3 (R3a) bT α2 = 1/3

(R3b) bT β2e = 1/3 (1− γ) (1/2− γ)
(W3) bT α = 1/2

p = 4 (R4a) bT α3 = 1/4
(R4b) ϕT αβe = 1/8− γ/6
(R4c) bT βα2 = 1/12− γ/6
(R4d) bT β3e = 1/4 (1− γ) (1/2− γ)(1/3− γ)
(W4a) bT αβe = 1/6− γ/4
(W4b) bT βα = 1/6− γ/4

(8)

where we define α = (αij)i,j=1,...,s, and ϕ = (b1α1, ..., bsαs)T . Of course, the
embedded method, with weights bi, i = 1, ..., s, has to fulfil the first 5 conditions
of (8). Moreover, for the basic method we set the additional condition

(A3) bT αα = 1/6 (9)

that completes the set of condition of order 3 for a general exponential W-
method. In this way, whenever the condition W = J+O(h) fails, the order of the
basic method drops down to 3 instead of 2 whereas the order of the embedded
one drops down to 2. In this section we present two methods, RDE43S and
RDE43L. We choose to have s = 6 internal stages, since this is the minimum
number for the construction of embedded pairs of order 4(3).

3.1 RDE43S

We require that the method fulfils the relations

bi = βsi, i = 1, ..., s− 1, bs = γ and αs = 1, (10)
bi = βs−1,i = αsi i = 1, ..., s− 1, αs−1 = 1. (11)

The above relations, define a stiffly accurate embedded ROW-method (see e.g.
the construction of RODAS in [10]) because they ensure R(−∞) = 0. Anyway
such definition can also be applied for an exponential ROW-method (that is, an
exponential W-method in which W = f ′(ym)), as stated by the following.

Proposition 3 For the exponential W-method (3)

R(−∞) = 1− bT (γI + β)−1e. (12)
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Proof. Since β is strictly lower triangular, by (6) we get

R(z) = 1 + zϕ(γz)bT (I − zϕ(γz)β)−1
e.

Then, using

lim
z→−∞

zϕ(γz) = − 1
γ

,

we easily get the thesis.
Formula (12) is exactly the same of ROW-methods (see [10]) so that the

conditions (10)-(11) ensure that R(−∞) = 0.
Using (10)-(11) and inserting them into (8)-(9) we can simplify the set of

conditions. By direct computation it is not difficult to see that the conditions
(10)-(11) together with the first 5 conditions of (8) that must be fulfilled by
both methods imply bi = bi, i = 1, ..., 4, and b5 = 0. Therefore the conditions
(8)-(9) become

(R1’) b1 + b2 + b3 + b4 = 1− γ
(R2’) b2β2 + b3β3 + b4β4 = 1/2− 3γ/2 + γ2

(R3a’) b2α
2
2 + b3α

2
3 + b4α

2
4 = 1/3− γ

(R3b’) b3β32β2 + b4(β42β2 + β43β3) = 1/6− γ + 11γ2/6− γ3

(W3’) b2α2 + b3α3 + b4α4 = 1/2− γ
(R4a’) b2α

3
2 + b3α

3
3 + b4α

3
4 = 1/4− γ

(R4b’) b3α3α32β2 + b4α4(α42β2 + α43β3) = 1/8− 2γ/3 + γ2/2
(R4c’) b3β32α

2
2 + b4(β42α

2
2 + β43α

2
3) = 1/12− γ/2 + γ2

(R4d’) b4β43β32β2 = 1/24− 5γ/12 + 35γ2/24− 25γ3/12 + γ4

(W4a’) b3α32β2 + b4(α42β2 + α43β3) = 1/6− 3γ/4 + γ2/2
(W4b’) b3β32α2 + b4(β42α2 + β43α3) = 1/6− 3γ/4 + γ2

(A3’) b3α32α2 + b4(α42α2 + α43α3) = 1/6− γ/2

(13)

The above system can be solved in the following manner. Setting γ and α2, α3, α4,
we find b1, b2, b3, b4 from (R1’), (R3a’), (W3’), (R4a’)

Setting β32 we find β42 and β43 by (R3b’) and (W4b’). Then from (R4d’)
we find β2. By (R3b’) we have β3 and by (R2’) we can compute β4. Then, by
(R4b’), (W4a’) and (A3’) we get α32, α42 and α43. Regarding γ, the choices
γ = 1, 1/2, 1/3, 1/4 as suggested by Theorem 2 are unfeasible because they lead
to a singular system. We set γ = 0.23, in order to get a compromise between
a wide A-stability region and to stay far from singularities of (13). With our
choice the method is not A-stable; it is A(α)-stable with α ≈ 87.1o but contains
the whole half-plane {z ∈ C : <(z) < −0.65}. The remaining free parameters
α2, α3, α4, β32, α51, α52, α53 are fixed in order to maintain the error constant
small. In Fig.1 the boundary of the A-stability region is plotted.

3.2 RDE43L

The second method we propose, RDE43L, is theoretically cheaper than RDE43S,
because it requires only 4 function evaluations per step. Moreover for this
method we require R(z) = exp(z). Therefore, setting α61 = α51 = α41, α62 =
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Figure 1: Boundary of the A-stability region of RDE43S and some contour lines.

α52 = α42, α63 = α53 = α43, α64 = α54 = 0, α65 = 0, and α6 = α5 = α4 = 1,
conditions (8)-(9) becomes

(R1) b1 + b2 + b3 + b4 + b5 + b6 = 1
(R2) b2β2 + b3β3 + b4β4 + b5β5 + b6β6 = 1/2(1− γ)
(R3a”) b2α

2
2 + b3α

2
3 + (b4 + b5 + b6) = 1/3

(R3b)
b3β32β2 + b4(β42β2 + β43β3) + b5(β52β2 + β53β3 + β54β4)
+b6(β62β2 + β63β3 + β64β4 + β65β5) = 1/3(1− γ)(1/2− γ)

(W3”) b2α2 + b3α3 + (b4 + b5 + b6) = 1/2
(R4a”) b2α

3
2 + b3α

3
3 + (b4 + b5 + b6) = 1/4

(R4b”) b3α3α32β2 + (b4 + b5 + b6) (α42β2 + α43β3) = 1/8− γ/6

(R4c”)
b3β32α

2
2 + b4(β42α

2
2 + β43α

2
3) + b5(β52α

2
2 + β53α

2
3 + β54)

+b6(β62α
2
2 + β63α

2
3 + β64 + β65) = 1/12− γ/6

(R4d)
b4β43β32β2 + b5(β53β32β2 + β54β43β3 + β54β42β2)
+b6(β63β32β2 + β64β42β2 + β64β43β3 + β65β52β2 + β65β53β3 + β65β54β4)
= 1/4(1− γ)(1/2− γ)(1/3− γ)

(W4a”) b3α32β2 + (b4 + b5 + b6) (α42β2 + α43β3) = 1/6− γ/4

(W4b”)
b3β32α2 + b4(β42α2 + β43α3) + b5(β52α2 + β53α3 + β54)
+b6(β62α2 + β63α3 + β64 + β65) = 1/6− γ/4

(A3”) b3α32α2 + (b4 + b5 + b6) (α42α2 + α43α3) = 1/6

Hence, setting α2, α3 we find b1, b2, b3 and η = b4 + b5 + b6. Defining b4, b5

we get b6. Setting α42 and α43 by (A3”) we obtain α32. Defining γ, from
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(W4a”) and (R4b”) we get β2 and (α42β2 + α43β3), and then β3. We set
β42 = β53 = β64 = β52 = β63 = β62 = 0 and β43 = β65 = 0 in order that
bT βke = 0 for k = 3, 4, 5 (cf. Theorem 2). In this way, with γ = 1/3 and
setting β32 such that b3β32 = 0.5, we chose α2 = 1/2 −√5/6 between the two
roots of the equation arising from (W4b”) and (R4c”). Therefore, by (W4b”)
we find β54. Then we get β4 from (R3b). Defining β5 we find β6 by (R2). For
the embedded method we set b6 = 0 so that the other weights are uniquely
determined.

The following theorem summarizes the properties of the methods proposed,
whose complete sets of coefficients are given in the Appendix.

Theorem 4 RDE43S and RDE43L are method of order 4 for differential equa-
tions (2) when they are used with exact Jacobian or when W = f ′(ym) + O(h),
m ≥ 0. When used with an arbitrary approximation of the Jacobian they are of
order 3. Moreover RDE43L is L-stable and exact for linear problems of the type
y′ = Ay + b. RDE43S is A(α)-stable with α = 87.1o and fulfils R(−∞) = 0.

4 The Restricted-Denominator rational Arnoldi
method

In this section we consider the practical computation of ϕ(γhW )v by means of
the RD rational Arnoldi method (we refer to [14] for a complete background).
We assume that the numerical range of W

F (W ) =
{

xHWx

xHx
, x ∈ C\ {0}

}
,

is strictly contained in the left-half complex plane. In the sequel we denote by
‖·‖ the Euclidean norm.

As already explained in the introduction, the RD rational approach is based
on the approximation of ϕ(z) by rational forms of the type

Rn−1(z; δ) =
pn−1(z)

(1− δz)n−1
, pn−1 ∈ Πn−1, n ≥ 1, (14)

where δ > 0 is a suitable parameter. Setting

Z = (I − δW )−1 (15)

the use of (14) means that ϕ(γhW )v is approximated by elements of the Krylov
subspaces Kn(Z, v).Because of the spectral properties of W the matrix Z is
well defined for each δ > 0. Using the Arnoldi algorithm for the construction
of the subspaces Kn(Z, v) we get an orthonormal sequence {v1, v2, ..., vj , ...},
with v1 = v/ ‖v‖, such that Kn(Z, v) = span {v1, v2, ..., vn}. Moreover, for each
n ≥ 1,

ZVn = VnHn + hn+1,nvn+1e
T
n .
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where Vn = [v1, v2, ..., vn], ej is the j-th vector of the canonical basis of Rn, Hn

is an upper Hessenberg matrix whose entries are hi,j , i, j = 1, ..., n.
In this way, the n-th RD rational Arnoldi approximation to q = ϕ(γhW )v

is defined as
qn = ‖v‖Vnφ(Hn)e1,

where

φ(z) = ϕ

(
γh

δ

(
1− 1

z

))
, (16)

or equivalently
qn = ‖v‖Vnϕ(Bn)e1,

where
Bn =

γh

δ

(
I −H−1

n

)
.

Writing
qn = p∗n−1(Z)v,

it is known that p∗n−1 ∈ Πn−1 interpolates, in the Hermite sense, the function
φ(z) in the eigenvalues of Hn.

Besides the fast convergence, an important feature of such method, pointed
out in [9] and [16], is that, contrary to the classical polynomial approach based
on the construction of the Krylov subspaces Kn(W, v), the convergence does
not depend on the norm of W . In particular, if W is a sectorial matrix and
F (W ) ⊂ C−, the method attains the so called mesh independence property,
because F (Z) is contained in the disk centered in 1/2 and with radius 1/2 for
each δ > 0. In other words, as pointed out in [9], the method produces classical
Krylov polynomial approximations just for a preconditioned problem.

Clearly the main drawback of these methods regards the computation of the
matrix Z. Actually, as suggested in [9], this computation can be avoided using
an iterative method for linear systems within the Arnoldi iterations. Anyhow,
in the context of the solution of differential equations, the explicit computation
of Z (by means of a factorization) is preferable, since this matrix can be reused
many times during the integration (see Section 5 for more details).

Regarding the error en = q − qn of the method just explained, in [14] the
author shows that it can be bounded as

‖en‖ ≤ Cn

n∏

i=1

hi+1,i ‖v‖ , (17)

where hi+1,i are the subdiagonal entries of Hn and Cn depends on δ and the
spectral properties of W . For the symmetric case, in [14] a useful bound has
been derived, by means of Laguerre polynomials. Such bound can be obtained
defining

Cn =
exp

(
hγ
δ − n

)
2n+2nn

(
hγ
δ

)n+1 . (18)
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The nonsymmetric case is a bit more complicate because the angle of the sector
containing F (W ) must be taken into account [15]. In this case one typically
makes use of the generalized residual [6], but, as explained in next section, we
adopt a different approach.

5 Numerical implementation

In this section we want to provide some details concerning the practical imple-
mentation of the methods proposed in Section 3, RDE34S and RDE43L. We
have created a Matlab code RDE43 available at http://univaq.it/~novati.
The code is written following the format used in THE MATLAB ODE SUITE
[19], and allows to choose between the two methods.

5.1 Stepsize control

Regarding the local error estimate at the m-th step, denoted by τm, we consider
the weighted norm

errm =

(
1
N

N∑

i=1

(
τm,i

atoli + max (|ym,i| , |ym−1,i|) rtol

)2
)1/2

,

where atol ∈ RN and rtol ∈ R are the absolute and relative tolerances re-
spectively. As usual, the stepsize is accepted if errm ≤ 1. In our numerical
experiments, we adopt the stepsize selection due to Gustafsson (see [10])

hm+1 = hm min

{
facM , max

{
facM , facs

hm

hm−1

(
errm−1

err2
m

)1/p
}}

, (19)

where we chose facM = 5, facM = 0.2 and facs = 0.8.

5.2 Stopping criterion in the computation of ϕ(hγW )v

As discussed in Section 4, for the computation of ϕ(hγW )v we employ the RD
rational Arnoldi method. In order to monitor the error during the Arnoldi itera-
tion one typically uses the so-called generalized residual. Anyway this approach
requires the solution of all (or several) subproblems during the iteration, that
is, the computation of φ(Hn), where φ is defined by (16), for n ≥ 1. Since we
want to avoid this computation we define (cf. (17)-(18))

dn :=
exp

(
hγ
δ − n

)
2n+2nn

(
hγ
δ

)n+1

n∏

i=1

hi+1,i ‖v‖ , (20)

and then, since ki (i = 1, ..., s) is multiplied by h, the idea is to use the stopping
criterion

h
dn

rtol
K ≤ 1, (21)

11



where K ≥ 1 is a safety factor, whose introduction is motivated by the fact that
formula (20) holds only in the symmetric case. Many numerical experiments
with 1 ≤ K ≤ 2 on stiff equations with unsymmetric Jacobian arising from
parabolic problems confirmed the effectiveness of this heuristic approach. For
the experiments of next section we set K = 1.

5.3 The choice of δ

As pointed out in [16] and [9] in the case of the exponential function, if one looks
at the error of the n-th approximation a value like δ = hγ/n turns out to be
the optimal one. This seems a reasonable choice even for our case. For instance
if we take δ in order to minimize dn in (20) we just obtain δ = hγ/(n + 1). In
this sense one can use a formula of the type

δ = hγ/n∗, (22)

with n∗ chosen by means of some a-priori error estimates. For our method,
given the initial step we define initially δ = hγ/5, and then at each accepted
step we observe the maximum number Krylov iterations n performed for the
computation of the 6 stages. Then we use n as the a priori estimate for the
required number of iterations to get (21).

5.4 Savings from previous steps

The method proposed may reuse the Jacobian of a previous step as an approx-
imation of the current Jacobian. Similarly to the code VODE (see e.g. [4]), we
adopt the following controls in order to decide wether to compute the Jacobian
or not.

1. ∣∣∣∣
hm+1 − hm

hm

∣∣∣∣ ≥ c;

2. the Jacobian has not been updated since m steps.

Typical values in this context are c ∈ [0.2, 0.4], m ∈ [10, 40] depending on the
accuracy requirements and the problem to be solved. In this sense, our methods
are implemented computing the new Jacobian if one of the above conditions
holds.

Since we intend to solve exactly the linear systems within the Arnoldi itera-
tion using the LU (or Cholesky) decomposition of I−δW , the reuse of a previous
Jacobian clearly can reduce the number of such decompositions. In fact, when
a new stepsize hm+1 is predicted without Jacobian update, the previous LU
factorization of

I − hmγ

nm
W,

(cf. (22)) where nm is the a-priori estimate explained above, the current LU
factorization is the same if we define nm+1 = nm (hm+1/hm).

12



The numerical experiments reveal that the RD rational Arnoldi method and
also formula (20) preserve their effectiveness for a window of value of δ (cf. [14]).
In this sense in our code we allow the reuse of a previous LU decomposition
whenever

max(1, λnm) ≤ nm+1 ≤ µnm,

where λ < 1, µ > 1. This is done even when a failed attempt occurs (note
that the value of nm comes from an accepted step). Although this may seem a
bit complicate the reuse of previous LU decompositions is fundamental for the
construction of an efficient integrator based on the RD Arnoldi method because
the LU decompositions can have a great influence on the global cost of the
method.

5.5 Computational costs

Many numerical experiments revealed that formula (21) is even too much con-
servative even in the nonsymmetric cases. The reason lies in the use of the
bound (20) when the value δ is far from the optimal one. However there is also
the advantage of avoiding the computation of φ(Hn) at each Krylov step, that
would be necessary using the generalized residual as estimator.

Therefore, because of the mesh-independence property of the RD-based ap-
proach, at each step of the method we have sυ Krylov iterations, typically with
υ ≤ 10 for sectorial matrices, independently of the dimension of the problem.
This is the major advantage of this approach with respect to the classical Arnoldi
method, where for large dimensional problems the superlinear convergence could
require a large number of iterations.

6 Numerical Experiments

In this section we compare the methods RDE43S and RDE43L implemented
in RDE43 with the Matlab stiff solver ode15s (a BDF method), exp4 [6], the
only existing variable stepsize exponential integrator for (2), and RODASP (by
Steinebach [20]), a powerful fourth order ROW-method used with the incom-
plete LU preconditioning together with the BI-CGSTAB for the linear algebra
required. Regarding RDE43 we set c = 0.3, m = 30, λ = 1/3, µ = 3 (cf. 5.3,
5.4).

The test problems we consider are well-known nonlinear equations arising
from parabolic PDEs.

1. The Fischer’s equation

∂u

∂t
=

∂2u

∂x2
+ u2(1− u),

with initial condition u(x, 0) = sin(πx) and Dirichlet boundary conditions,
for 0 ≤ x ≤ 1 and 0 ≤ t ≤ 2. We discretize with central differences and
the method of lines with meshsize ∆ = 1/1001, getting a system of 1000
equations.
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2. The equation

∂u

∂t
= ν

(
∂2u

∂x2
+

∂2u

∂y2

)
− u

∂u

∂x
− u

∂u

∂y
, (23)

on [0, 1/2] × [0, 1/2] and 0 ≤ t ≤ 0.1, with ν = 0.1. Initial and time-
dependent boundary conditions are taken from the exact solution

u(x, y, t) =
1

1 + exp
(

x+y−t
2ν

) .

Discretizing as before with ∆ = 1/62 we get a system of 900 equations.
We solve this system after writing it in the corresponding autonomous
form.

3. The NILIDI problem [23], i.e., the two-dimensional nonlinear diffusion
equation

∂u

∂t
= eu

(
∂2u

∂x2
+

∂2u

∂y2

)
+ u (18eu − 1) ,

on [0, π/3] × [0, π/3] and 0 ≤ t ≤ 1. We consider the initial condition
u(x, y, 0) = sin(3x) sin(3y) and Dirichlet boundary conditions. We dis-
cretize as before with uniform meshsize ∆ = π/105, getting a system of
1225 equations.

4. The Burgers’ equation

∂u

∂t
= ν

∂2u

∂x2
− u

∂u

∂x
,

with initial condition u(x, 0) = x (1− x)2 and Dirichlet boundary con-
ditions, for 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1. We discretize with meshsize
∆ = 1/1001 getting a systems of 1000 equations. We set ν = 1.

For each example, we compare the obtained numerical results for each meth-
ods with a reference solution for the given ODE. The computing time (NSEC)
is displayed as a function of the Euclidean norm of the error at the endpoint
(ERR). For each problem we set atoli = rtol = TOL, i = 1, ..., N , and the
methods have been applied with

TOL = 10−2, 10−3, ...

In Figures 2-5 the diagrams relative to the test problems considered are
shown. The results prove that the code RDE43 represents an efficient solver for
such problems. The RD rational approach for the computation of the functions
of matrices inside the method appears as a powerful tool in the context of the
solution of differential equations arising from parabolic problems, where the Ja-
cobian is generally sparse and structured. In particular, with the exception of
the ODE arising from (23), RDE43L seems to be the best of the methods consid-
ered, especially for high accuracy requirements. Moreover, for all the examples
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Figure 2: Work-precision diagram for the Fischer problem.
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Figure 3: Work-precision diagram for the problem (23).
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Figure 4: Work-precision diagram for the NILIDI problem.
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Figure 5: Work-precision diagram for the Burgers problem.
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we can also appreciate the error curves of RODASP that uses the incomplete LU
preconditioning together with the BI-CGSTAB method for the linear systems
inside the integrator. Maybe this approach could represent an improvement
also for the methods presented in the paper. We must point out that for the
Fischer problem (Figure 2) the behavior of exp4 is very bad and hence it is not
represented.

For the Burgers problem, in Table 1 we also report the statistics for RDE43S
and RDE43L respectively. In the table, NSTP is the number of steps, PD is
the number of Jacobian evaluations, LU is the number of LU decompositions,
KSTP is the total number of Krylov steps and MKS is the mean value of
Krylov steps. It is interesting to observe that MKS is considerably small with
respect to the dimension of the problem.

TOL NSTP PD LU KSTP MKS ERR NSEC

10−2 8
8

8
8

9
9

165
149

3.43
3.10

2.42 10−4

4.47 10−5
2.80
2.64

10−3 11
10

11
10

12
11

250
228

3.78
3.80

3.68 10−6

5.08 10−5
2.88
2.76

10−4 15
12

12
12

13
13

369
317

4.10
4.40

8.69 10−7

2.54 10−6
3.07
2.92

10−5 21
13

16
13

17
14

545
410

4.32
5.25

8.52 10−7

2.81 10−7
3.42
3.09

10−6 38
17

18
17

19
18

1096
570

4.80
5.58

1.51 10−7

4.54 10−8
4.46
3.38

10−7 52
36

43
15

44
16

1439
1392

4.61
6.44

6.12 10−8

3.07 10−9
5.25
4.92

10−8 85
52

80
19

81
20

2813
1823

5.51
5.84

1.31 10−8

4.49 10−10
8.02
5.70

10−9 164
76

19
10

22
12

6672
2694

6.78
5.91

1.45 10−9

5.60 10−11
9.60
4.53

Table 1. Statistics for RDE43S / RDE43L for Burgers’ problem.

Finally, working once again with the Burgers’ problem, in Table 2 we show
the statistics for RDE43S and RDE43L changing the dimension of the problem
N . For each case, we apply the methods with TOL = 10−6.
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N NSTP PD LU KSTP MKS ERR NSEC

200
36
17

20
17

21
18

879
462

4.06
4.52

6.95 10−8

1.01 10−7
0.75
0.39

400
37
17

19
17

20
18

968
509

4.36
4.99

2.54 10−7

4.01 10−8
1.35
0.73

600 37
17

19
17

20
18

1007
518

4.53
5.07

3.12 10−7

5.29 10−8
1.95
1.24

800 38
17

18
17

19
18

1098
545

4.81
5.34

1.34 10−7

6.73 10−8
3.05
2.16

1000
38
17

18
17

19
18

1096
570

4.80
5.58

1.51 10−7

4.54 10−8
4.46
3.38

Table 2. Statistics for RDE43S / RDE43L for Burgers’ problem with different
meshsizes.

The statistics reported in the above table show that the methods do not
suffer from the dimension of the problem. This is due to the mesh independence
property [16]. As already said, by (15) the underlying unbounded operator is
transformed into a compact operator whose spectrum lies in the disk centered
in 1/2 and with radius 1/2. In this way the error of the RD rational method
does not depend on ‖W‖. This is the fundamental reason that makes the RD
approach attractive for large dimensional problems.

A concluding important remark regards the computation of φ(Hn) at each
final Arnoldi iteration. Since the mean number of Arnoldi iterations is typically
small and independent of the dimension of the problem, φ(Hn) can be computed
with an ”exact” method (for instance by means of the Schur decomposition).
This is a clear advantage with respect to the polynomial approach, in which
one is generally forced to use some Padé approximation, that can make the
integrator unsuited for highly stiff equations.

7 Appendix
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γ = 2.300000000000000e− 01
α21 = 5.000000000000000e− 01 γ21 = −5.896681739130403e− 01
α31 = 1.807491994894457e + 01 γ31 = −2.184086875983300e + 01
α32 = −1.727491994894457e + 01 γ32 = 1.777491994894457e + 01
α41 = 1.447619738931194e + 01 γ41 = −1.824368347564758e + 01
α42 = −1.363059573356356e + 01 γ42 = 1.338336415461619e + 01
α43 = 5.439834425162180e− 02 γ43 = 7.533995890474793e− 05
α51 = 2.000000000000000e− 01 γ51 = −3.157407407407428e− 02
α52 = 5.000000000000000e− 01 γ52 = 1.455555555555555e− 01
α53 = 6.000000000000000e− 01 γ53 = −4.680555555555555e− 01
α54 = −3.000000000000000e− 01 γ54 = 1.240740740740740e− 01
α61 = 1.684259259259259e− 01 γ61 = 0.000000000000000e− 00
α62 = 6.455555555555555e− 01 γ62 = 0.000000000000000e− 00
α63 = 1.319444444444444e− 01 γ63 = 0.000000000000000e− 00
α64 = −1.759259259259259e− 01 γ64 = 0.000000000000000e− 00
α65 = 2.300000000000000e− 01 γ65 = −2.300000000000000e− 01
b1 = 1.684259259259259e− 01 b1 = 1.684259259259259e− 01
b2 = 6.455555555555555e− 01 b2 = 6.455555555555555e− 01
b3 = 1.319444444444444e− 01 b3 = 1.319444444444444e− 01
b4 = −1.759259259259259e− 01 b4 = −1.759259259259259e− 01
b5 = 0.000000000000000e− 00 b5 = 2.300000000000000e− 01
b6 = 2.300000000000000e− 01 b6 = 0.000000000000000e− 00

Table 3 - Set of coefficients of RDE34S
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γ = 3.333333333333333e− 01
α21 = 1.273220037500351e− 01 γ21 = −9.803381697176562e− 02
α31 = −9.226441186718157e− 01 γ31 = 8.275955106271749e− 01
α32 = 1.422644118671816e + 00 γ32 = −6.726441186718158e− 01
α41 = 3.000000000000000e− 01 γ41 = 8.382963781060364e− 01
α42 = 2.000000000000000e− 01 γ42 = −2.000000000000000e− 01
α43 = 5.000000000000000e− 01 γ43 = −5.000000000000000e− 01
α51 = 3.000000000000000e− 01 γ51 = 1.606553370833683e− 01
α52 = 2.000000000000000e− 01 γ52 = −2.000000000000000e− 01
α53 = 5.000000000000000e− 01 γ53 = −5.000000000000000e− 01
α54 = 0.000000000000000e− 00 γ54 = 3.934466291663161e− 02
α61 = 3.000000000000000e− 01 γ61 = 7.893003817339626e− 01
α62 = 2.000000000000000e− 01 γ62 = −2.000000000000000e− 01
α63 = 5.000000000000000e− 01 γ63 = −5.000000000000000e− 01
α64 = 0.000000000000000e− 00 γ64 = 0.000000000000000e− 00
α65 = 0.000000000000000e− 00 γ65 = 0.000000000000000e− 00
b1 = 1.666666666666671e− 01 b1 = 2.246940103828099e− 01
b2 = 0.000000000000000e− 00 b2 = −8.921028305556744e− 02
b3 = 6.666666666666667e− 01 b3 = 7.063156813580298e− 01
b4 = 2.000000000000000e− 01 b4 = −3.223527511893778e− 01
b5 = 5.000000000000000e− 01 b5 = 4.805533425041055e− 01
b6 = −5.333333333333333e− 01 b6 = 0.000000000000000e− 00

Table 4 - Set of coefficients of RDE34L
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