A class of explicit one-step methods of order two
for stift problems

P. Novati
Universita degli Studi dell’Aquila
Dipartimento di Matematica Pura ed Applicata
Via Vetoio, Coppito 67010 - L’Aquila - Italy
E-mail: novatiQunivaq.it

Abstract

In this paper we introduce a new class of explicit one-step methods of
order 2 that can be used for solving stiff problems. This class constitutes
a generalization of the two-stage explicit Runge-Kutta methods, with the
property of having an A-stability region that varies during the integration
in accordance with the accuracy requirements. Some numerical experi-
ments on classical stiff problems are presented.

1 Introduction

Given a function f : R xRY — R and a vector yo € RY, in this paper we deal
with the initial value problem (IVP)

y ()= f(t,y (1), t>to,
{ y (to) = o, ' (1)

As well known, if (1) is stiff, any classical explicit method is able to produce a
good approximation of the solution only if the integration step is chosen very
small, so that one is usually forced to employ an implicit scheme.

However, the computational complexity of implicit schemes represents a se-
rious drawback if N is large, as could happen when (1) arises from spatial
discretization of parabolic PDEs.

In order to overcome such problems, in recent years some authors have
proposed various alternatives, such as the use of the so called Runge-Kutta-
Chebyshev methods (see e.g . [1], [8], [18]) with the aim of creating explicit
integrators with extended stability domains.

Other methods recently proposed are the so called exponential integrators,
based on the approximation of the evolution operator exp(hA), where A is the
Jacobian of f and h is the stepsize, by means of a Krylov projection method
(see e.g. [3], [6], [7]), a series expansion method ([2], [11], [12], [17]), or an



interpolation method ([13]). Such techniques generally performs better than
classical explicit and implicit methods but other numerical problems are also
introduced by these approaches. The improvement is substantially due to the
fact that they are ”problem dependent”, in the sense that they provide approx-
imations of exp(hA) (or other related matrix functions) that depends on the
spectral property of A, and a good approximation of exp(hA) allows to solve
the stiffness.

In [14] a new one-step explicit method of order 1 for stiff IVPs has been
shown to be a promising alternative to the choice of implicit schemes. This
method represents a modification of the explicit Euler method, described by
the following recursion

Yn+1l = Yn + hn¢(hna Mn)f(tnu yn)7 (2)

where M,, € RV*N ig a diagonal matrix and ¢ : R x RV*N — RNXN ig defined
by
Gy, My,) == (1 + hy) (14 b, M) "

The main reason that led to the construction of the method (2) for stiff
problems is that working with an A-stable method one has more than what is
necessary. Indeed, the use of a stepsize arbitrarily large is feasible only from
a theoretical viewpoint, because the accuracy requirements generally does not
allow this choice. In this sense, the method (2) is clearly not A-stable, but its
stability domain depends on h,, and M,,. As shown in [14], the matrix M, is
chosen in order to enlarge or also to restrict the stability domain dynamically
during the integration in a close connection with the accuracy requirement.

Actually we must point out that in [14] and also in this paper the matrix M,
can be viewed as a sort of approximation of the Jacobian of f so that the method
can be considered connected, in some sense, to the well known W-methods (see
e.g. [10] for a wide survey). Anyway, as we shall see, the main difference is that
the entries of M,, does not came from approximations of eigenvalues but they
are computed by accuracy considerations only.

In this paper we want to extend the ideas of the method (2) in order to
create a class of methods of order 2 obtained as modification of the two-stage
explicit Runge-Kutta methods. As we shall see the main features of this new
class of methods are the same of the method (2). Indeed these methods are able
to solve efficiently stiff IVPs without inversions or other matrix function eval-
uations. Regarding the similarity with the Runge-Kutta-Chebyshev approach,
that is the capability of working with extended stability domains without linear
algebra difficulties, there is a basic difference: for the Runge-Kutta-Chebyshev
the widening of such domains requires the increase of the number of stages,
whereas the method here proposed is always two-stage but with changing pa-
rameters.

The paper is organized as follows. In Section 2 we define the scaled Runge-
Kutta methods of order 2 and in Section 3 we study the linear stability. In
Section 4 we describe the algorithm that defines the matrix sequence {My,}, -,
and study the asymptotic stability corresponding to this choice. In Section 5 we



present some numerical details and the final algorithm that has been used for
the numerical experiments of Section 6. In a final section we discuss conclusion
and open problems for the method proposed in this paper.

Based on the algorithm of Section 5 we have written a code heunsc which
can be found at http://univaq.it/ novati.

2 The Scaled Runge-Kutta methods of order 2

An explicit two-stage Runge-Kutta method can be written in the following form
Ynt1 = Yn + h(c1 K1 + c2Ko), (3)

where ¢; € R, j = 1,2, and, as usual,
Ky = f(zn,yn), K2 = f(zn + a2h,yn + hb21 K1), (4)

with ag, b1 € R. In order to face stiff problems, generalizing the construction of
the method (2), the idea is to define ¢; = ¢;j(h, M) € RN*N | j = 1,2, as suitable
functions of h and M, where M € RV*¥ is chosen to scale the problem. The
coefficients a9 and by; can be maintained scalar.

Just to understand how to define the c;’s, assume for a moment to work
with the scalar test IVP

() =My (z), x>0,

where A € C~ = {z € C: R(2) < 0}, and let M € R, M > 0. We want to
define the functions c¢; such that the method is of order 2 and such that the
stability domain becomes larger for h — oco. In particular we want the stability
function of the corresponding method to be of the form

2y2

R(h, A M) =1+ hdp + =

(p2

where ¢ = ¢(h, M) is a certain function of h and M. In order to have a method
of order 2 it is necessary that p(h, M) — 1 for h — 0. Moreover we require that
w(h, M) — 1/M for h — oo. This leads to the definition

1+h2M

p=¢h M):= 15
So doing, as we shall see in the next section, the stability domain of the corre-
sponding method is larger than the stability domain of an explicit Runge-Kutta
method of order 2 if M > 1.

Going back to the general problem (1), and hence working with N > 1, we
must define

o(h, M) := (1+h2M) (1 +h2M?) " (6)



and it is not difficult to prove that the order conditions become
€1+ C2 =¥,
a9Cy = %@2

Fixed as = a # 0, the general solution is given by the Butcher array

0 0 0
o o 0
| p(1—35%) 3q¥°

With these assumptions, the method takes now the form

1 1,
Ynt1 —Z/n-i-h(@ (1—2)\90) K1+590 K2> (7)

where K and Ky are defined by (4). We define Scaled Runge-Kutta method
any method of type (7).

Clearly, the definition (6) is only one among the possible choices for ¢ that
ensure the preservation of the order and the extension of the A-stability region.
Anyway, many numerical experiments revealed the good performance of this
choice.

3 Linear stability

In order to understand the requirement ¢(h, M) — 1/M for h — oo that leads
to (6), let us consider the linear stability properties of this method. Consider
again the scalar test IVP (5). Applying the method (7) to (5) with M € R,
M >0, and ¢ : R? — R, the stability function is given by

R(h, A\, M) =1+ hA

1+h2M+h2)\2 14+ h2M 2
14+ h2M?2 2 14+ h2M?

Hence, the corresponding A-stability region
S(h,M) :={hX € C: |R(h,\,M)| <1}

depends on h and M. Defining with Sy the stability domain of a classic Runge-
Kutta method of order 2, it is easy to see that S(h, M) is an expansion of Sy of
the factor

1+ h%2M?

EEEE— ,

1+h2M —

ie.,
14+ h2M’

In this way S(h, M) tends to the stability domain of a standard Runge-Kutta
method of order 2 for h — 0, and, for h — oo, S(h, M) tends to the region

1+ h2M?
S(h,M):—{ZG(C:z—z' + Z’ESQ}.

Sy ={2€C:2=2M,2 € S,}.



Just to give an example, if A = —r, r > 0, setting M = r it is possible to
show that we get a method that is asymptotically stable for each h < 2. Indeed,
since |R(h, —r,r)| <1 for hry < 2, where

1+ h2r
L] + h2r2’
solving hry = 2 with respect to h, one gets
3—4r )

hr) = a(r)* — S+ 5 5)

where

82 — Or + 27 + 331512 — 17r + 27
Q<T) = 2712 :

Analyzing (8), we can see that

1.87 < h(r) <195 for 1<r <10,
1.95 < h(r)<2 for r>10,

h(r) — 2 for r— oo.

4 The definition of M,,

Up to now, the matrix M of the method (7) has been considered constant. Ac-
tually, in order to solve efficiently a stiff equation, such matrix must be updated
during the integration. In other words, it is necessary to build a matrix sequence
{M,},,~, with the properties of scaling the problem reducing in some sense the
stiffness.

Among the possibilities, the most immediate consists in approximating the
Jacobian of f (as for the Rosenbrock type methods or W-method), or approx-
imating its eigenvalues. However, since we want to avoid such computations
our idea is to define a sequence {M,}, -, of diagonal matrices (in this way the
computation of ¢(h, M) does not produce a significant additional cost) without
using any information on f. Starting from My = Iy (i.e., starting with an
explicit two-stage Runge-Kutta method), we want to define dynamically M,, by
monitoring the local error. So doing the procedure will be closely related with
the stepsize control technique adopted.

Given yy, h, My, in order to define M, 1, let v, 3 € R be such that v > 1,
0 < B < 1 and define the temporary matrices M= M, and M = yM,,. Let
now e(h, M) € RN and e(h, M) € RY be estimates for the local errors at t,, + h
produced by the method (7) with M and M, that we denote by y and 7. Setting

d(h) := min(le(h, M), , [|e(h, M)]| ) (9)
suppose that we are using a stepsize control technique such that

1d(P)]l oo = & (10)



where 6 is a fixed tolerance. In this way we advance with 3,41 equal to y or i
(depending on who gets the minimum in (9)). a

For i =1,2,...,N, let M® be the i-th element of the diagonal of a matrix
M € RVN*N and let v be the i-th element of a vector v € RN. We define

. (4) i (@) O (h. M
Mr(:}rl _{max(l,M ) if |e (h,M)‘<‘e (h,M)’ (1)

- Mt [eO(h,T)| < [e®) (h, )|

In doing so, we create an automatic procedure that can be applied to both linear
and nonlinear case that does not require inversion nor eigenvalue approximations
but only to apply the method (7) with M and M. This represents the additional
cost of the method.

In order to understand how the definition (11) reflects on the asymptotic
stability of the method, examine again the scalar test equation (5). Under the
hypothesis that h,, has been chosen such that the relation (10) holds, if we define
M, 41 as stated in (11), we want to understand how large it is possible to choose
hp+1 in order that

‘R(hn-&-la A, Mn+1)| <L (12)

Lemma 1 Given M > 0, a > 0, there exists q* such that

p(h, M) = ¢(q"h,aM)q" (13)

(¢ defined by (6)) with
¢ > 1/a for a>1 (14)
* % for a<1 (15)

Proof. Solving analytically with respect to ¢ the equation ¢(h, M) =
p(gh,aM)q is a difficult task. Hence the idea is to prove that there exists a
solution ¢* satisfying the inequalities (14) and (15). Let us start with the case
a > 1. We have

1+ (gh)? aM 1+ (qh)? a®M
2 2q < 2 2(]@
1+ (qh)” (aM) 1+ (gh)” (aM)
1+ h2Mz?
1+ R2M222 "

where z = qa. Now
1+ h?Maz? 1 + h2M
x
1+ h2M?222" — 1+ h2M?
for ¢ < x <1 where ¢ < 1 is a certain quantity depending on h and M. Hence,
we have

¢(gh,aM)q < p(h, M) for ¢ <1/a. (16)



On the other side, it is clear that

1+ (qh)*aM

ST "

so that we can say that there exist ¢’ > 1/a such that
¢(qh,aM)q > ¢(h,M) for ¢>q >1/a. (18)

Since ¢(qh, aM)q is continuous with respect to g, the inequalities (16) and (18)
prove that for a > 1 there exist ¢* > 1/a that solves (13).

Consider now the case a < 1 and assume M > 1 (for M = 1, as stated in
(11) we cannot choose a < 1, so that we are in the previous case). If aM > 1
we get

1+ (gh)*aM 1+ (gh)*>aM

14 (h)? (@21~ 14 (gh)2abl

Hence, choosing
1+ h*M
1= TR
we get
@(qh,aM)q < p(h, M).
As before, by (17) we can state that for a < 1 there exist ¢* > % that
solves (13). m
Clearly, if (13) holds then we have |R(h, A\, M)| = |R(¢*h, \,aM)| for each
reC.
Now suppose that at each step the local error is approximated via Richardson
extrapolation by

e(hi, My) == Ci |n(te + hi, his, My) — n(te + hi, hi/2, My)|, (19)

where n(tp+hi, hi, My) and n(tx+hg, hi /2, My) are approximations of y(tx+hg)
furnished by the method (7) with stepsize hy and hy /2. We are ready to prove
the following.

Proposition 2 For the scalar test equation (5) assume that at each step

e(hank:) < 67 k > Oa

with
Cp,>C>0, k=>0.
If
|R(hn—1a/\7Mn—1)| S 17 n Z 15 (20)
then there exist h,, that satisfies
2M,p, 1 2 )
h, > hpo1=—hn_1 of M, > M, 1, 21
M, 1 5 1 1 (21)
1+h2 | M,_
I 7 T SV VA VA (22)

L+n2 M2,



and such that
|R(hpy A, M| < 1.

Proof. Since h,, is such that
le(hn, My)| <6,
we have

[R(Fny A, My )y n(tn + hay hay, M)

[n(tn + Py hin /2, M)
1
< 2 lelhn M)+ | Bl /20 Moy

)

Now, if ¢,—1 is the solution of |R(hp—1,\, Mp_1)| = |R(gn—1hn-1,A, M,)|,
defining h,, := 2¢,—1hn—1 we have |R(hy/2,\, My,)| = |R(hn—1, A, M,—1)| and
hence

|R(hyy Ay M) yn| <6+ [R(hn—1, A, Mp—1)] [yn|

Relations (21) and (22) arise from (14) and (15). Finally, since the above argu-
mentations are independent of d, the proposition is proved. m

It is important to observe that working with a standard Runge-Kutta method
of order 2 the factor Cf in (19) is equal to 1/3. However, as explained in the
next section, for our method such factor has to be taken greater than 1/3 in
order to get better approximation for the local error. In this way the above
proposition always holds with C' = 1/3.

Various numerical experiments (see Section 6) revealed that generally the
diagonal components of M, are increased during the smooth phases of the solu-
tion, whereas they are forced to remain closed to 1 during the transient phases
(see also [14]). Hence, the typical situation of the stationary phases is repre-
sented by formula (21), that is, the asymptotic stability is maintained increasing
the stepsize of a factor 2/v. Since v must be chosen greater but closed to 1
(usually 1 < v < 1.2 to avoid numerical instability) the factor 2/ allows an
effective increase of the stepsize. On the other side, during the transient phase,
the stepsize h,, is clearly small, so that

1+hiM, <
T+ h2M2 ™

and hence also formula (22) allows to increase considerably the stepsize without
loosing the asymptotic stability.



5 Numerical implementation

Regarding the practical implementation of the method (7) with the definition
(11), the stepsize control procedure we use is the Predictive Controller (PC)
technique (see [4], [5] and [16] for a comprehensive survey), so that the stepsize
selection fulfils the formula

KEg Kp 2
S €n—1 h
Bpir =5 | — n_ 2
i ? (e") ( €n ) hn—l ( 3)

where e, = ||e(hy, My)||, is an estimate for the local error, ¢ is the prescribed
tolerance for the local error and s is a safety factor. The exponents K and Kp
handle the stability of the selection ([16]).

Indeed, when applying an explicit method to a stiff problem, in order to avoid
frequent step rejections and instability, it is important to work with a stepsize
control procedure stable on the boundary of the stability domain (SC-stable
methods [10]). Of course, these considerations apply also to the method here
proposed in which the stability domain changes during the integration. Actually,
for explicit method the the Proportional Integral (PI) contollers are generally
used but since our method allows to enlarge the stepsize with no limitations
imposed by the stiffness, the use of the PC controllers is recommended (see also
[1]). Many numerical experiments confirmed this choice.

Regarding the local error estimates, in order to ensure the validity of Propo-
sition 2 we use the Richardson extrapolation ([9]). Given h,, as before let
N(tn+ hn, hn, My,) and n(t, +hy,, by, /2, M,,) be the approximations of y(t,, +hy,)
furnished by the method (7) with stepsize h,, and h,, /2 respectively. Since the
method is of order 2 the absolute local error is usually approximated by

1
ey = 3 In(tn + Py by, My) — n(tn + By hn /2, M) || o - (24)

However, as mentioned in previous section, for our method the above approx-
imation tends to became poor when the matrix (1 + h2M2) " (1+ h2M,) is
far from the identity. It is rather simple to observe this situation working with
the scalar test equation (5), where, for a fixed h,, e} — 0 for M,, — oo even if
the same is not true for the exact local error. These considerations suggest to
modify slightly the formula (24). It is not a simple task to understand which
is the best correction but the numerical experiments show that we can improve
the error estimate with

1 -1
e(hn, Mn) = 3 ‘(1 +ha M) (1 b M) [ty + h, b, M) =0ty + i, hi /2, My,)]
(25)
and so using e, := ||e(hy, M)/, in (23) . This explains the use of the factor

Cp in (19).

The following algorithm summarizes the practical implementation of the
method for the integration of (1) in the interval [to,¢;] with the adaptive con-
struction of the matrix sequence {M,, },>0.



Algorithm 3
1. gwen e, hg, r, Mo = In, n:=0;
2. while t, <ty
(a) compute M= BM,, and M = yM,,;
(b) compute e(h,, M) and e(h,, M), using (25);
(¢) en =min([le(hn, M)l ,[Je(hn, M)]|| );
(d) compute hypi1 using (23);

(e) if en < €, then yni1 = Ntn + hn, hn/2, M) (o7 ynt1 = n(tn +
Py hn /2, M) );

(F) if en > &, hn o= hniy and go to 4;
(9) define My 41 as in (11);
(h) tny1 :=tn+hp, n:=n+1;

In the numerical experiments of the next section we want to test the method
constructed with the above algorithm and based on the Butcher scheme

0 0 0
1 1 0

e (1—39) 3¥°

Such a method, that represents a modification of the well known two-stage
explicit Heun method, has been implemented in the MATLAB code heunsc
(SCaled HEUN method) available at http://univaq.it/ novati. The code is
written following the format used in the MATLAB ODE suite [15].

The computational cost of heunsc is about of 7 function evaluations at each
step (accepted or rejected). It is worth noting that with respect to any two-
stage explicit Runge-Kutta method based on the Richardson extrapolation the
cost is increased of only 2 function evaluations per step. So, the new approach
introduce the factor 7/5 in the computational cost.

6 Numerical examples

In the numerical experiments of this section we want to compare the code heunsc
with the MATLAB stiff solver ode23s (a Rosenbrock type method of order 2)
and with the non-stiff solver ode45 (the explicit Runge-Kutta (4,5) pair of Dor-
mand and Prince of order 4). See [15] for details. In all test we adopt the same
accuracy requirements.

FEzxzample 1. The beginning problems we consider are semilinear equations of

the form
v + Au = g(u) (26)

10



10g10( step size )
|

Figure 1: Stepsize curve for Example 1 with g defined by ¢ (y) = y® (1 —y®).
For heunsc, v = 1.05, 8 = 0.95 and PC.5.8.

where g : RV — RY and A € RV*¥ is a positive definite matrix arising from
the discretization of the second order differential operator

0? 0?
(5t ) 0

with central differences on a uniform meshgrid of meshsize h = 1/(n+1) on the
square [0, 1] x [0, 1], with Dirichelet boundary conditions. So doing A is of order
N = n? with real spectrum.

In the numerical tests we are going to present the dimension of the problem
is N = 225 so that the spectrum is contained in the interval [—2029,—19].
We integrate the corresponding (26) in the interval [0,10] starting with ug =
(1,...,1)T. The heunsc method works with v = 1.05 and 3 = 0.95. Regarding
the accuracy, we use AbsTol = RelTol = 107> for each codes (see [15]) and the
maximal admissible stepsize is fixed to hpayx = 1.

heunsc o0de23s ode45

successful steps 457 146 6115
failed attempts 1 0 403
function evaluations 3212 665 39109
partial derivatives 0 1 0
LU decompositions 0 146 0
solutions of linear systems 0 438 0

Tab.1 - Statistics for Example 1 with ¢ (y) = y® (1 — y®)

heunsc o0de23s ode45

successful steps 482 149 6118
failed attempts 0 0 411
function evaluations 3380 33974 39175
partial derivatives 0 149 0
LU decompositions 0 149 0
solutions of linear systems 0 447 0

11



Figure 2: Stepsize curve for Example 1 with g defined by ¢ (y) = 10(y)*(1 —
y@). For heunsc, v = 1.05, 8 = 0.95 and PC.4.7.

Tab.2 - Statistics for Example 1 with g(V(y) = 10 (y(i))4 (1—y®)

Figs. 1 and 2 shows the curves of the stepsize of the three methods with g
defined by ¢ (y) = y@ (1 —y®), and ¢ (y) = 10 (y(i))4 (1—y®),i=1,..,N,
respectively. For these experiments the heunsc method works with the stepsize
controller PC.5.8 (formula (23) with Kg = 0.5, Kp = 0.8) and PC.4.7 (Kg =
0.4, Kp = 0.7) respectively. Looking at the pictures we observe that the heunsc
method actually behaves like a stiff solver, since it is able to detect where the
solution becomes smooth allowing the increase of the stepsize. In Tabs. 1 and
2 we can also observe the computational statistics for this problem.

The comparison between heunsc and ode45 needs no comments for both
experiments even considering the computational cost. With respect to ode23s
it is quite clear that even if heunsc requires more steps to complete the integra-
tion, it is actually cheaper. In the second experiment (Fig.2) it is clear because
ode23s needs to update the Jacobian at each step. For the first one (Fig.1), it
is sufficient to observe that since the bandwidth of A is v/N, an LU factoriza-
tion costs about N2 scalar multiplications whereas an application of this matrix
costs about 5N scalar multiplications because of its sparsity pattern. Of course,
the difference of cost grows increasing the dimension of the problem.

Ezample 2. In order to observe the capabilities of the heunsc method on a
classical stiff problem, we consider the Van der Pol equation

u =v
v =pu(l —u)v—u

with starting values u(0) = 2, v(0) = 0. Setting u = 500, we integrate this
problem from 0 to 500 using AbsTol = RelTol = 107°. The heunsc method
works with v = 1.15, 8 = 0.85 and PC.3.6. In Fig.3 the stepsizes chosen by the
three methods are plotted whereas the statistics are reported in Table 3.

12



10g10( step size )

Figure 3: Stepsize curve for Example 2, the Van der Pol equation. For heunsc,
v =1.15, § = 0.85 and PC.3.6.

heunsc o0de23s ode4b

successful steps 7277 482 148520
failed attempts 118 2 9899
function evaluations 51771 2416 950515
partial derivatives 0 482 0
LU decompositions 0 484 0
solutions of linear systems 0 1452 0

Tab.3 - Statistics for Example 2, the Van der Pol equation.

The method is not competitive with ode23s because the solution is never
so smooth to allow the increasing of the stepsize as in Example 1. Moreover,
since this is a two-dimensional problem the additional cost of the stiff solver
is without importance. However the comparison with the performance of the
higher-order ode45 shows the effectiveness of the scaled approach.

Ezxample 3. In this final example we consider the two-dimensional Brussela-
tor problem [7], whose equations are

0

8—7: = 1+ 4% —4u+ aAu,
0

6—: = 3u—u*v+ aAv,

for 0 < z,y < 1, with Neumann boundary conditions and initial condition given
by

. . . 5 1
u(z,y,0) = 3(1- x)zefxzf(y“)z - 10 (% —z® - y5) ey gef(mﬂ)tya
v(z,y,0) = 0,

i.e., u(z,y,0) is given by the MATLAB’s peaks function.

13



eeeee

10g10( step size )

Figure 4: Stepsize curve for Example 3, the Brusselator problem. For heunsc,
v =1.05, 8 = 0.95 and PC.4.7.

Using central differences for the Laplacian on a uniform 15 x 15 grid the
dimension of the resulting IVP is N = 450 and we integrate it from 0 to 10.
The parameter « controls the stiffness of the problem and we set & = 1 (setting
for instance a = 0.02 we get a so called mildy-stiff problem as considered in
[7]). In Fig.4 the curves of the accepted stepsizes are plotted, with accuracy
AbsTol = RelTol = 107°. The heunsc method works with v = 1.05, 8 = 0.95
and the stepsize selector PC.4.7. In Table 4 the statistics for this example are
shown.

heunsc o0de23s ode45

successful steps 4071 375 4740
failed attempts 0 1 310
function evaluations 28503 169879 30301
partial derivatives 0 375 0
LU decompositions 0 376 0
solutions of linear systems 0 1128 0

Tab.4 - Statistics for Example 3, the Brusselator problem.

Although the stiff solver ode23s completes the integration in a relative small
number of steps, its computational cost is much larger than the one of heunsc.
This means that heunsc is again an effective alternative to the standard stiff
solvers (further, we must observe that also ode45 shows a cheap performance).

However, looking at Fig.4 we can observe that, contrary to Example 1, the
stepsize selection for the heunsc does not allow to increase the stepsize over a
certain threshold that for this example was about 0.0026. This phenomena can
be explained looking again at the scalar test equation (5). Choosing as example
A = —1000 in Fig.5b we can observe the relation between the exact local error
(starting from y(0) = 1)

LE = | —n(h, h, M)|

14



exact (M=1)

/ l\ exact (M=100)
-1F ¢

estimate (M=1)

log10( local error )

estimate (M=100)

-3

4 I I I I I I I I I ,
[ 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
step size

Figure 5: Local error, exact and estimated with M = 1 and M = 100 for the
scalar test IVP.

and its estimate given by (25) with M =1 and M = 100.

In Fig.5 it is interesting to observe a critical zone attained for a value of
h greater than 0, i.e., an interval where the estimate is very poor because it
presents a zero. For M = 1, that is, working with a standard two-stage explicit
Runge-Kutta method of order 2, such interval is a neighbor of h = —8/X (it is not
difficult to verify that), but such value is never reached because the boundary of
the stability region is attained for h = —2/\. On the contrary, for our method
this interval is a very trap. In fact, the method is not able to increase the
stepsize because of the bad local error estimate that causes instability in the
stepsize selection. The only way for escaping from this situation appears when
the solution is smooth enough that the local error is also very closed to 0 (as for
Example 1). This explains the difference between the behavior of the method in
Example 1 and Example 3. Indeed in Example 3 the solution is never so smooth
to overcome this problem. Anyway such phenomena is present in all examples
here considered. It is visible looking at the instability of the stepsize curve in
Fig.1 for small value of ¢t and in Fig.3 almost everywhere. A robust solution of
this problem would be the use of an embedded approach but at the moment
this is still not available.

7 Conclusions
The numerical experiments presented in the paper show that the heunsc method
can be used to solve stiff problems especially when the solution is smooth after

the transient phases, because it is automatically able to detect such situation
allowing the growth of the stepsize. Indeed, the stability domain varies dynam-

15



ically with the solution: it is large where the solution is smooth, and it collapses
to the region of a classical explicit two-stage Runge-Kutta method during the
transient phases, in a close connection with the accuracy requirements. Since
the method is explicit, the most important feature with respect to other stiff
solvers regards the computational cost together with the capability of exploiting
the possible sparsity structure of the problem.

However, there are also some open problems for improving the capabilities
of the methods here proposed.

1. The definition of v and @ for updating the matrix sequence {M,,},>0 in
our numerical experiments has not a solid theoretical base, in the sense that it
must be possible to find out a more closed connection between such constants
and the local error that would allow to get a more efficient scaling sequence
{Mn}n20~

2. The definition of the function ¢ is only one among the possible and it is
still not clear if some other choices would allow better performances.

3. As we said at the end of previous section, we would like to dispose of an
embedded method in order to avoid stepsize selection instability.

All these problems are now under study because we are convinced that these
method can constitute an effective alternative to the classical stiff solvers, es-
pecially for large dimensional problems. The basic point is that when solving
a certain problem the accuracy requirement introduces an upper bound for the
feasible stepsize. Hence, using a classical implicit method, the possibility of
having arbitrary large stepsize is not so essential, and the computational cost is
very high.

References

[1] A. Abdulle, Fourth order Chebyshev method with recurrence relation, STAM
J. Sci. Comput. 23 (2002), pp. 2041-2054.

[2] L. Bergamaschi and M. Vianello, Efficient computation of the exponen-
tial operator for large, sparse, symmetric matrices, Numer. Linear Algebra
Appl., 7 (2000), pp. 27-45 .

[3] E. Gallopoulos and Y. Saad, Efficient solution of parabolic equations by
Krylov approximation methods, SIAM J. Sci. Stat. Comput., 13 (1992), pp.
1236-1264.

[4] K. Gustafsson, M. Lundh and G. Séderlind, A PI stepsize control for the
numerical solution of ordinary differential equations, BIT 28 (1988), pp.
270-287.

[5] K. Gustafsson, Control theoretic techniques for stepsize selection in explicit

Runge-Kutta methods, ACM TOMS 17 (1991), pp. 533-554.

16



[6]

[12]

[13]

M. Hochbruck and C. Lubich, On Krylov subspace approximations to the
matriz exponential operator, SIAM J. Numer. Anal., 34 (1997), pp. 1911-
1925.

M. Hochbruck, C. Lubich and H. Selhofer, Exponential integrators for large
systems of differential equations, STAM J. Sci. Comput., 19 (1998), pp.
1552-1574.

P.J. van der Houwen and B.P. Sommeijer, On the internal stability of ex-
plicit m-stage Runge-Kutta methods for large values of m, Z. Angew. Math.
Mech. 60 (1980), pp. 479-485.

E. Hairer, S.P. Norsett and G. Wanner, Solving ordinary differential equa-
tions. I, 2nd ed., Springer-Verlag, Berlin, 1993.

E. Hairer and G. Wanner, Solving ordinary differential equations. II, 2nd
ed., Springer-Verlag, Berlin, 1996.

I. Moret and P. Novati, The computation of functions of matrices by trun-
cated Faber series, Numer. Func. Anal. and Optimiz., 22 (2001), pp. 697-
719.

P. Novati, Solving linear initial valuue problems by Faber polynomials, Nu-
mer. Linear Algebra Appl., 10 (2003), pp. 247-270.

P. Novati, A polynomial method based on Fejer points for the computation
of functions of unsymmetric matrices, Appl. Numer. Math., 44 (2003),.pp.
201-224.

P. Novati,.An explicit one-step method for stiff problems, Computing 71
(2003), pp. 133-151.

L. F. Shampine and M. W. Reichelt, The MATLAB ODE Suite, STAM J.
Sci. Comput., 18 (1997), pp. 1-22.

G. Soderlind, Automatic control and adaptive time-stepping, Numerical Al-
gorithms 31 (2002), pp.281-310.

H. Tal-Ezer, Spectral methods in time for parabolic problems, STAM J. Nu-
mer. Anal., 26 (1989), pp. 1-11.

J.G. Verver, Explicit Runge-Kutta methods for parabolic partial differential
equations, Appl. Numer. Math. 22 (1996), pp. 359-379.

17



