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Abstract

A novel preconditioned iterative method for solving discrete ill-
posed problems, based on the Arnoldi algorithm for matrix functions,
is presented. The method is also extended to work in connection
with Tikhonov regularization. Numerical experiments arising from
the solution of integral equations and image restoration are presented.
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1 Introduction

In this paper we consider the solution of ill-conditioned linear systems

Ax = b,

in which we assume A ∈ RN×N to be full rank with singular values that
gradually decay to 0. As reference problems we consider the linear systems
arising from the discretization of Fredholm integral equation of the first kind
(commonly referred to as discrete ill-posed problems [12]), where A represents
the discretization of a compact operator. Most of the arguments presented
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here can also be applied to certain saddle point problems (see e.g. [4]) or
even Vandermonde type systems arising from interpolation theory (see e.g.
[10]). For important applications, involving for instance Vandermonde type
systems, b is assumed to be error-free. On the other hand, when working
with discrete ill-posed problems, one typically assumes the right-hand side b
affected by noise. In this paper we consider both cases: b with and without
noise.

In this framework, it is well known that many Krylov type methods such
as the CG and the GMRES possess certain regularizing properties that allow
to consider them as effective alternative to the popular Tikhonov regulariza-
tion method, based on the minimization of the functional

J(x, λ) = ∥Ax− b∥2 + λ ∥Hx∥2 , (1)

(∥·∥ denoting the Euclidean vector norm) where λ > 0 is a given parameter
and H is a regularization matrix (see e.g. [12] and [15] for a background).
Indeed, since most of Krylov methods working with A or ATA initially pick
up the largest singular values of A, they can be interpreted as regularization
methods in which the regularization parameter is the iteration number m.
We may refer to the recent paper [3] and references therein for an analy-
sis of the spectral approximation properties of the Arnoldi-based methods
and again [12] §6 for the CG-like methods. In the framework of discrete ill-
posed problems, Krylov subspace methods also present some important draw-
backs. First of all we may have semi-convergence, that is, the method initially
converges but rather rapidly diverges. This phenomenon typically appears
when the Krylov method is implemented with the re-orthogonalization of
the Krylov vectors (as for instance in the case of the Matlab version of the
GMRES, where the orthogonality of the Krylov basis is guaranteed to the
machine precision by the use of the Householder transformations). In this sit-
uation, after approximating the larger singular values (oversmoothing) the
method is also able to provide a good approximation to the smallest ones
(undersmoothing). This allows to reach the maximum accuracy, attained
for a certain mopt, but at the same time a reliable stopping criterium needs
to be used to avoid divergence. On the other hand, if a Krylov method is
implemented without re-orthogonalization it is typically not able to produce
good approximation of the smallest singular values. After say m iterations
(normally with m < mopt, hence in a situation of oversmoothing) multiple
or spurious approximations of the smallest singular values typically appears
because of the loss of orthogonality, and the iteration stagnates around xm.
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In this situation a valid stopping rule is no more so crucial but unfortunately
the attainable accuracy is generally much poorer than the one obtained by
the same method with re-orthogonalization. We refer to [12] §6.7 for an
exhaustive explanation about the influence of re-orthogonalization in some
classical Krylov methods.

In order to overcome these problems, in this paper we present a new
method that can be referred to as a preconditioned iterative solver in which
the preconditioner is either (A+ λI) or (ATA + λHTH). In detail, in the
noise-free case, the method is based on the solution of the regularized system

(A+ λI)xλ = b,

and then on the computation of the solution x as

x = f(A)xλ, (2)

where f(z) = 1 + λz−1, using the standard Arnoldi method for matrix func-
tions based on the construction of the Krylov subspaces with respect to A
and xλ, that is, Km(A,xλ) = span{xλ, Axλ, ..., A

m−1xλ}. The method can
be viewed as a preconditioned iterative method, since f(A) = A−1(A+ λI).
While the word regularization is generally used with a different meaning in
the literature, Franklin in 1978 used it in [11] for the system (A+λH)xλ = b
when A is SPD. In [12], Hansen remembered Franklin’s approach and used
also the same term for this kind of system. It is worth noting that, with
respect to standard preconditioned Krylov methods, in our method only one
system with the preconditioner has to be solved so reducing the computa-
tional cost. Moreover it is important to point out that for problems in which
the singular values of A rapidly decay to 0, as those considered in this paper,
each Krylov method based on A shows a superlinear convergence (see [21]
Chapter 5). For our method, this fast convergence is preserved since we still
work with A for the computation of (2) (see Section 3 for details). As we
shall see, this idea, i.e., first regularize then reconstruct, will allow to solve
efficiently the problem of divergence without loosing accuracy with respect
to the most effective solvers.

The method can be extended to problems in which the right hand side b is
affected by noise by considering the matrix (ATA+λHTH) as preconditioner
(cf. (1)). As before the idea is to solve the system

(ATA+ λHTH)xλ = ATb,
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and then to approximate the solution x by means of a matrix function eval-
uation

f(Q)xλ =
(
ATA

)−1
(ATA+ λHTH)xλ,

where f is as before and Q =
(
HTH

)−1(
ATA

)
.

We need to point out that we could unify the theory taking H = I for
the noise-free case, and hence work always with the Krylov subspaces with
respect to the matrix Q. However, since A is ill-conditioned, for evident
reasons, we prefer to consider two separate situations. Thus, we shall de-
note by ASP (Arnoldi with Shift Preconditioner) and ATP (Arnoldi with
Tikhonov Preconditioner) the approaches for noise-free and noisy problems
respectively.

Besides the stability and the good accuracy, there is a third important
property that holds in both cases: the reconstruction phase, that is, the
matrix function computation, allows to select initially the parameter λ even
much larger (heavy oversmoothing) than the one considered optimal by the
standard parameter-choice analysis (L-curve, Discrepancy Principle,..., see
[12] for a background), without important changes in terms of accuracy. In
this sense the method is robust with respect to the choice of the parameter
λ (see the filter factor analysis presented in Section 4).

We remark that the idea of using matrix function evaluations to improve
the accuracy of the regularization of ill-conditioned linear systems has already
been considered in [5]. However, the approach presented here is completely
different since, as said before, only one regularized system needs to be solved.
Indeed, in [5] the authors consider approximations belonging to the Krylov
subspaces generated by (A+ λI)−1 or (ATA + λHTH)−1 (rational Krylov
approach), that require the solution of a regularized linear system at each
Krylov step. Here we consider polynomial type approximations.

The paper is structured as follows. In Section 2 we provide a background
about the basic features of the Arnoldi method for matrix functions and we
present the methods (ASP and ATP) studied in the paper. We have chosen
a parallel presentation since many aspects of the ASP and the ATP approach
are very similar (as stated by the algorithms), even if, of course, the action
and the choice of the parameter λ is different. Each section of the paper
treat both methods, first the ASP and then the ATP, and we have chosen
this kind of presentation to avoid repetitions. In Section 3 we analyze the
error of the ASP method, providing also some consideration about the error
of both methods in inexact arithmetic. In Section 4 we analyze the filter
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factors of the methods. In Section 5 we present some numerical experiments,
and a test of image restoration is shown in Section 6. Some final comments
are given in Section 7.

2 The ASP and the ATP methods

As already partially explained in the introduction, the ASP method approx-
imates the solution of the ill-conditioned system Ax = b in two steps, first
solving in some way the regularized system

(A+ λI)xλ = b, (3)

and then recovering the solution x from the system

(A+ λI)−1Ax = xλ, (4)

that is equivalent to compute

x = f(A)xλ (5)

where
f(z) = 1 + λz−1. (6)

In fact, this approach corresponds to apply a left preconditioner A+λI to
the system Ax = b. First, solving (3), we obtain the right hand side xλ of the
preconditioned system (4), and, then, we solve it. Thus, our procedure can
be considered as a two-step method, the last step being the main contribution
of this paper. For the solution of the system (4) we simply used the Gaussian
or the Cholesky factorization although an iterative method may be faster in
many cases. In this paper, our aim was just to put forth some basic ideas.
We intend to discuss the numerical aspects of our procedures (stopping rule,
choice of λ, . . . ) in a forthcoming work.

Independently of the way we intend to approximate x from (5), this ap-
proach is a novel one because, contrarily to standard preconditioned itera-
tive methods, the linear system (3) with the preconditioner only needs to be
solved once. Of course this is possible because of the special preconditioner
we are using but, in principle, the idea can be extended to any polynomial
preconditioner.
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For the computation of f(A)xλ we use the standard Arnoldi method (or
Lanczos in the symmetric case) projecting the matrix A onto the Krylov sub-
spaces generated byA and xλ, that isKm(A,xλ) = span{xλ, Axλ, ..., A

m−1xλ}.
For the construction of the subspaces Km(A,xλ), the Arnoldi algorithm gen-
erates an orthonormal sequence {vj}j≥1, with v1 = xλ/ ∥xλ∥, such that
Km(A,xλ) = span {v1,v2, ...,vm} (here and below the norm used is always
the Euclidean norm). For every m, in matrix formulation, we have

AVm = VmHm + hm+1,mvm+1e
T
m, (7)

where Vm = [v1,v2, ...,vm], Hm is an upper Hessenberg matrix with entries
hi,j = vT

i Avj and ej is the j-th vector of the canonical basis of Rm.
The m-th Arnoldi approximation to x = f(A)xλ is defined as

xm = ∥xλ∥Vmf(Hm)e1, (8)

(see [16] and the references therein for a background). For the computation
f(Hm), since the method is expected to produce a good approximation of
the solution in a relatively small number of iterations (see Section 3), that
is for m≪ N , one typically considers a certain rational approximation to f ,
or, as in our case, the Schur-Parlett algorithm, [16] Chapter 9.

We denote by ASP method the iteration (8) independently of the method
chosen for solving (3). Starting from v1 = xλ/ ∥xλ∥, at each step of the
Arnoldi algorithm, we only have to compute the vectors wj = Avj, j ≥ 1.
Below the algorithm used to implement the method.

ASP Algorithm

Require A ∈ RN×N , b ∈ RN , λ ∈ R+

Define f(z) = 1 + λz−1

Solve (A+ λI)xλ = b
v1 ← xλ/∥xλ∥
for m = 1, 2, . . . do

wm ← Avm

hk,m ← vT
kwm

ṽ← wm −
∑m

k=1 hk,mvk

hm+1,m ← ∥ṽ∥
vm+1 ← ṽ/hm+1,m

6



Compute f(Hm) by Schur-Parlett algorithm
xm ← ∥xλ∥Vmf(Hm)e1

end for

In the above algorithm, the Arnoldi method is implemented with the
modified Gram-Schmidt process. Therefore, as is well known, the theoretical
orthogonality of the basis is lost quite rapidly and consequently the method
is not able to pick up the singular values clustered near 0. For this reason
at a certain point during the iteration (8) the method is no longer able to
improve the quality of the approximation and it stagnates, typically quite
close to the best attainable approximation, and almost independently of the
choice λ (see Section 5).

Moreover, by the definition of f , the attainable accuracy of the method
(assuming that the seed xλ is not affected by error) depends on the condi-
tioning of (A+ λI)−1A. Denoting by κ(·) the condition number with respect
to the Euclidean norm, theoretically the best situation is attained defining λ
such that

κ(A+ λI) = κ((A+ λI)−1 A), (9)

that is, the condition number of the preconditioner is equal to the condi-
tion number of the preconditioned system. It is quite easy to prove (see e.g.
[5]) that in the SPD case taking λ =

√
λ1λN , where λ1 and λN are respec-

tively the smallest and the largest eigenvalue of A, we obtain κ(A + λI) =
κ((A+ λI)−1 A) =

√
κ(A).

The preconditioning effect of A + λI of course depends on the choice of
λ. By (9) it is necessary to find a compromise between the preconditioning
and the accuracy in the solution of the systems with A + λI. In this sense
formula (9), that theoretically represents the optimal situation also implicitly
states a lower bound for the attainable accuracy. Indeed, many numerical
experiments arising from the discretization of Fredholm integral equation of
the first kind, in which we have examined the behavior of some classical
Krylov methods such as the GMRES and the CG preconditioned with A +
λI, have revealed that we can substantially improve the rate of convergence
(taking λ ≈ 1/

√
κ(A), see again [5] for a discussion) but we are not able to

improve the accuracy over a certain limit.
The ASP method can be extended to problems in which the exact right

hand side b is affected by noise. Since in the presence of noise a good
approximation of the exact solution may be meaningless, we extend the idea
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using the classical Tikhonov regularization. Moreover, many experiments
have shown that the ASP method generally produces poor results for problem
with noise.

We assume in particular to know only a perturbed right-hand side b =
b+ eb, where eb is the perturbation. Given λ > 0 and H ∈ RP×N such that
HTH is non singular, for approximating the solution of Ax = b we solve the
regularized system

(ATA+ λHTH)xλ = AT b, (10)

and then we approximate x by computing

x =
(
ATA

)−1
(ATA+ λHTH)xλ

= f(Q)xλ, (11)

where f is defined by (6) and Q =
(
HTH

)−1(
ATA

)
. As before, for the

computation of f(Q)xλ we use the standard Arnoldi method projecting the
matrix Q onto the Krylov subspaces generated by Q and xλ. Now, at each
step we have to compute the vectors wj = Qvj, j ≥ 1, with v1 = xλ/ ∥xλ∥,
that is, to solve the systems(

HTH
)
wj =

(
ATA

)
vj.

This means that we actually do not need Q explicitly. The algorithm is
almost identical to the one given for the ASP method, apart from the two
steps inserted in a box.

ATP Algorithm

Require A ∈ RN×N , b ∈ RN , λ ∈ R+

Define f(z) = 1 + λz−1

Solve (ATA+ λHTH)xλ = ATb

v1 ← xλ/∥xλ∥
for m = 1, 2, . . . do

Solve
(
HTH

)
wm =

(
ATA

)
vm

hk,m ← vT
kwm

ṽ← wm −
∑m

k=1 hk,mvk

hm+1,m ← ∥ṽ∥

8



vm+1 ← ṽ/hm+1,m

Compute f(Hm) by Schur-Parlett algorithm
xm ← ∥xλ∥Vmf(Hm)e1

end for

This kind of approach is somehow related with the so-called iterated
Tikhonov regularization (see for instance [15] or [22]), with the important
difference that now only one regularized system has to be solved.

Remark 1 The matrix Q is HTH-symmetric, that is, for each v,w ∈ RN

vT
(
HTHQ

)T
w = vT

(
HTHQ

)
w = vTATAw.

Therefore, the ATP method can be symmetrized using the Lanczos process
based on this new metric. However, while this approach is promising because
of its reduced computational cost, some preliminary experiments have revealed
that it is also quite unstable and, in general, less accurate than the ATP
method. For this reason the analysis presented in the next sections does not
regard this symmetric variant, and we leave it for future work.

3 Error analysis

In exact arithmetic the error of the ASP method is given by Em := x −
xm where xm is defined by (8). If we denote by Πm−1 the vector space of
polynomials of degree at most m− 1, it can be seen that

xm = pm−1(A)xλ, (12)

where xλ is the solution of (3) and pm−1 ∈ Πm−1 interpolates, in the Hermite
sense, the function f at the eigenvalues of Hm, the so-called Ritz values. Ex-
ploiting the interpolatory nature of the standard Arnoldi method, we notice,
as pointed out also in [9], that the error can be expressed in the form

Em = ∥xλ∥ gm(A)qm(A)v1, v1 = xλ/ ∥xλ∥ , (13)

where
qm(z) = det(zI −Hm),
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(see also [19]), and

gm(z) :=
f(z)− pm−1(z)

det(zI −Hm)
.

¿From (13), a bound for ∥Em∥ can be derived working with the field of values
of A, defined as

F (A) :=

{
yHAy

yHy
,y ∈ CN\ {0}

}
.

Indeed, we can state the following result (see also the recent papers [1] and
[8] for a background about the error analysis of the standard Arnoldi method
for matrix functions).

Proposition 2 Assume that F (A) ⊂ C+. Then

∥Em∥ ≤ K
λ ∥xλ∥
am+1

m∏
i=1

hi+1,i, (14)

where a > 0 is the leftmost point of F (A) and 2 ≤ K ≤ 11.08. In the
symmetric case we can take K = 1.

Proof. ¿From [6], we know that

∥gm(A)∥ ≤ K max
z∈F (A)

|gm(z)| ,

with 2 ≤ K ≤ 11.08, and hence by (13)

∥Em∥ ≤ K ∥xλ∥ max
z∈F (A)

|gm(z)| ∥qm(A)v1∥ .

Now gm(z) is a divided difference that can be bounded using the Hermite-
Genocchi formula (see e.g. [7]), so that

|gm(z)| ≤
1

m!
max

ξ∈co{z,σ(Hm)}

∣∣∣∣ dmdξm

(
1 +

λ

ξ

)∣∣∣∣ ,
≤ max

ξ∈co{z,σ(Hm)}

λ

|ξ|m+1

where co {z, σ(Hm)} denotes the convex hull of the point set given by z and
σ(Hm). Since σ(Hm) ⊂ F (Hm) ⊆ F (A), by some well known properties of
the Arnoldi algorithm, and using the relation

∥qm(A)v1∥ =
m∏
i=1

hi+1,i,
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that arises from (7) (see [20]), the result follows.
Since a, the leftmost point of F (A), can be really small for the problems

we are dealing with, formula (14) can surely be considered too pessimistic
with respect to what happens in practice. However, the upper bound given
by (14) allows to derive some important information about the behavior of
the error. First of all, it states that the rate of convergence is little influenced
by the choice of λ, and this is confirmed by the analysis given in Section 4
and by the numerical experiments. Secondly, it states that, independently
of its magnitude, the error decay is related with the rate of the decay of∏m

i=1 hi+1,i. We need the following result (cf. [21] Theorem 5.8.10).

Theorem 3 Let σj and λj, j ≥ 1, be respectively the singular values and the
eigenvalues of an operator A. Assume that |λj| ≥ |λj+1| and∑

j≥1

σp
j <∞ for a certain 0 < p ≤ 1. (15)

Let sm(z) =
∏m

i=1(z − λi). Then

∥sm(A)∥ ≤
(η e p

m

)m/p

,

where

η ≤ 1 + p

p

∑
j≥1

σp
j .

Of course, the hypothesis (15) is fulfilled by many problems arising from
the discretization of integral equations, in many cases with p quite small.
Now, using the relation ([23] p. 269),

m∏
i=1

hi+1,i ≤ ∥sm(A)v∥

that holds for each monic polynomial sm of exact degree m, we can say that
Theorem 3 reveals that for discrete ill-posed problems the rate of decay of∏m

i=1 hi+1,i is superlinear and depends on the p-summability of the singular
values of A, i.e., on the degree of ill-posedness of the problem (cf. [17] Def.
2.42).

In computer arithmetics, we need to assume that xλ, solution of (3) is
approximated by xλ with an accuracy depending on the choice of λ and the
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method used. In this way, the Arnoldi algorithm actually constructs the
Krylov subspaces Km(A,xλ). Hence the error can be written as∥∥Em

∥∥ = ∥f(A)xλ − ∥xλ∥Vmf(Hm)e1∥ ≤
∥f(A)xλ − ∥xλ∥Vmf(Hm)e1∥+ ∥f(A) (xλ − xλ)∥ . (16)

The above formula expresses the error in two terms, one depending on the
accuracy of the Arnoldi method for matrix functions and one on the accuracy
in the computation of xλ. Roughly speaking we can state that for small values
of λ, f(A) ≈ I (cf. (5)) and we have that

∥∥Em

∥∥ ≈ ∥xλ − xλ∥. This means
that the method is not able to improve the accuracy provided by the solution
of the initial system. For large λ we have that xλ ≈ xλ because the system
(3) is well conditioned, but even assuming that ∥f(A) (xλ − xλ)∥ ≈ 0 that in
principle may happen even if ∥f(A)∥ is large, we have another lower bound
due to the ill- conditioning of f(A) = A−1 (A+ λI) since now A + λI has a
poor effect as preconditioner.

Regarding the optimal choice of λ we can make the following considera-
tion. Unless the re-orthogonalization or the Householder implementation is
adopted, the Arnoldi method typically stagnates around the best approxima-
tion xm because of the loss of orthogonality of the Krylov basis. Therefore
let c(λ) be such that

∥f(A)xλ − ∥xλ∥Vmf(Hm)e1∥ → c(λ) as m→ N.

Then by (16) the optimal value of λ depends on the method used to compute
xλ and is given by

λopt = argmin
λ>0

(c(λ) + ∥f(A) (xλ − xλ)∥) . (17)

Of course the above formula is interesting only for a theoretical point of view.
In practice, as mentioned in the introduction, one could try to compare the
conditioning of A+ λI and f(A), by approximating the solution of

κ(A+ λI) = κ((A+ λI)−1 A), (18)

with respect to λ. However, since the computation of xλ comes first, it is
suitable to take λ a bit larger than the solution of (18). Note that generally
such solution can be approximated by λ = 1/κ(A).
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For the ATP method the analysis is almost identical since the error is
given by

Em := f(Q)xλ − ∥xλ∥Vmf(Hm)e1,

where (ATA + λHTH)xλ = ATb, (ATA + λHTH)xλ = ATb, and Q =
(HTH)−1(ATA). Hence, as before we have∥∥Em

∥∥ ≤ ∥f(Q)xλ − pm−1(Q)xλ∥+ ∥f(Q) (xλ − xλ)∥ ,

where pm−1 is again defined by (12). This expression is important since it
states that theoretically we may take λ very large, thus oversmoothing, in
order to reduce the effect of noise and then leaving to the Arnoldi algorithm
the task of recovering the solution. Unfortunately, the main problem is that,
as before, f(Q) may be ill-conditioned for λ large. Henceforth, even in this
case we should find a compromise for the selection of a suitable value of λ, but
contrary to the ASP method for noise-free problems it is difficult to design
a theoretical strategy. Indeed everything depends on the problem and on
the operator H. In most cases the noise on the right-hand side produces an
increment of the high-frequency components of b, that are emphasized on the
solution by the nature of the problem. For this reason H is generally taken
as a high-pass filter, as for instance a derivative operator, and the solution of
(1) can be interpreted as a numerical approximation via penalization of the
constrained minimization problem

min
∥Hx∥=0

∥∥Ax− b
∥∥ .

While in standard constrained minimization one approximates the solution
taking λ very large (theoretically λ → ∞), in our case H is hardly able to
detect efficiently the effect of noise on the numerical solution so that one is
forced to adopt some heuristic criterium such as the L-curve analysis. In
general terms we can say that if the solution is smooth and involves only low
frequencies then a high-pass filter should lead to a good approximation taking
λ “large”. On the other side if the solution involves itself high-frequencies as
in the case of discontinuities, then it is better to undersmooth the problem
so reducing the effect of the filter. We have made these considerations just
to point out that a general theoretical indication on the choice of λ is not
possible dealing with problems affected by error. What we can do is to derive
methods able to reduce the dependence on this choice, and the ATP method
seems to have some chances in this direction.
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4 Filter factors

In order to understand the action of the second phase of the methods, i.e.,
the matrix function evaluation applied to the regularized solution (cf. (5)
and (11)), below we investigate the corresponding filter factors.

Assuming for simplicity that A is diagonalizable, that is, A = XDX−1

where D = diag(λ1, ..., λN), for the ASP method we have

xλ =
N∑
i=1

λi

λi + λ

(X−1b)i
λi

xi,

where xi is the eigenvector associated with λi, and (·)i denotes the i-th
component of a vector. After the first phase, the filter factors are thus
gi = λi (λi + λ)−1. Since from (12), we have xm = pm−1(A)xλ, where pm−1

interpolates the function f at the eigenvalues of Hm, we immediately obtain

xm =
N∑
i=1

λipm−1(λi)

λi + λ

(X−1b)i
λi

xi.

Therefore, at the m-th step of the ASP method the filter factors are given
by

f
(m)
i =

λipm−1(λi)

λi + λ
, i = 1, ..., N .

Let us compare, with an example, the behavior of the filter factors. Similarly
to what was made in [12], we consider the problem GRAVITY taken from
the Hansen’s Regularization Tools [13, 14], with dimension N = 12. In

Figure 1, the filter factors gi and f
(m)
i , for m = 4, 6, 8, 10 are plotted. As

regularization parameter we have chosen λ = 1/
√
κ(A). Since the problem

is SPD, for more clarity in the pictures, the eigenvalues λi have been sorted
in decreasing order.

While the problem is rather simple the pictures clearly represent the
action of the Arnoldi (Lanczos in this case) steps. Since the Arnoldi (Lanczos)
algorithm initially picks up the largest eigenvalues, it automatically corrects
the filters corresponding to the low-middle frequencies (gi → f

(m)
i ≈ 1), keep

damping the highest ones. The second phase thus performs a correction, but
the properties of the Arnoldi algorithm guarantees that the method can still
be interpreted as a regularizing approach.
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Figure 1: Filter factors gi (asterisk) and f
(m)
i (circle) with m = 4, 6, 8, 10, for

GRAVITY(12).

For a better explanation of Figure 1, let us assume for simplicity that the
Ritz values rj, j = 1, ...,m, are distinct (as in the example), so that we can
write

pm−1(λi) =
m∑
j=1

lj(λi)f(rj),

where lj, j = 1, ...,m are the Lagrange polynomials. Hence we obtain

f
(m)
i =

m∑
j=1

lj(λi)
λi

rj

rj + λ

λi + λ
, i = 1, ..., N .

Since the Arnoldi algorithm ensures that rj ≈ λj for j = 1, ...,m we have

f
(m)
i ≈ 1 for i ≤ m. For i > m and when λi ≈ 0 we have that

f
(m)
i ≈ pm−1(0)

λi

λi + λ
,
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so that the filters are close to the ones of the uncorrected scheme. Of course,
numerically, the problems start to appear when the Arnoldi algorithm fails to
provide good approximations of the eigenvalues of A, but it is important to
observe that, at least in exact arithmetics, the choice of λ only influences the
high frequencies. For this reason, at least for the ASP method, this choice is
more related to the conditioning of the subproblems (cf. Section 3).

The filter factor analysis just presented remains valid also for the ATP
method. Taking H = I in (10) and using the SVD decomposition we easily
find that the filter factors are now given by

f
(m)
i =

σ2
i pm−1(σ

2
i )

σ2
i + λ

and hence our considerations for the ASP method remains true also for this
case. Of course for H ̸= I we just need to consider the GSVD. For problems
with noise, the choice of λ is of great importance. Anyway we have just seen
that the correction phase allows to reproduce the low frequencies indepen-
dently of this choice. In this sense, in practice we can take λ even very large
in order to reduce as much as possible the influence of noise.

5 Numerical experiments

This section is devoted to the numerical experiments obtained on a single
processor computer Intel Core Duo T5800 with Matlab 7.9. Our goal is
to prove numerically what we consider the valuable properties of the ASP
and the ATP methods, that is, accuracy and speed comparable with the
most effective iterative solvers, stability, and robustness of the method with
respect to λ. For the experiments we consider problems taken from the
Regularization Tools Matlab package by Hansen [13, 14]. Our compari-
son method is the Matlab version of the GMRES, that is implemented with
the Householder algorithm that guarantees the orthogonality of the Krylov
basis to the machine precision. For the problems here considered the GM-
RES method has shown to be the most accurate, if compared to other well
known methods that we can found in the literature. Since it is also quite
unstable, it is generally implemented together with the discrepancy principle
as stopping criterium (where it is possible of course), but not always with
good results. We point out that the modified Gram-Schmidt version of the
GMRES has also been considered in the experiments (even if not reported);
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this version is stable, but unfortunately the attainable accuracy loses one
or even two order of magnitude with respect to the version implemented by
Matlab. Other methods such as the CGLS and LSQR are widely inferior for
the problems considered here.

In all experiments the Arnoldi algorithm for the ASP and the ATP meth-
ods, as said in Section 2, is implemented with the modified Gram-Schmidt
orthogonalization, and the initial linear system is solved with the LU or the
Cholesky factorization.

As first test problem we consider BAART(240) (in parenthesis, as usual,
we indicate the dimension N). The estimated condition number of the cor-
responding matrix A is around 1020. We first consider the noise-free case
comparing the behavior of the ASP method with GMRES, taking different
values of the parameter λ. Looking at Figure 2 we can observe that even con-
sidering a wide range of values for λ, contrary to GMRES the ASP method
does not suffer from semi-convergence, that is, the error always stabilizes
around the minimum. The attainable accuracy is always quite close to the
one of GMRES. The number of iterations necessary to achieve the minimum
accuracy is almost always the same, as expected from Proposition 2 and it
depends on the spectral properties of the operator, that is, on the fast decay
of

∏m
i=1 hi+1,i (cf. Theorem 3).

Another important observation can be made looking at the error curve
corresponding to the choice of λ = 10−9 (line with asterisks). Since this
curve is almost flat we argue that this value of λ is probably very close
to the value λopt defined by (17), that seeks for a compromise between the
accuracies in the solutions of the initial linear system and in the computation
of the matrix function. In other words, the method is not able to improve
the accuracy provided by the solution of the initial system (see (16)). In
Table 1 the minimal errors (with the iteration numbers in parenthesis) and
the corresponding residuals are reported.

error residual λ
ASP 3.58× 10−5(8) 1.89× 10−12 10−3

2.57× 10−5(8) 3.86× 10−13 10−5

2.78× 10−5(8) 4.79× 10−14 10−7

1.26× 10−5(7) 1.94× 10−12 10−9

GMRES 1.37× 10−5(9) 2.21× 10−15

Table 1: Results for BAART(240) in the noise-free case.
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Figure 2: Error behavior of the GMRES and the ASP method with λ =
10−3, 10−5, 10−7, 10−9, for noise-free BAART(240).

Now we consider the same problem with right-hand side affected by noise.
We try to solve Ax = b working with an inexact right-hand side b = b+ eb
where eb is a noise vector of the type

eb =
δ ∥b∥√

N
u, (19)

where we define δ = 10−3 as the relative noise level, and u = randn(N, 1),
that in Matlab notation is a vector of N random components with normal
distribution with mean 0 and standard deviation 1. For the ATP method,
we define H as the discrete second derivative operator, that is,

H =


2 −1
−1 . . . . . .

. . . . . . −1
−1 2

 ∈ RN×N ,

and we choose λ = 1 and λ = 1010. The comparison is made again with the
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Figure 3: Error behavior of the GMRES and the ATP method with λ = 1
and λ = 1010 for BAART(240) with Gaussian noise.

GMRES. The error curves are plotted in Figure 3. For λ = 1 the method does
not provide a substantial improvement to the first iteration that correspond
to the Cholesky solution of the Tikhonov system. Probably this is due to
the fact that λ = 1 is close to the value attainable with the L-curve analysis.
Anyway it is important to notice that the method does not deteriorate that
approximation during the iteration. For λ = 1010 we have an effective and
stable improvement with a good accuracy if compared with the one of the
GMRES. In order to avoid confusion in the pictures we only consider these
two values, since in the internal range the curves are similar, showing the
robustness of the method with respect to the choice of the parameter λ. The
results are reported in Table 2.

For a fair comparison between the ASP method and GMRES we also
consider the preconditioned version of this code that we denote by PGMRES
with the same preconditioner used by the ASP method, that is, A + λI.
Working again with BAART(240) with exact right-hand side, in Figure 4
we plot the error curves with respect to the computational cost. While
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error residual λ
ATP 4.00× 10−2(2) 2.70× 10−4 1

6.01× 10−3(4) 2.17× 10−4 1010

GMRES 5.66× 10−2(3) 2.16× 10−4

Table 2: Results for BAART(240) with Gaussian noise.

a flops counter is no longer available in Matlab, it is quite easy to derive
these numbers knowing the algorithms. The non-vectorial operations are
neglected. For both methods the systems with A + λI are solved by means
of the LU factorization, computed only once at the beginning. Of course,
each PGMRES iteration is more expensive since it requires the solution of a
system with A+ λI.

The results reported in Figure 4 reveal that the ASP is still competitive
with the PGMRES in terms of accuracy and computational cost. For this
example the PGMRES is a bit faster than GMRES (cf. Figure 2) since the
error curve is steeper at the beginning, but it remains unstable. Comparing
also the results of these examples (Table 3) with the ones reported in Table
1, we also observe a very little improvement in terms of accuracy.
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Figure 4: Error behavior of the preconditioned GMRES and the ASP method
for BAART(240) with λ = 10−5 (left) and 10−7 (right).

In a final example we want show the behavior of the methods in four classi-
cal problems (BAART, FOXGOOD, SHAW and GRAVITY), with N = 160,
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error residual λ
ASP 2.57× 10−5(8) 3.86× 10−13 10−5

PGMRES 1.33× 10−5(9) 3.92× 10−15 10−5

ASP 2.78× 10−5(8) 4.79× 10−14 10−7

PGMRES 1.55× 10−5(7) 3.43× 10−13 10−7

Table 3: Comparison between the ASP method and the PGMRES for λ =
10−5, 10−7.

changing the value of the parameter λ. Figure 5 is representative of what
happen in general for the ASP method with exact right-hand side, that is, as
expected, the attainable accuracy is generally poor for small values of λ (the
initial system is badly solved) and for large values of λ (the preconditioning
effort is poor). In any case it is really important to observe that the maxi-
mum accuracy can be obtained without much differences for a relatively large
window of values for λ, since the curves exhibit a plateau around the mini-
mum. Indicatively, we may say that the maximum accuracy can be achieved
taking λ in a range between 1/

√
κ(A) and 1/ 4

√
κ(A). The importance of this

behavior is not negligible because it means that having an estimate of the
conditioning of A allows to skip any pre-processing techniques to estimate
the optimal value of λ.

Assume now to work with a right-hand side affected by noise, b = b+eb,
where eb is a defined by (19) with noise level δ = 10−3. Looking at Figure 6,
we can observe that with respect to the noise-free case we do not even have
the problem of oversmoothing taking λ too large, at least for the example
considered. We argue that the bottleneck, for what concerns the accuracy, is
represented by the effect of noise. In general, increasing the value of λ leads
to a slight increase of the number of iterations. These considerations leads us
to state a general strategy for an automatic parameter-choice implementation
of the method.

1. define λ relatively “large”, for instance even much larger than the point
of maximum curvature of the L-curve;

2. use any parameter-choice method for m to define the stopping rule (as
for instance the discrepancy principle where possible), allowing some
more iterations to avoid oversmoothing (m too small, cf. Figure 3).

Concluding we may say that for the ATP method of course there exists
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Figure 5: Maximum attainable accuracy with respect to the choice of λ = 10t.
The dimension of each problem is N = 160.
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Figure 6: Maximum attainable accuracy with respect to the choice of λ = 10t,
with right-hand side affected by noise. The dimension of each problem is
N = 160.
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an optimal value of λ, say λopt, close to the corners of the L-shaped curves
of Figure 6, and a corresponding mopt, that is, the minimum number of
iterations to achieve the optimal accuracy. Anyway, our experiments reveal
that working with λ > λopt and m > mopt, we do not have a sensible loss of
accuracy nor a remarkable increase of computational cost.

6 An example of image restoration

In this section we consider a problem of image restoration. The example is a
2D image deblurring problem which consists of recovering the original n× n
image from a blurred and noisy image. The original image is denoted by
X and it consists of n × n grayscale pixel values. Let x = vec (X) ∈ RN ,
N = n2, be the vector whose entries are the pixel values of the image X.
Moreover, let A ∈ RN×N be the matrix representing the blurring operator,
coming from the discretization of the Point Spread Function (PSF). The
vector b = Ax represents the associated blurred and noise-free image. We
generate a blurred and noisy image b = b + eb, where eb is a noise vector
defined by (19) with δ = 10−3.

The matrix A is a symmetric block Toeplitz with Toeplitz blocks

A = (2πσ2)−1T ⊗ T,

where T is a n × n symmetric banded Toeplitz matrix whose first row is a
vector v whose element are

vj :=

 e−(j−1)2

2σ2
for j = 1, . . . , q

0 for j = q + 1, . . . , n.

The parameter q is the half-bandwidth of the matrix T , and the parameter
σ controls the width of the underlying Gaussian point spread function

h(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
,

which models the degradation of the image. Thus, a larger σ implies a wider
Gaussian and thus a more ill-posed problem. For our experiments X is a
100×100 subimage of the image coins.png from Matlab’s Image Processing
Toolbox, shown as the first image in Figure 7. We define q = 6 and σ = 1.5,
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Figure 7: Image restoration with the ATP method using H1,2, H2,2, and
λ = 100. The results correspond to the Krylov iteration number 10 for H1,2,
and number 13 for H2,2.

so that the condition number of A is around 1010. We report the results of our
image restoration using two different regularization operators. In particular
we consider the matrix

H1,2 =

(
I ⊗H1

H1 ⊗ I

)
, where H1 =


1 −1

. . . . . .

1 −1
1

 ∈ Rn×n,

taken from [18] (slightly modified such that HT
1,2H1,2 is nonsingular), and

the matrix H2,2 defined as the discretization of the two-dimensional Laplace
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operator with zero-Dirichlet boundary conditions, that is,

H2,2 =


4 −1 −1
−1 4 −1 −1

. . . . . . . . .

−1 −1 4 −1
−1 −1 4

 ∈ RN×N .

Figure 7 shows that the ATP method can be fruitfully used also for these
kind of problems. Due to the well marked edges, the original image involves
high-frequencies so that the restoration by means of the standard derivative
operators is intrinsically difficult, because they are high-pass filters.

Table 4 shows that also for this kind of problems the attainable accuracy
is weakly influenced by the choice of λ.

λ 1 102 104 106

H1,2 0.060 (10) 0.060 (10) 0.062 (10) 0.059 (11)
H2,2 0.061 (12) 0.064 (13) 0.069 (13) 0.075 (13)

Table 4: Attainable accuracy (Euclidean norm of the error) for the image
restoration with H1,2 and H2,2 using different values of λ. In parenthesis the
corresponding number of iterations.

7 Conclusions

In this paper we have presented a new approach for the solution of discrete
ill-posed problems. The basic idea is to solve the problem in two steps:
first regularize and then reconstruct. We have described two methods based
on this idea, the ASP method that is actually a particular preconditioned
iterative solver, and the ATP method that is a method that tries to improve
the approximation arising from the Tikhonov regularization. In both cases
the reconstruction is performed evaluating a matrix function by means of the
standard Arnoldi method. This idea can also be interpreted as a modification
of the iterated Tikhonov regularization (see for instance [15] and [22]).

Being iterative, both methods should be interpreted as methods depend-
ing on two parameters, that is, λ and the number of iterations m. Actually
our implementation of the Arnoldi method (Gram-Schmidt) is very stable

25



so that for a fixed λ, the undersmoothing effect, theoretically determined by
taking m large, in general does not deteriorate the approximation. Therefore
the only important parameter is λ. Anyway, the most important property of
both methods is that they do not need an accurate estimate of this parameter
to work properly (cf. Section 4, Figures 5 and 6, and Table 4). Of course this
property is particularly attractive for problems in which a parameter-choice
analysis is too expensive or even unfeasible as for instance for large scale
problems such as the image restoration.

As possible future developments, we observe that the ASP method could
be quite easily extended to work in connection with polynomial precondition-
ers (see e.g. [2] for a background). This can be done replacing (A + λI)−1

with a suitable pm(A) ≈ A−1 and changing accordingly the matrix function
to evaluate. Also the symmetric version of the ATP method (see Remark 1)
seems quite interesting and requires further investigation.

Finally, we want to point out that the present paper was just intended
to present the basic ideas and properties of the methods; in this sense, a
reliable implementation with stopping criterium, choice of λ, etc., has still
to be done.
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to general-form Tikhonov regularization, SIAM J. Sci. Comput. 29
(2007) 315–330.

[19] I. Moret, P. Novati, An interpolatory approximation of the matrix expo-
nential based on Faber polynomials, Journal C.A.M. 131 (2001) 361–380.

[20] I. Moret, P. Novati, RD-rational approximations of the matrix exponen-
tial, BIT 44 (2004) 595–615.

[21] O. Nevanlinna, Convergence of Iterations for Linear Equations,
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